Skip to main content

Safety Verification of Hybrid Systems Using Certified Multiple Lyapunov-Like Functions

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9301))

Abstract

In this paper, we present an efficient, hybrid numeric-symbolic method for safety verification of hybrid systems. To start with, we introduce a function of state, defined as a multiple Lyapunov-like function, whose time derivative along the trajectories is non-negative only outside of the initial set, such that its zero level set separates the unsafe region from all possible trajectories starting from the given initial set. Then, a numerical multiple Lyapunov-like function is computed by using sum of squares decomposition and semi-definite programming. Afterwards, in order to recover the possible unreliability of our numerical solution, we apply a continued fractions based rational recovery technique to this floating result and then obtain a certified one with rational coefficients, such that exact verification can be assured by this certified multiple Lyapunov-like function. Finally, several examples, together with discussions, are provided to illustrate the tractability and advantages of our method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Oliviero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138, 3–34 (1995)

    Google Scholar 

  2. Alur, R., Dang, T., Ivanc̆ić, F.: Counterexample-guided predicate abstraction of hybrid systems. Theoretical Computer Science 354, 250–271 (2006)

    Google Scholar 

  3. Anai, H., Weispfenning, V.: Reach set computations using real quantifier elimination. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 63–76. Springer, Heidelberg (2001)

    Google Scholar 

  4. Clarke, E.M., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction and Counterexample-Guided Refinement in Model Checking of Hybrid Systems. International Journal Foundations of Computer Science 14, 583–604 (2003)

    Google Scholar 

  5. Clarke, E.M., Kurshan, R.P.: Computer-aided verification. IEEE Spectrum 33(6), 61–67 (1996)

    Google Scholar 

  6. Christoffer, S., George, J.P., Rafael, W.: Compositional safety analysis using barrier certificates. In: Proceedings of the 15th ACM International Conference on Hybrid Systems: Computation and Control, pp. 15–23 (2012)

    Google Scholar 

  7. Chutinan, A., Krogh, B.H.: Computational techniques for hybrid system verification. IEEE Transactions on Automatic Control 48, 64–75 (2003)

    Google Scholar 

  8. Fradkov, A.L., Yakubovich, V.A.: The S-procedure and a duality realations in nonconvex problems of quadratic programming. Vestnik Leningrad Univ. Math 5, 101–109 (1979)

    Google Scholar 

  9. Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2

  10. Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support functions. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 540–554. Springer, Heidelberg (2009)

    Google Scholar 

  11. Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 190–203. Springer, Heidelberg (2008)

    Google Scholar 

  12. Härter, V., Jansson, C., Lange, M.: VSDP: a matlab toolbox for verified semidefinte-quadratic-linear programming. http://www.ti3.tuhh.de/jansson/vsdp/

  13. Huang, Z., Mitra, S.: Proofs from simulations and modular annotations. In: Proc. of the 17th International Conference on Hybrid Systems: Computation and Control, pp. 183–192 (2014)

    Google Scholar 

  14. Huang, Z., Fan, C., Mereacre, A., Mitra, S., Kwiatkowska, M.: Invariant verification of nonlinear hybrid automata networks of cardiac cells. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 373–390. Springer, Heidelberg (2014)

    Google Scholar 

  15. Jones, W., Thron, W.: Continued fractions: analytic theory and applications. In: Encyclopedia of Mathematics and its Applications, vol. 11 (1980)

    Google Scholar 

  16. Kaltofen, E., Li, B., Yang, Z., Zhi, L.: Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients. Journal of Symbolic Computation 47, 1–15 (2012)

    Google Scholar 

  17. Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for reachability analysis. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 203–213. Springer, Heidelberg (2000)

    Google Scholar 

  18. Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computations for families of linear vectorfields. Journal of Symbolic Computation 32, 231–253 (2001)

    Google Scholar 

  19. Lin, W., Wu, M., Yang, Z., Zeng, Z.: Exact safety verification of hybrid systems using sums-of-squares representation. Science China Information Sciences 57(5), 1–13 (2014)

    Google Scholar 

  20. Löfberg, J.: Yalmip: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference (2004). http://control.ee.ethz.ch/joloef/yalmip.php

  21. Parrilo, P.A.: Structured Semidefinite Programs and Semialgebraic Geometly Methods in Robustness and Optimization. Ph.D. thesis, California Institute of Technology, Pasadena (2000)

    Google Scholar 

  22. Peyrl, H., Parrilo, P.A.: Computing sum of squares decompositions with rational coefficients. Theoretical Computer Science 409, 269–281 (2008)

    Google Scholar 

  23. Platzer, A., Clarke, E.M.: The image computation problem in hybrid systems model checking. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 473–486. Springer, Heidelberg (2007)

    Google Scholar 

  24. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Heidelberg (2004)

    Google Scholar 

  25. Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case and stochastic safety verification using barrier certificates. IEEE Transactions On Automatic Control 52, 1415–1428 (2007)

    Google Scholar 

  26. Prajna, S., Papachristodoulou, A., Parrilo, P.A.: Introducing SOSTOOLS: a general purpose sum of squares programming solver. In: Proc. IEEE CDC (2002). http://www.cds.caltech.edu/sostools and http://www.aut.ee.ethz.ch/?parrilo/sostools

  27. Ratschan, S., She, Z.: Safety Verification of Hybrid Systems by Constraint Propagation-Based Abstraction Refinement. ACM Transactions on Embedded Computing Systems 6(1), 1–23 (2007). Article No. 8

    Google Scholar 

  28. Ratschan, S., She, Z.: Providing a basin of attraction to a target region of polynomial systems by computation of Lyapunov-like functions. SIAM Journal on Control and Optimization 48, 4377–4394 (2010)

    Google Scholar 

  29. Sankaranarayanan, S., Chen, X., Ábrahám, E.: Lyapunov function synthesis using Handelman representations. In: Proceedings of the 9th IFAC Symposium on Nonlinear Control Systems, pp. 576–581 (2013)

    Google Scholar 

  30. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 539–554. Springer, Heidelberg (2004)

    Google Scholar 

  31. Amin Ben Sassi, M.: Computation of polytopic invariants for polynomial dynamical systems using linear programming. Automatica 48, 3114–3121 (2012)

    Google Scholar 

  32. She, Z., Li, H., Xue, B., Zheng, Z., Xia, B.: Discovering polynomial Lyapunov functions for continuous dynamical systems. Journal of Symbolic Computation 58, 41–63 (2013)

    Google Scholar 

  33. She, Z., Xue, B.: Computing an invariance kernel with target by computing Lyapunov-like functions. IET Control Theory and Applications 7, 1932–1940 (2013)

    Google Scholar 

  34. She, Z., Xue, B.: Discovering Multiple Lyapunov Functions for Switched Hybrid Systems. SIAM J. Control and Optimization 52(5), 3312–3340 (2014)

    Google Scholar 

  35. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software 11, 625–653 (1999)

    Google Scholar 

  36. Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 465–478. Springer, Heidelberg (2002)

    Google Scholar 

  37. Tiwari, A., Khanna, G.: Nonlinear systems: approximating reach sets. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 600–614. Springer, Heidelberg (2004)

    Google Scholar 

  38. Tomlin, C.J., Mitchell, I., Bayen, A.M., Oishi, M.: Computational techniques for the verification of hybrid systems. Proc. of the IEEE 91, 986–1001 (2003)

    Google Scholar 

  39. VanAntwerp, J.G., Braatz, R.D.: A tutorial on linear and bilinear matrix inequalities. Journal of Process Control 10, 363–385 (2000)

    Google Scholar 

  40. Wu, M., Yang, Z.: Generating invariants of hybrid systems via sums-of-squares of polynomials with rational coefficients. In: Proc. International Workshop on Symbolic-Numeric Computation, pp. 104–111 (2011)

    Google Scholar 

  41. Yang, Z., Lin, W., Wu, M.: Exact Safety Verification of Hybrid Systems Based on Bilinear SOS Representation. ACM Trans. Embedded Comput. Syst 14(1), 1–19 (2015). Article No. 16

    Google Scholar 

  42. Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice-Hall Inc., Upper Saddle River (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

She, Z., Song, D., Li, M. (2015). Safety Verification of Hybrid Systems Using Certified Multiple Lyapunov-Like Functions. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2015. Lecture Notes in Computer Science(), vol 9301. Springer, Cham. https://doi.org/10.1007/978-3-319-24021-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24021-3_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24020-6

  • Online ISBN: 978-3-319-24021-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics