
An Intrinsic Denotational Semantics for a Lazy
Functional Language

Leonardo Rodŕıguez

FaMAF,
Universidad Nacional de Córdoba,

Córdoba, Argentina
lrodrig2@famaf.unc.edu.ar

Abstract. In this paper we present a denotational semantics for a lazy
functional language. The semantics is intrinsic in the sense that it de-
fines meaning for typing derivations instead of language expressions. We
contrast our semantics with the well-known evaluation rules defined by
Sestoft [17] and show that these rules preserve types and meaning.

Keywords: denotational semantics, lazy evaluation, type theory

1 Introduction

In a lazy functional language, function arguments are evaluated only if needed
and at most once. The evaluation is performed in normal order and with sharing
of arguments evaluation. This paper presents a denotational semantics for a lazy
language that models this evaluation strategy. The semantics is intrinsic in the
sense of Reynolds [15, 16], since it defines meaning to typing judgements rather
than to terms themselves, and as a consequence, only well-typed terms have
meaning.

The semantics of lazy languages have been largely studied, and there are
many operational specifications and abstract machines based on graph reduction
[10, 8], super-combinators [7], and other techniques. Launchbury [12] defined a
big-step operational semantics for an extended lambda calculus. The sharing of
evaluation is modelled using heaps mapping variables to its values, which are
updated when the evaluation of an expression is finished. Sestoft [17] revised
the semantics by providing a way to locally check freshness of variables during
evaluation, among others improvements. This paper takes the same language
used by Sestoft but with the inclusion of a type-system. We define an intrinsic
denotational semantics for the language, and show that the evaluation rules
preserve both types and meaning.

There are other denotational definitions of the semantics for lazy functional
languages [3, 4, 9]. Launchbury [12] defined a denotational semantics and pre-
sented a proof of adequacy with respect to his evaluation rules. However, Bre-
itner [6] have recently found some issues in the proof, and then adjusted the
semantics to correct them. Nakata [13] presented an alternative definition to

2 Leonardo Rodŕıguez

the denotational semantics for recursive local declarations. In [13], like in this
paper, a type system is included in the language, but its semantic definition is
nonetheless untyped.

2 Syntax and Semantics

We use the same language as in [12, 17], a lambda calculus with recursive local
declarations which presents terms in a restricted syntax:

Definition 1 (Language terms).

e ::= λx. e | e x | x | let {xi 7→ ei} in e

The purpose of this restricted form is to ensure that every function argument
has been previously bound by a local declaration (let), and therefore it will
be shared in the heap, as will become clear later. Note that a general lambda
expression may be translated into this restricted syntax by introducing new let-
bindings.

Notation: Before we continue let us fix some notations about finite maps
(used to represent heaps, contexts and environments). Let M : D → R be a
finite map from a set D (the domain of M) to some set R (the range of M). We
write M [x 7→ r] for the extension of M with a new map {x 7→ r}. Sometimes we
write M [xi 7→ ri] as a shortening of M [x1 7→ r1] . . . [rn 7→ rn], and if D0 ⊆ D
we write M |D0

for the restriction of M to the domain D0. Finally, if M and M ′

are maps with disjoint domain, we write M tM ′ for the combination of the two
maps in a single one.

Figure 1 shows Sestoft’s evaluation rules. A heap Γ is a finite map from
variables to expressions, and a pair of the form (Γ, e) where e is an expression
is called a configuration. A judgement of the form (Γ, e) ⇓A (∆, w) says that
in the heap Γ , the expression e will evaluate to w producing a new heap ∆.

The evaluation rules are annotated with a set A of the variables whose value
is being computed at the time. The only place where this set is updated is in
the Var rule when the value of x is about to be computed.

Abst
(Γ, λx. e) ⇓A (Γ, λx. e)

Var
(Γ, e) ⇓A∪{x} (∆, w)

(Γ [x 7→ e], x) ⇓A (∆[x 7→ w], w)

App
(Γ, e) ⇓A (∆, λy. e′) (∆, e′[x\y]) ⇓A (Θ, w)

(Γ, e x) ⇓A (Θ, w)

Let
(Γ [zi 7→ êi], ê) ⇓A (∆, w)

(Γ, let {xi 7→ ei} in e) ⇓A (∆, w)

Fig. 1. Big-step operational semantics

An Intrinsic Denotational Semantics for a Lazy Functional Language 3

The rule Var is where sharing becomes evident. Once the expression e is
evaluated, the variable x is updated in heap ∆ with its new value w, avoiding
in this way to evaluate the variable x again in the future.

In the Let rule we write ê for the substitution e[z1\x1, . . . , zn\xn]. The
variables zi have to be fresh: they must not occur in Γ , A or let {xi 7→ ei} in e.
Notice that, unlike in [12], the checking of freshness can be done locally (that is,
looking only at the configuration being evaluated and not at the entire evaluation
tree).

It is necessary to ensure that the substitution e′[x\y] does not capture the
variable x (in the App rule), and also that the variable x does not occur in the
domain of ∆ (in the Var rule), and hence the extension ∆[x 7→ w] does not
overwrite any map of ∆. In order to guarantee those properties it is required for
the evaluation to produce only “A-good” configurations, as defined in [17]. For
convenience we reproduce the definition here:

Definition 2. A configuration (Γ, e) is A-good if and only if
1. A∩dom(Γ) = ∅, 2. Fv(Γ, e) ⊆ A∪dom(Γ), 3. Bv(Γ, e)∩(A∪dom(Γ)) = ∅.
Here Fv(Γ, e) denotes the set of free variables of the entire configuration, in-
cluding the expressions in the range of Γ . Similarly, the set Bv(Γ, e) contains
all the bound variables of the configuration (Γ, e). The following lemma, proved
in [17], shows that indeed “A-good” is preserved by evaluation.

Lemma 1. If (Γ, e) is A-good and (Γ, e) ⇓A (∆, w) is derivable, then (∆, w)
is A-good and dom(Γ) ⊆ dom(∆).

3 Type System

In Figure 2, we define the typing rules for expressions, heaps and configurations.
A typing judgment for an expression e has the usual form π ` e : θ, where π is

TyAbs
π[x 7→ θ] ` e : θ′

π ` λx. e : θ→ θ′
TyApp

π ` e : θ→ θ′ {x 7→ θ} ∈ π
π ` e x : θ′

TyVar
{x 7→ θ} ∈ π
π ` x : θ

TyLet
π[xi 7→ θi] ` ei : θi π[xi 7→ θi] ` e : θ′

π ` let {xi 7→ ei} in e : θ′

TyEmpty
π′ ` � : []

TyExt
π′[x 7→ θ] ` Γ : π π′ t π[x 7→ θ] ` e : θ

π′ ` Γ [x 7→ e] : π[x 7→ θ]

TyConf
π′ ` Γ : π π′ t π ` e : θ

(π′, π) ` (Γ, e) : θ

Fig. 2. Typing rules

a context and θ is a type. We have two type constructors, the basic type b and
arrow types of the form θ→ θ′. Contexts are finite maps from variables to types.

4 Leonardo Rodŕıguez

On the other hand, a typing judgement for a heap Γ has the form π′ ` Γ : π,
where both π′ and π are contexts. The first context π′ is necessary since a heap
may contain free variables: in the V ar evaluation rule, the variable x may occur
free in the range of the heap and still be removed from its domain and included
in the set A. Thus, the context π′ is intended to type each variable in A, whereas
the context π is meant to type each variable in the domain of Γ .

We have a single rule to type a configuration (Γ, e) that combines a typing
derivation for the heap Γ and a typing derivation for the expression e. Note that
the use of the operation π′ t π has the implicit requirement for the domain of π′

and π to be disjoint. This is ensured if the configuration (Γ, e) is dom(π′)-good.
The following lemma states that the evaluation rules preserves types:

Lemma 2 (Type preservation). Let (Γ, e) and (∆, w) be configurations, π′

and π0 contexts, and θ a type such that:

1. (Γ, e) is dom(π′)-good, 2. (π′, π0) ` (Γ, e) : θ, 3. (Γ, e) ⇓dom(π′) (∆, w).

Then, there is a context π1 such that π0 ⊆ π1 and (π′, π1) ` (∆, w) : θ.

Proof. The proof is by structural induction on the evaluation rules. In each case,
it is necessary to perform inversion in the typing derivation and to use Lemma 1.

4 Denotational Semantics

We used a domain-theoretic setting to define the semantics of the language. The
meaning of a type θ is a domain J θ K and the meaning of a context π is an
environment Jπ K (a named finite product ordered pointwise).

In Figure 3 we present some of the equations of the semantics. We define three
functions EJ Kπ, θ, HJ Kπ, π′ and CJ Kπ′, θ that assign a continuous function to
a typing derivation for a expression, a heap and a configuration, respectively.

It can be proved that this semantics is coherent : different typing derivations
with the same conclusion have the same meaning. This property allow us to
write without ambiguity EJ e Kπ, θ for the semantics of any typing derivation with
conclusion π ` e : θ (and the same holds for the other forms of judgement).
We refer to [14] for a proof of coherence of the semantics for a language larger
than the one we use in this paper.

Notation: Let us clarify some notation we use in Figure 3. The symbol λ̂ is
used as a meta-binder to avoid confusion with the symbol λ used in abstractions.
If η is an environment, we write η $ x for its projection on the variable x. Finally,
we write YD f for the least fixed-point of a continuous function f : D → D where
D is a domain.

The following lemma says that evaluation rules preserve meaning. This lemma
corresponds to “Theorem 2” in [12] (correctness of denotational semantics), but
this time proved for the revised semantics of Sestoft and including only well-
typed configurations.

An Intrinsic Denotational Semantics for a Lazy Functional Language 5

EJ Kπ, θ : Jπ K→ J θ K

EJλx. e Kπ, θ→ θ′ η = λ̂ d . EJ e Kπ[x 7→ θ], θ′ (η[x 7→ d])

EJ e x Kπ, θ′ η = EJ e Kπ, θ→ θ′ η (EJx Kπ, θ η)

EJx Kπ, θ η = η $ x

EJ let {xi 7→ ei} in e Kπ, θ η = EJ e Kπ[xi 7→ θi], θ η
′

η′ = Y π[xi 7→ θi] (λ̂ η′ . η[xi 7→ EJ ei Kπ[xi 7→ θi], θi η
′])

HJ Kπ′, π : Jπ′ K→ Jπ K

HJ � Kπ′, [] η = ()

HJΓ [x 7→ e] Kπ′, π[x 7→ θ] η = Y Jπ[x 7→ θ] K (λ̂ η′ . η′′[x 7→ d])

where d = EJ e Kπ′ tπ[x 7→ θ], θ (η t η′)
η′′ = HJΓ Kπ′[x 7→ θ], π (η[x 7→ d])

CJ Kπ′, θ : Jπ′ K→ J θ K

CJ (Γ, e) Kπ′, θ η = EJ e Kπ′ tπ, θ (η t HJΓ Kπ′, π η)

Fig. 3. Denotational semantics: some equations.

Lemma 3 (Semantic preservation). Let (Γ, e) and (∆, w) be configurations,
π′, π0, π1 be contexts, and θ a type such that,

1. (π′, π0) ` (Γ, e) : θ,
2. (Γ, e) is dom(π′)-good,

3. π0 ⊆ π1,
4. (π′, π1) ` (∆, w) : θ.

Then, if (Γ, e) ⇓dom(π′) (∆, w), for all η ∈ Jπ′ K it holds:
1. CJ (Γ, e) Kπ′, θ η = CJ (∆, w) Kπ′, θ η, 2. HJΓ Kπ′, π0 η = (HJ∆ Kπ′, π1 η)|dom(π0).

Proof. The proof is by structural induction on the evaluation rules. It is necessary
to use Lemma 2 to construct the typing derivations required to apply inductive
hypothesis in each case.

The complete proof of this lemma is longer than the untyped version pre-
sented in [12], but each step in the proof is type-driven and has the simplicity
provided by the typed framework.

5 Further Work

We have not yet proved computational adequacy of the semantics in the sense
of [12, Sec. 5]. For instance, we should prove that if the semantics of a term is
non-bottom, then the term evaluates to a normal form.

Our goal behind this intrinsic definition of the semantics is to prove the cor-
rectness of Sestoft’s abstract machine [17] using type-indexed logical relations.

6 Leonardo Rodŕıguez

In our experience, intrinsic semantics are more suitable for formalization in a
proof assistant with dependent types since all the semantic functions are total
(without the need of type-error constants that usually complicate the semantic
equations). We expect to formalize the results in this work using the Coq [2] proof
assistant together with a domain theory library developed by Benton et al. [5].
We extended this library and used it to a formalize a denotational semantics
for a call-by-name functional language, and a proof of correctness for a com-
piler targeting the Krivine abstract machine [11]. Our development is available
online [1].

References

1. Some Formalizations in Coq, http://cs.famaf.unc.edu.ar/~leorodriguez/

compilercorrectness/
2. The Coq Proof Assistant, http://coq.inria.fr/
3. Abramsky, S.: The Lazy Lambda Calculus. In: Turner, D. (ed.) Research topics in

functional programming. pp. 65–116. Addison-Wesley (1990)
4. Abramsky, S., Ong, C.L.: Full Abstraction in the Lazy Lambda Calculus. Informa-

tion and Computation 105(2), 159–267 (1993)
5. Benton, N., Kennedy, A., Varming, C.: Formalizing Domains, Ultrametric Spaces

and Semantics of Programming Languages (2010), unpublished
6. Breitner, J.: The Correctness of Launchbury’s Natural Semantics for Lazy Evalu-

ation. Archive of Formal Proofs (2013)
7. Hughes, R.J.M.: Super-combinators: a New Implementation Method for Applica-

tive Languages. In: Proceedings of the 1982 ACM Symposium on LISP and Func-
tional Programming. pp. 1–10. LFP ’82, ACM, New York, NY, USA (1982)

8. Jones, P., L, S.: Implementing Lazy Functional Languages on Stock Hardware:
The Spineless Tagless G-machine. Journal of Functional Programming 2(2), 127
202 (April 1992)

9. Josephs, M.B.: The Semantics of Lazy Functional Languages. Theoretical Com-
puter Science 68(1), 105–111 (1989)

10. Kieburtz, R.B.: The G-machine: A Fast, Graph-reduction Evaluator. In: Proc. Of
a Conference on Functional Programming Languages and Computer Architecture.
pp. 400–413. Springer-Verlag New York, Inc., New York, NY, USA (1985)

11. Krivine, J.L.: A Call-by-name Lambda-calculus Machine. Higher Order Symbolic
Computation. 20(3), 199–207 (Sep 2007)

12. Launchbury, J.: A Natural Semantics for Lazy Evaluation. In: POPL. pp. 144–154
(1993)

13. Nakata, K.: Denotational Semantics for Lazy Initialization of Letrec: Black Holes
as Exceptions Rather than Divergence. In: 7th Workshop on Fixed Points in Com-
puter Science (2010)

14. Reynolds, J.C.: The Coherence of Languages with Intersection Types. In: Proceed-
ings of the International Conference on Theoretical Aspects of Computer Software.
pp. 675–700. TACS ’91, Springer-Verlag, London, UK, UK (1991)

15. Reynolds, J.C.: Theories of Programming Languages. Cambridge University Press,
New York, NY, USA (1999)

16. Reynolds, J.C.: The Meaning of Types – From Intrinsic to Extrinsic Semantics.
Tech. Rep. RS-00-32, BRICS (December 2000)

17. Sestoft, P.: Deriving a Lazy Abstract Machine. Journal of Functional Programing.
7(3), 231–264 (May 1997)

