
Weighted Random Sampling over Data Streams

Pavlos S. Efraimidis

Department of Electrical and Computer Engineering
Democritus University of Thrace, Xanthi, Greece

pefraimi@ee.duth.gr

Abstract. In this work, we present a comprehensive treatment of weighted
random sampling (WRS) over data streams. More precisely, we examine
two natural interpretations of the item weights, describe an existing al-
gorithm for each case ([3,8]), discuss sampling with and without replace-
ment and show adaptations of the algorithms for several WRS problems
and evolving data streams.

1 Introduction

The problem of random sampling calls for the selection of m random items out
of a population of size n. If all items have the same probability to be selected, the
problem is known as uniform random sampling. If each item has an associated
weight and the probability of each item to be selected is determined by these
item weights, then the problem is called weighted random sampling (WRS).

Weighted random sampling, and random sampling in general, is a funda-
mental problem with applications in several fields of computer science including
databases, data streams, data mining and randomized algorithms. Moreover,
random sampling is important in many practical problems, like market surveys,
quality control in manufacturing, statistics and on-line advertising.

There are several factors that have to be taken into account, when facing a
WRS problem. It has to be defined if the sampling procedure is with or with-
out replacement, whether the sampling procedure has to be executed over data
streams, and what the semantics of the item weights are. In this work, we present
a comprehensive treatment of WRS over data streams. In particular, we examine
the above problem parameters and describe efficient solutions for different WRS
problems that arise in each case.

◦ Weights. In WRS the probability of each item to be selected is determined
by its weight with respect to the weights of the other items. However, for
random sampling schemes without replacement there are at least two natural
ways to interpret the item weights. In the first case, the relative weight of
each item determines the probability that the item is in the final sample. In
the second, the weight of each item determines the probability that the item
is selected in each of the explicit or implicit item selections of the sampling
procedure. Both cases will become clear in the sequel.

ar
X

iv
:1

01
2.

02
56

v2
 [

cs
.D

S]
 2

8
Ju

l 2
01

5

◦ Replacement. Like other sampling procedures, the WRS procedures can be
with replacement or without replacement. In WRS with replacement, each
selected item is replaced in the main lot with an identical item, whereas in
WRS without replacement each selected item is simply removed from the
population.

◦ Data Streams. Random sampling is often applied to very large datasets
and in particular to data streams. In this case, the random sample has to
be generated in one pass over an initially unknown population. An elegant
and efficient approach to generate random samples from data streams is
the use of a reservoir of size m, where m is the sample size. The reservoir-
based sampling algorithms maintain the invariant that, at each step of the
sampling process, the contents of the reservoir are a valid random sample
for the set of items that have been processed up to that point. There are
many random sampling algorithms that make use of a reservoir to generate
uniform random samples over data streams [17].

◦ Feasibility of WRS. When considering the problem of generating a weighted
random sample in one pass over an unknown population one may doubt that
this is possible. In [1], the question whether reservoir maintenance can be
achieved in one pass with arbitrary bias functions, is stated as an open prob-
lem. In this work, we bring to the fore two algorithms [3,8] for the two, prob-
ably most important, flavors of the problem. In our view, the above results,
and especially the older one, should become more known to the databases
and algorithms communities.

◦ A Standard Class Implementation. Finally, we believe that the algo-
rithms for WRS over data streams can and should be part of standard class
libraries at the disposal of the contemporary algorithm or software engineer.
To this end, we design an abstract class for WRS and provide prototype
implementations of the presented algorithms in Java.

Contribution and Related Work. Random sampling is a classic, well stud-
ied field, and the volume of the corresponding literature is enormous. See for
example [11,16,17,14,12] and the references therein. These results concern uni-
form random sampling, random sampling with a reservoir (which can be used
on data streams), and weighted random sampling but not over data streams.
An efficient algorithm for weighted random sampling with a reservoir which can
support data streams is presented in [8]. Another weighted random sampling al-
gorithm, which is less known to the computer science community and which uses
a different interpretation for the item weights, is presented in [3]. This algorithm,
too, is efficient and can be applied to data streams.

Random sampling is still an active research field and new sampling schemes
are studied in various contexts; some indicative examples are sampling from
sliding windows [13], from distributed data streams [4,15,5], from streams with
time decay [6], independent range sampling [10], sampling on very large file
systems [9], and stratified reservoir sampling [2]. In light of the above results
(which are mainly from the data streams field), we consider the algorithms of [3]

and [8] as fundamental sampling schemes for general purpose weighted random
sampling over data streams.

In this work, we present a comprehensive treatment of general purpose weighted
random sampling (WRS) over data streams. More precisely, we identify and ex-
amine two natural interpretations of the item weights, describe an existing algo-
rithm for each case ([3,8]), discuss sampling with and without replacement and
show adaptations of the algorithms for several WRS problems and evolving data
streams. Moreover, we bring to the fore the sampling algorithm of Chao and
show how to apply the jumps technique on it. Finally, we propose an abstract
class definition for weighted random sampling over data streams and present a
prototype implementation for this class.
Outline. The rest of this work is organized as follows: Notation and definitions
for WRS problems are presented in Section 2. Core algorithms for WRS are
described in 3. The treatment of representative WRS problems is described in 4.
In Section 5, a prototype implementation and experimental results are presented.
Finally, the role of item weights is examined in 6 and an overall conclusion of
this work is given in 7.

2 Weighted Random Sampling (WRS)

Given an instance of a WRS problem, let V denote the population of all items
and n = |V | the size of the population. In general, the size n will not be known
to the WRS algorithms. Each item vi ∈ V , for i = 1, 2, . . . , n, of the population
has an associated weight wi. The weight wi is a strictly positive real number
wi > 0 and the weights of all items are initially considered unknown. The WRS
algorithms will generate a weighted random sample of size m. If the sampling
procedure is without replacement then it must hold that m ≤ n. All items of the
population are assumed to be discrete, in the sense that they are distinguishable
but not necessarily different. The distinguishability can be trivially achieved by
assigning an increasing ID number to each item in the population, including the
replaced items (for WRS with replacement). We define the following notation to
represent the various WRS problems:

WRS −< rep >−< role >, (1)

where the first parameter specifies the replacement policy and the second pa-
rameter the role of the item weights.

• Parameter rep: This parameter determines if and how many times a selected
item can be replaced in the population. A value of “N” means that each
selected item is not replaced and thus it can appear in the final sample at
most once, i.e., sampling without replacement. A value of “R” means that
the sampling procedure is with replacement and, finally, an arithmetic value
k, where 1 ≤ k ≤ m, defines that each item is replaced at most k − 1 times,
i.e., it can appear in the final sample at most k times.

• Parameter role: This parameter defines the role of the item weights in the
sampling scheme. As already noted, we consider two natural ways to interpret
item weights. In the first case, when the role has value P, the probability of
an item to be in the random sample is proportional to its relative weight. In
the second case, the role is equal to W and the relative weight determines the
probability of each item selection, if the items would be selected sequentially.

Moreover, WRS-P will denote the whole class of WRS problems where the
item weights directly determine the selection probabilities of each item, and
WRS-W the class of WRS problems where the items weights determine the
selection probability of each item in a supposed1 sequential sampling procedure.
A summary of the notation for different WRS problems is given in Table 1.

WRS Problem Notation

With Replacement WRS-R

Without Replacement
Probabilities WRS-N-P

Weights WRS-N-W

With k − 1 Replacements Weights WRS-k-W

Table 1: Notation for WRS problems.

Definition 1. Problem WRS-R (Weighted Random Sampling with Replacement).
Input: A population of n weighted items and a size m for the random sample.
Output: A weighted random sample of size m. The probability of each item to
occupy each slot in the random sample is proportional to the relative weight of
the item, i.e., the weight of the item with respect to the total weight of all items.

Definition 2. Problem WRS-N-P (Weighted Random Sampling without Re-
placement, with defined Probabilities).
Input: A population of n weighted items and a size m for the random sample.
Output: A weighted random sample of size m. The probability of each item to be
included in the random sample is proportional to its relative weight.

Intuitively, the basic principle of WRS-N-P can be shown with the following
example. Assume any two items vi and vj of the population with weights wi and
wj , respectively. Let c = wi/wj . Then the probability pi that vi is in the random
sample is equal to c pj , where pj is the probability that vj is in the random
sample. For heavy items with relative weight larger than 1/m we say that the
respective items are “infeasible” or “overweight”. If the inclusion probability of

1 We say “supposed” because even though WRS is best described with a sequential
sampling procedure, it is not inherently sequential. Algorithm A-ES [8] which we will
use to solve WRS-W problems can be executed on sequential, parallel and distributed
settings.

an overweight item would be proportional to its weight, then this probability
would become larger than 1, which of course is not possible. As shown in Sec-
tion 3.1, the overweight items are handled in a special way that guarantees that
they are selected with probability exactly 1.

Definition 3. Problem WRS-N-W (Weighted Random Sampling without Re-
placement, with defined Weights).
Input: A population of n weighted items and a size m for the random sample.
Output: A weighted random sample of size m. In each round, the probability of
every unselected item to be selected in that round is proportional to the relative
item weight with respect to the weights of all unselected items.

The definition of problem WRS-N-W is essentially the following sampling proce-
dure. Let S be the current random sample. Initially, S is empty. The m items of
the random sample are selected in m rounds. In each round, the probability for
each item in V −S to be selected is pi(k) = wi∑

sj∈V−S
wj

. Using the probabilities

pi(k), an item vk is randomly selected from V − S and inserted into S. We use
two simple examples to illustrate the above defined WRS problems.

Example 1. Assume that we want to select a weighted random sample of size
m = 2 from a population of n = 4 items with weights 1, 1, 1 and 2, respectively.
For problem WRS-N-P the probability of items 1, 2 and 3 to be in the ran-
dom sample is 0.4, whereas the probability of item 4 is 0.8. For WRS-N-W the
probability of items 1, 2 and 3 to be in the random sample is 0.433, while the
probability of item 4 is 0.7.

Example 2. Assume now that we want to select m = 2 items from a population
of 4 items with weights 1, 1, 1, and 4, respectively. For WRS-N-W the probability
of items 1, 2 and 3 to be in the random sample is 0.381, while the probability
of item 4 is 0.857. For WRS-N-P, however, the weights are infeasible because
the weight of item 4 is infeasible. In particular, the product m times the relative
weight of item 4 is 2 · (4/7) which is larger than 1 and cannot be used as a
probability. This case is handled by assigning with probability 1 a position of
the reservoir to item 4 and filling the other position of the reservoir randomly
with one of the remaining (feasible) items. Note that if the sampling procedure
is applied on a data stream and a fifth item, for example with weight 3, arrives,
then the instance becomes feasible with probabilities 0.2 for items 1, 2 and 3, 0.8
for item 4 and 0.6 for item 5. The possibility for infeasible problem instances or
temporary infeasible evolving problem instances over data streams is an inherent
complication of the WRS-N-P problem that has to be handled in the respective
sampling algorithms.

3 The Two Core Algorithms

The two core algorithms that we use for the WRS problems of this work are
the General Purpose Unequal Probability Sampling Plan of Chao [3] and the

Weighted Random Sampling with a Reservoir algorithm of Efraimidis and Spi-
rakis [8]. We provide a short description of each algorithm while more details
can be found in the respective papers.

3.1 A-Chao

The sampling plan of Chao [3], which we will call A-Chao, is a reservoir-based
sampling algorithm that processes sequentially an initially unknown population
V of weighted items.

A typical step of algorithm A-Chao is presented in Figure 1. When a new
item is examined, its relative weight is calculated and used to randomly decide if
the item will be inserted into the reservoir. If the item is selected, then one of the
existing items of the reservoir is uniformly selected and replaced with the new
item. The trick here is that, if the probabilities of all items in the reservoir are
already proportional to their weights, then by selecting uniformly which item to
replace, the probabilities of all items remain proportional to their weight after
the replacement.

Algorithm A-Chao (sketch)

Input : Item vk for m < k ≤ n
Output : A WRS-N-P sample of size m

1 : Calculate the probability pk = wk/(
∑k

i=1
wi) for item vk

2 : Decide randomly if vk will be inserted into the reservoir
3 : if No, do nothing. Simply increase the total weight
4 : if Yes, choose uniformly a random item from the

reservoir and replace it with vk

Fig. 1: A sketch of Algorithm A-Chao. We assume that all the positions of
the reservoir are already occupied and that all item weights are feasible.

The main approach of A-Chao is simple, flexible and effective. There are
however some complications inherent to problem WRS-N-P that have to be
addressed. As shown in Example 2, an instance of WRS-N-P may temporarily
not be feasible, in case of data streams, or may not be feasible at all. This
happens when the (current) population contains one or more overweight items,
i.e., items each of which has a relative weight greater than 1/m. The main
idea to handle this case, is to sample each overweight item with probability 1.
Thus, each overweight item automatically occupies a position in the reservoir.
The remaining positions are assigned with the normal procedure to the feasible
items. In case of sampling over a data stream, an initially infeasible (overweight)
item may later become feasible as more items arrive. Thus, with each new item
arrival the relative weights of the infeasible items are updated and if an infeasible
item becomes feasible it is treated as such. Appropriate procedures to initialize
the reservoir and to handle the overweight items are described in [3].

3.2 A-ES

The algorithm of Efraimidis and Spirakis [8], which we call A-ES, is a sampling
scheme for problem WRS-N-W. In A-ES, each item vi of the population V
independently generates a uniform random number ui ∈ (0, 1) and calculates
a key ki = ui

1/wi . The items that possess the m largest keys form a weighted
random sample. We will use the reservoir-based version of A-ES, where the
algorithm maintains a reservoir of size m with the items with m largest keys.

The basic principle underlying algorithm A-ES is the remark that a uniform
random variable can be “amplified” as desired by raising it to an appropriate
power (Remark 1). A high level description of algorithm A-ES is shown in Fig-
ure 2.

Remark 1. ([8]) Let U1 and U2 be independent random variables with uniform
distributions in [0,1]. If X1 = (U1)1/w1 and X2 = (U2)1/w2 , for w1, w2 > 0, then

P [X1 ≤ X2] =
w2

w1 + w2
.

Algorithm A-ES (High Level Description)

Input : A population V of n weighted items
Output : A WRS-N-W sample of size m

1: For each vi ∈ V , ui = random(0, 1) and ki = u
1
wi
i

2: Select the m items with the largest keys ki

Fig. 2: A high level description of Algorithm A-ES.

3.3 Algorithm A-Chao with Jumps

A common technique to improve certain reservoir-based sampling algorithms
is to change the random experiment used in the sampling procedure. In normal
reservoir-based sampling algorithms, a random experiment is performed for each
new item to decide if it is inserted into the reservoir. In random sampling with
jumps instead, a single random experiment is used to directly decide which will
be the next item that will enter the reservoir. Since each item that is processed
will be inserted with some probability into the reservoir, the number of items
that will be skipped until the next item is selected for the reservoir, is a random
variable. In uniform random sampling it is possible to generate an exponential
jump that identifies the next item of the population that will enter the reser-
voir [7], while in [8] it is shown that exponential jumps can be used for WRS
with algorithm A-ES.

In this work, we show that a jumps approach can be used for algorithm A-
Chao too, albeit in a slightly more complicated way than for algorithm A-ES.
The reason is that in WRS-N-W the probability that an item will be the next

item that will enter the reservoir can be directly obtained from its weight and
the total weight of the items preceding it, while in WRS-N-P the respective
probabilities have to be computed.

Assume for example a typical step of algorithm A-Chao. A new item vi has
just arrived and with probability pi it will be inserted into the reservoir. The
probability that vi will not be selected, but the next item, vi+1, is selected, is
(1 − pi) pi+1. In the same way the probability that items vi and vi+1 are not
selected and that item vi+2 is selected is (1 − pi) (1 − pi+1) pi+2. Clearly, if the
stream continues with an infinite number of items then with probability 1 some
item will be the next item that will enter the reservoir. Thus, we can generate
a uniform random number uj in [0, 1] and add up the probability mass of each
new item until the accumulated probability exceeds the random number uj . The
selected item is then inserted into the reservoir with the normal procedure of
algorithm A-Chao.

The main advantage of using jumps in reservoir-based sampling algorithms is
that, in general, the number of random number generations can be dramatically
reduced. For example, if the item weights are independent random variables with
a common distribution, then the number of random numbers is reduced from
O(n) to O(m log(n/m)), where n is the size of the population [8]. In contexts
where the computational cost for qualitative random number generation is high,
the jumps versions offer an efficient alternative for the sampling procedure. From
a semantic point of view, the sampling procedures with and without jumps are
identical.

4 Algorithms for WRS Problems

Both core algorithms, A-Chao and A-ES, are efficient and flexible and can be
used to solve fundamental but also more involved random sampling problems.
We start with basic WRS problems that are directly solved by A-Chao and A-
ES. Then, we present sampling schemes for two WRS problems with a bound on
the number of replacements and discuss the sampling problem in the presence
of stream evolution.

4.1 Basic problems

◦ Problem WRS-N-P: The problem can be solved with algorithm P-Chao.
In case no overweight items appear in the data stream, the cost to process
each item is O(1) and the total cost for the whole population is O(n). The
complexity of handling overweight items is higher. For example, if a heap
data structure is used to manage the current overweight items, then each
overweight item costs O(logm). An adversary could generate a data stream
where each item would be initially (at the time it is fed to the sampling algo-
rithm) overweight and this would cause a total complexity of Θ(n logm) to
process the complete population. However, this is a rather extreme example
and in reasonable cases the total complexity is expected to be linear on n.

◦ Problem WRS-N-W: The problem can be solved with algorithm A-ES.
The reservoir-based implementation of the algorithm requires O(1) com-
putational steps for each item that is not selected and O(logm) for each
item that enters the reservoir (if, for example, the reservoir is organized as a
heap). In this case too, an adversary can prepare a sequence that will require
O(n logm) computational steps. In common cases, the cost for the complete
population will be O(n) + O(m log(n/m))O(logm), which becomes O(n) if
n is large enough with respect to m.

◦ Problem WRS-R: In WRS with replacement the population remains un-
altered after each item selection. Because of this, WRS-R-P and WRS-R-W
coincide and we call the problem simply WRS-R. In the data stream version,
the problem can be solved by running concurrently m independent instances
of WRS-N-P or WRS-N-W, each with sample size m′ = 1. Both algorithms
A-Chao and A-ES in both their versions, with and without jumps, can effi-
ciently solve the problem. In most cases, the version with jumps of A-Chao
or A-ES should be the most efficient approach.
Note that sampling with replacement is not equivalent to running the exper-
iment on a population V ′ with m instances of each original item of V . The
sample space of the later experiment would be much larger than in the case
with replacement.

4.2 Sampling with a bounded number of replacements

We consider weighted random sampling from populations where each item can
be replaced at most a bounded number of times (Figure 3). An analogy would
be to randomly select m products from an automatic selling machine with n
different products and k instances of each product. The challenge is of course
that the weighted random sample has to be generated in one-pass over an initially
unknown population.

– Problem WRS-k-W: Sampling from a population of n weighted items
where each item can be selected up to k ≤ m times. The weights of the
items are used to determine the probability that each item is selected at
each step.
A general solution, in the sense that each item may have its own multiplicity
ki ≤ k, is to use a pipeline of m instances of a A-ES, where each instance
will generate a weighted random sample of size 1. Note that either algorithm
A-Chao or A-ES can be used, because for samples of size 1 the outcomes of
the two algorithms are equivalent. If the first instance is at item `, then each
other instance is one item behind the previous instance. Thus, an item of the
population is first processed by instance 1, then by instance 2, etc. If at some
point the item has been selected ki times, then the item is not processed by
the remaining instances and the information up to which instance the item
has been processed is stored. If the item is replaced in a reservoir at a later
step, then it is submitted to the next instance of A-ES. Note that in this
approach, some items might be processed out of their original order. This

k
in

st
an

ce
s

o
f

ea
ch

 it
em

v1 v2 v3 v4 vn-1 vn

n weighted items

Fig. 3: WRS-k-W, n weighted items with k instances of each item.

is fine with algorithm A-ES (both A-ES and A-Chao remain semantically
unaffected by any ordering of the population) but may be undesirable in
certain applications.

4.3 Sampling Problems in the Presence of Stream Evolution

A case of reservoir-based sampling over data streams where the more recent
items are favored in the sampling process is discussed in [1]. While the items
do not have weights and are uniformly treated, a temporal bias function is used
to increase the probability of the more recent items to belong to the random
sample. Finally, in [1], a particular biased reservoir-based sampling scheme is
proposed and the problem of efficient general biased random sampling over data
streams is stated as an open problem.

In this work, we have brought to the fore algorithms A-Chao and A-ES,
which can efficiently solve WRS over data streams where each item can have an
arbitrary weight. This should provide an affirmative answer to the open problem
posed in [1]. Moreover, the particular sampling procedure presented in [1] is a
special case of algorithm A-Chao.

Since algorithms A-Chao and A-ES can support arbitrary item weights, a
bias favoring more recent items can be encoded into the weight of the newly
arrived item or in the weights of the items already in the reservoir. Furthermore,
by using algorithms A-Chao and A-ES the sampling process in the presence of
stream evolution can also support weighted items. This way the bias of each
item may depend on the item weight and how old the item is, or on any other
factor that could be taken into account. Thus, the sampling procedure and/or
the corresponding applications in [1] can be generalized to items with arbitrary
weights and other, temporal or not, bias criteria.

The way to increase the selection probability of a newly arrived item is very
simple for both algorithms, A-Chao and A-ES.

– A-Chao: By increasing the weight of the new item.
– A-ES: By increasing the weight of the new item or decreasing the weights

of the items already in the reservoir.

5 An Abstract Data Structure for WRS

We designed an abstract class StreamSampler with the methods feedItem() and
getSample(), and a set of auxiliary classes for the weighted items to capture the
basic functionality for weighted random sampling over data streams (Figure 4).
Then, we developed descendant classes that implement the functionality of the
StreamSampler class for algorithms A-Chao and A-ES, both with and with-
out jumps. The descendant classes are StreamSamplerChao, StreamSamplerES,
StreamSamplerESWithJumps and StreamSamplerChaoWithJumps [18].

(abstract class)
StreamSampler

StreamSamplerChao

StreamSamplerChaoWithJumps

StreamSamplerES

StreamSamplerESWithJumps

Fig. 4: The class hierarchy for sampling over data streams.

Preliminary experiments with random populations (with uniform random item
weights) showed that all algorithms scale linear on the population size and at
most linear on the sample size. Indicative measurements are shown in Figure 5.
While there is still room for optimization of the implementations of the algo-
rithms, the general behavior of the complexities is evident in the graphs. The
experiments have been performed on the Sun Java 1.6 platform running on an
Intel Core 2 Quad CPU-based PC and all measurements have been averaged
over 100 (at least) executions.

6 The Role of Weights

The problem classes WRS-P and WRS-W differ in the way the item weights
are used in the sampling procedure. In WRS-P the weights are used to directly
determine the final selection probability of each item and this probability is
easy to calculate. On the other hand, in WRS-W the item weights are used
to determine the selection probability of each item in each step of a supposed
sequential sampling procedure. In this case it is easy to study each step of the
sampling procedure, but the final selection probabilities of the items seem to be
hard to calculate. In the general case, a complex expression has to be evaluated

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

à
à à

à à à à à à à à à à
à à à à à à à

ì ì
ì ì

ì ì
ì ì

ì ì
ì ì

ì ì
ì ì

ì ì
ì ì

ò ò ò
ò ò ò

ò ò
ò ò ò ò

ò ò ò
ò ò ò

ò ò

20 000 40 000 60 000 80 000 100 000
n

5

10

15

20

25

30

35
msec

ò A-Chao with Jumps
ì A-Chao
à A-ES with Jumps
æ A-ES

(a) Measurements for m=200 and n rang-
ing from 5000 to 100000.

200

400

600m

2000

4000
6000n

0.5

1.0

1.5

2.0

2.5

msec

(b) The complexity of A-ES for m ranging
from 50 to 750 and n from 1000 to 6000.

Fig. 5: Time measurements of the WRS sampling algorithms.

in order to calculate the exact inclusion probability of each item and we are
not aware of an efficient procedure to calculate this expression. An interesting
feature of random samples generated with WRS-W is that they support the
concept of order for the sampled items. The item that is selected first or simply
has the largest key (algorithm A-ES) can be assumed to take the first position,
the second largest the second position etc. The concept of order can be useful in
certain applications. We illustrate the two sampling approaches in the following
example.

Example 3. On-line advertisements. A search engine shows with the results of
each query a set of k sponsored links that are related to the search query. If
there are n sponsored links that are relevant to a query then how should the set
of k links be selected? If all sponsors have paid the same amount of money then
any uniform sampling algorithm without replacement can solve the problem. If
however, every sponsor has a different weight then how should the k items be
selected? Assuming that the k positions are equivalent in “impact”, a sponsor
who has the double weight with respect to another sponsor may expect its ad-
vertisement to appear twice as often in the results. Thus, a reasonable approach
would be to use algorithm A-Chao to generate a WRS-N-P of k items. If how-
ever, the advertisement slots are ordered based on their impact, for example the
first slot may have the largest impact, the second the second largest etc., then al-
gorithm A-ES may provide the appropriate solution by generating a WRS-N-W
of k items.

When the size of the population becomes large with respect to the size of the
random sample, then the differences in the selection probabilities of the items in
WRS-P and WRS-W become less important. The reason is that if the population
is large then the change in the population because of the removed items has a
small impact and the sampling procedure converges to random sampling without
replacement. As noted earlier, in random sampling with replacement the two
sampling approaches coincide.

7 Discussion

We presented a comprehensive treatment of WRS over data streams and showed
that efficient sampling schemes exist for fundamental but also more specialized
WRS problems. The two core algorithms, A-Chao and A-ES have been proved
efficient and flexible and can be used to build more complex sampling schemes.

References

1. Charu C. Aggarwal. On biased reservoir sampling in the presence of stream evolu-
tion. In VLDB ’06: Proceedings of the 32nd international conference on Very large
data bases, pages 607–618. VLDB Endowment, 2006.

2. Mohammed Al-Kateb and Byung Suk Lee. Adaptive stratified reservoir sampling
over heterogeneous data streams. Information Systems, 39(0):199 – 216, 2014.

3. M. T. Chao. A general purpose unequal probability sampling plan. Biometrika,
69(3):653–656, 1982.

4. Graham Cormode, S. Muthukrishnan, Ke Yi, and Qin Zhang. Optimal sampling
from distributed streams. In Proceedings of the Twenty-ninth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’10,
pages 77–86, New York, NY, USA, 2010. ACM.

5. Graham Cormode, S. Muthukrishnan, Ke Yi, and Qin Zhang. Continuous sampling
from distributed streams. J. ACM, 59(2):10:1–10:25, May 2012.

6. Graham Cormode, Vladislav Shkapenyuk, Divesh Srivastava, and Bojian Xu. For-
ward decay: A practical time decay model for streaming systems. In Proceedings
of the 2009 IEEE International Conference on Data Engineering, ICDE ’09, pages
138–149, Washington, DC, USA, 2009. IEEE Computer Society.

7. Luc Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, 1986.
8. Pavlos S. Efraimidis and Paul G. Spirakis. Weighted random sampling with a

reservoir. Information Processing Letters, 97(5):181 – 185, 2006.
9. G. Goldberg, D. Harnik, and D. Sotnikov. The case for sampling on very large file

systems. In Mass Storage Systems and Technologies (MSST), 2014 30th Symposium
on, pages 1–11, June 2014.

10. Xiaocheng Hu, Miao Qiao, and Yufei Tao. Independent range sampling. In Pro-
ceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS ’14, pages 246–255, New York, NY, USA, 2014. ACM.

11. D.E. Knuth. The Art of Computer Programming, volume 2 : Seminumerical Algo-
rithms. Addison-Wesley Publishing Company, second edition, 1981.

12. Kim-Hung Li. Reservoir-sampling algorithms of time complexity o(n(1 +
log(n/n))). ACM Trans. Math. Softw., 20(4):481–493, 1994.

13. Zhang Longbo, Li Zhanhuai, Zhao Yiqiang, Yu Min, and Zhang Yang. A priority
random sampling algorithm for time-based sliding windows over weighted stream-
ing data. In Proceedings of the 2007 ACM Symposium on Applied Computing, SAC
’07, pages 453–456, New York, NY, USA, 2007. ACM.

14. F. Olken. Random Sampling from Databases. PhD thesis, Department of Computer
Science, University of California at Berkeley, 1993.

15. Srikanta Tirthapura and David P. Woodruff. Optimal random sampling from
distributed streams revisited. In Proceedings of the 25th International Confer-
ence on Distributed Computing, DISC’11, pages 283–297, Berlin, Heidelberg, 2011.
Springer-Verlag.

16. Jeffrey Scott Vitter. Faster methods for random sampling. Commun. ACM,
27(7):703–718, 1984.

17. J.S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw.,
11(1):37–57, 1985.

18. WRS. A stream sampler for weighted random sampling.
https://euclid.ee.duth.gr/demo/wrs/.

	Weighted Random Sampling over Data Streams

