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Abstract. Random indexing (RI) is an incremental method for constructing a

vector space model (VSM) with a reduced dimensionality. Previously, the

method has been justified using the mathematical framework of Kanerva’s

sparse distributed memory. This justification, although intuitively plausible,

fails to provide the information that is required to set the parameters of the

method. In order to suggest criteria for the method’s parameters, the RI method

is revisited and described using the principles of linear algebra and sparse

random projections in Euclidean spaces. These simple mathematics are then

employed to suggest criteria for setting the method’s parameters and to ex-

plain their influence on the estimated distances in the RI-constructed VSMs.

The empirical results observed in an evaluation are reported to support the

suggested guidelines in the paper.1

Keywords: Random Indexing; Dimensionality Reduction, Random Projec-

tions.

1 Introduction

In order to model any aspect of language, data-driven methods of natural language pro-

cessing exploit patterns of co-occurrences. For example, distributional semantic models

collect patterns of co-occurrences and investigate similarities in these patterns in order to

quantify meanings. Vector spaces are mathematically well-defined models that are often

employed to serve this purpose [2].
1 The first three pages previously appeared in [1].
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In a vector space model (VSM), each element ~si of its standard basis—informally,

each dimension of the VSM—represents a contextual element. Given n context elements,

linguistic entities are expressed using vectors ~v as linear combinations of ~si and scalars

αi ∈ R such that ~v = α1~s1 + · · ·+ αn~sn. The value of αi is acquired from the frequency

of the co-occurrences of the entity that ~v represents and the context element that ~si repre-

sents. Therefore, the values assigned to the coordinates of a vector—that is, αi—exhibit

the correlation of an entity and context elements in an n-dimensional real vector space Rn.

In this VSM, a distance function, therefore, is employed in order to discover similarities.

Amongst several choices of distance metrics, the Euclidean distance is an innate choice. A

VSM is endowed with the `2 norm to estimate distances between vectors, which is accord-

ingly called a Euclidean VSM (denoted by En). Salton et al.’s classic document-by-term

model is, perhaps, the most familiar example of the methodology described above [3].

In distributional methods of text analysis, as the number of entities in a VSM in-

creases, the number of context elements employed for capturing similarities between them

surges. As a result, high-dimensional vectors, in which most elements are zero, repre-

sent entities. However, the proportional impact of context elements on similarities lessens

when their number increases. It becomes difficult to distinguish similarities between vec-

tors unless the values assigned to context elements are considerably different [4]. More-

over, the high dimensionality of vectors hinders the ability to compute distances with high

performance. This results in setbacks known as the curse of dimensionality, often tackled

using a dimensionality reduction technique.

Dimensionality reduction can be achieved using a number of methods as an auxiliary

process followed by the construction of a VSM. This process improves the computational

performance by reducing the number of context elements employed for the construction

of a VSM. In its simple form, dimension reduction can be performed by choosing a subset

of context elements using a heuristic-based selection process. That is, a number of context

elements that account for the most discriminative information in VSM are chosen using

a heuristic such as a statistical weight threshold. Alternatively, a transformation method

can be employed. This process maps Rn onto Rm, m � n, in which Rm is the best

approximation of Rn in a sense. For example, the well-known latent semantic analysis
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method employs singular value decomposition (SVD) truncation, in which Rm gives the

best approximation of the Euclidean distances in Rn [5].

A number of factors hamper the use of these dimension reduction methods. Firstly,

a VSM at the original high dimension must be constructed. The VSM’s dimension is

then reduced in an independent process. Hence, the VSM at a reduced dimensionality is

available for processing only after the whole sequence of these processes. Construction

of the VSM at its original dimension is computationally expensive, and a delay in access

to the VSM at the reduced dimension is not desirable. Secondly, reducing the dimension

of vectors using the methods listed above is resource intensive. For instance, SVD trun-

cation demands a process of the time complexity O(n2m) and space complexity O(n2).2

Similarly, depending on the employed heuristic, a selection process can be resource in-

tensive too—for example, frequencies often need to be sorted by some criteria. Last but

not least, these methods are data-sensitive: if the structure of the data being analysed

changes—that is, if either the entities or context elements are updated—the dimensional-

ity reduction process is required to be repeated and reapplied to the whole VSM in order to

reflect the updates. As a result, these methods may not be desirable in several applications,

particularly when dealing with frequently updated big text-data. Random projections are

mathematical tools that are employed to implement alternative dimensionality reduction

techniques to alleviate the problems listed above.

In the remainder of this paper, Section 2 describes the use of random projections

(RPs) in Euclidean spaces, which consequently arrives at the well-known random index-

ing (RI) technique. Section 3 articulates the outcome of this mathematical interpretation.

To support the theoretical discussion, empirical results are reported in Section 4. Section 5

concludes this paper.

2 Random Projections in Euclidean Spaces

In Euclidean spaces, RPs are elucidated using the Johnson and Lindenstrauss lemma (JL

lemma) [7]. Given an ε, 0 < ε < 1, the JL lemma states that for any set of p vectors in an

2 However, the use of incremental techniques may relax these requirements to an extent; for example, see [6].



4 Behrang Q. Zadeh

En, there exists a mapping onto an Em, for m ≥ m0 = O( log p
ε2

), that does not distort the

distances between any pair of vectors, with high probability, by a factor more than 1± ε.

This mapping is given by:

M
′
p×m = Mp×nRn×m, m� p, n, (1)

where Rn×m is called the RP matrix, and Mp×n and M
′
p×m denote the p vectors in En and

Em, respectively. According to the JL lemma, if the distance between any pair of vectors

~v and ~u in M is given by the dEuc(~v, ~u), and their distance in M
′ is given by d′Euc(v,u),

then there exists an R such that (1− ε)d′Euc(v,u) ≤ dEuc(v,u) ≤ (1 + ε)d′Euc(v,u).3 Ac-

cordingly, instead of the original high-dimensional En and at the expense of a negligible

amount of error ε, the distance between ~v and ~u can be calculated in Em to reduce the

computational cost of processes.

The JL lemma does not specify R. Establishing a random matrix R is therefore the

most important design decision when using RPs. In [7], the lemma was proved using

an orthogonal projection. Subsequent studies simplified the original proof that resulted

in projection techniques with enhanced computational efficiency (see [8] for references).

Recently, it has been shown that a sparse R, whose elements rij are defined as:

rij =
√
s


−1 with probability 1

2s

0 with probability 1− 1
s

1 with probability 1
2s

, (2)

for s ∈ {1, 3}, results in a mapping that also satisfies the JL lemma [9]. Subsequent

research showed that R can be constructed from even sparser vectors than those suggested

in [9]. In [10], it is proved that in a mapping of an n-dimensional real vector space by a

sparse R, the JL lemma holds as long as s = O(n), for example, s =
√
n or even

s = n
log(n) . The sparseness of R consequently enhances the time and space complexity of

the method by the factor 1
s
.

Another benefit when computing M′ is obtained using the linearity of matrix multi-

plication. As stated earlier, each vector ~vei in En (i.e., the ith row of M) is given by a
3 In addition, the lemma states that this mapping can be found in randomized polynomial time.
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linear combination of the basis vectors ~vei = wi1~sc1 + · · · + win~scn (i ≤ p and j ≤ n).

By the basic properties of the matrix multiplication, the projection of ~vei in M′ is given

by ~v′
ei

= ~veiR = wi1~sc1R + · · · + win~scnR. In turn, since by definition all the elements

of ~sck are zero except the kth element (i.e., 1), ~v′
ei

can be written as:

~v
′

ei
= wi1~r1 + · · ·+ win~rn, (3)

where ~rj is the jth row of R. Equation 3 means that row vectors v
′
ei

, thus M′, can be

computed directly without necessarily constructing the whole matrix M. The jth row of

Rn×m represents a context element in the original VSM that is located at the jth column

of Mp×n. Therefore, an entity at a reduced dimension can be computed directly by accu-

mulating the row vectors of R that represent the context elements that co-occur with the

entity.

The explanations above result in a two-step procedure similar to the one suggested

earlier as the RI technique [11][12]: the construction of (a) index vectors and (b) context

vectors. In the first step, each context element is assigned exactly to one index vector.

Sahlgren [12] indicates that index vectors are high-dimensional, randomly generated vec-

tors, in which most of the elements are set to 0 and only a few to 1 and −1. In the second

step, the construction of context vectors, each target entity is assigned to a vector of which

all elements are zero and that has the same dimension as the index vectors. For each oc-

currence of an entity (represented by ~vei) and a context element (represented by ~rck), the

context vector is accumulated by the index vector (i.e., ~vei = ~vei + ~rck). The result is

a vector space model constructed directly at reduced dimension. As can be understood,

the first step of RI is equivalent to constructing the random projection matrix R, whose

elements are given by Equation 2. Each index vector is a row of the random projection

matrix R. The second step of RI deals with computing M
′ . Each context vector is a row

of M′ , which is computed by the iterative process justified in Equation 3.

3 The Significance of the Proposed Mathematical Justification

In contrast to previous research in which the RI’s parameters were left to be decided

through experiments (e.g., see [13,14]), one can leverage the adopted mathematical frame-
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work to provide a guideline for setting the parameters of RI. In an RI-constructed VSM at

reduced dimension m (i.e., Em), the degree of the preservation of distances in En and Em

is determined by the number of vectors in the model and the value of m. If the number of

vectors is fixed, then the largerm is, the better the Euclidean distances are preserved at the

reduced dimensionm. In other words, the probability of preserving the pairwise distances

increases asm increases. Hence,m can be seen as the capacity of an RI-constructed VSM

for accommodating new entities. Compared to m = 4000 suggested in [11] or m = 1800

in [12], depending on the number of entities that are modelled in an experiment, m can

be set to a smaller value, such as 400.

Based on the proofs in [10], when embedding En into Em, the JL lemma holds as

long as s in Equation 2 is O(n). In text processing applications, the number of context

elements (i.e., n) is often very large. When using RI, therefore, even a careful choice

such as s =
√
n in Equation 2 results in highly sparse index vectors. Hence, by setting

only two or four non-zero elements in index vectors, distances in the RI-constructed Em

resemble distances in En. If the dimension of index vectors (i.e., m) is fixed, then in-

creasing the number of non-zero elements in index vectors causes additional distortions

in pairwise distances. For index vectors of fixed dimensionality m, if the number of non-

zero elements increases, then the probability of the orthogonality between index vectors

decreases; hence, it stimulates distortions in pairwise distances (see Fig. 1)—although in

some applications, distortions in pairwise distances can be beneficial.

4 Experimental Results

In order to show the influence of the RI’s parameters on the ability of the method to

preserve pairwise Euclidean distances, instead of a task-specific evaluation, an intrinsic

evaluation is suggested.

In the reported experiments, a subset of Wikipedia articles chosen randomly from

WaCkypedia (a 2009 dump of the English Wikipedia [15]). A document-by-term VSM at

its original high dimension is first constructed from a set of 10,000 articles (shown by D).

A pre-processing—that is, white-space tokenisation followed by removing non-alphabetic
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Fig. 1. Orthogonality of index vectors: the y-axis shows the proportion of non-orthogonal pairs of index vectors (denoted

by P 6⊥) for sets of index vectors of various dimensions obtained in a simulation. For index vectors of the fixed size

n = 104, the left figure shows the changes of P 6⊥ when the number of non-zero elements increases. The right figure

shows P 6⊥ when the number of non-zero elements is fixed to 8; however, the number of index vector n increases. As

shown in the figure, P 6⊥ remains constant independently of n.

tokens—of documents in D results in a vocabulary of 192,117 terms. Each document in

D is represented by a high-dimensional vector; each dimension represents an entry from

the obtained vocabulary. Therefore, the constructed VSM using this one-dimension-per-

context-element method has a dimensionality of n = 192,117.4

To keep the experiments a manageable size, each document d in D is randomly

grouped by another nine documents from D, which consequently gives 10,000 sets of

a set of ten documents. Using the constructed n-dimensional (n = 192,117) VSM, for

each set of documents, the Euclidean distances between d and the remaining nine doc-

uments in the set are computed. Subsequently, these nine documents are sorted by their

distance from d to obtain an ordered set of documents. This procedure thus results in

10,000 ordered sets of nine documents (the same steps are repeated for computing the

cosine similarities).

The procedure described above is repeated, however, by calculating distances in VSMs

that are constructed using the RI method. Each term in the vocabulary is assigned to an

m-dimensional index vector and each document to a context vector. Context vectors are

updated by accumulating index vectors to reflect the co-occurrences of documents and

terms. Subsequently, the obtained context vectors are used to estimate the Euclidean dis-

4 The frequencies of terms in documents are used as weights in corresponding vectors.
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Fig. 2. Correlation between the `2-normed measures in the original high-dimensional VSM and RI-constructed VSMs:

ρ̄ shows the average of the Spearman’s rank correlation between the ordered sets of documents that are obtained by

computing in the original high-dimensional VSM and the RI-constructed VSMs. Results are shown for both Euclidean

distances and the cosine similarities when parameters of the RI method are set to different values. The random baseline

obtained in experiments is −0.002 (i.e., as expected, almost zero).

tances and the cosine similarities between documents. The estimated distances are then

used to create the ordered sets of documents, exactly as explained above. This process

is repeated several times when the parameters of RI—that is, the dimension m and the

number of non-zero elements in index vectors—are set differently.

It is expected that the relative Euclidean distances as well as the cosine similarities

between documents in the RI-constructed VSMs are the same as in the original high-

dimensional VSM.5 Hence, the ordered sets of documents obtained from the estimated

distances in the RI-constructed VSMs must be identical to the corresponding sets that are

derived using the computed distances in the original high-dimensional VSM. For each

RI-constructed VSM, therefore, the resulting ordered sets are compared with the obtained

ordered sets from the original high-dimensional VSM using the Spearman’s rank corre-

lation coefficient measure (ρ). The average of ρ over the obtained sets of ordered sets of

documents (ρ̄) is reported to quantify the performance of RI with respect to its ability to

preserve `2-normed distances when its parameters are set to different values: the closer

ρ̄ is to 1, the more similar the order of documents in an RI-constructed VSM and the

original high-dimensional VSM.

5 The preservation of the cosine similarities can be verified mathematically by expressing it as the Euclidean distance

when the length of vectors is normalised to unity.
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Fig. 3. A histogram of the distribution of (a) Euclidean distances and (b) cosine similarities between pairs of vectors

in the original VSM of dimension 192,117 compared to the RI-constructed VSMs. For all values of m, the number of

non-zero elements in index vectors is set to 2.

Figure 2 shows the obtained results. Since the original VSM is high dimensional and

sparse, even for m = 1600, two non-zero elements per index vector are sufficient to

construct a VSM that resembles relative distances between vectors in the original high-

dimensional vector space. In addition, because only a small number of documents are

modelled (i.e., p = 10, 000), even for m = 100, the estimated distances in the RI-

constructed VSM show a high correlation to the distances in the original vector space

(i.e., ρ̄ > 0.92 for pairwise Euclidean distances and ρ̄ > 0.82 for the cosine similarity).

As expected, the generated random baseline for ρ̄ in Figure 2 is −0.002, that is, approx-

imately 0. For m = 1600, the observed pairwise distances in the RI-constructed vector

space are almost identical to the original vector space, that is, ρ̄ > 0.99 for Euclidean

distances and ρ̄ > 0.96 for the cosine. Figure 3 compares the distribution of distances in

the original high-dimensional VSM and the RI-constructed VSMs. As expected, when m

increases, these distributions become more similar to each other.

5 Discussion

Random indexing—a well-known method for the incremental construction of VSMs—is

revisited and justified using the theorems proved in [10]—that is, sparse random projec-

tions in Euclidean spaces. The results from an empirical experiment are shown to explain

the method’s behaviour with respect to its ability to preserve pairwise Euclidean distances.
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Although a new method is not suggested, I would like to emphasise on several important

outcomes of the description given in this paper.

Firstly, whereas the original delineation of the method did not provide a concrete

guideline for setting the method’s parameters, this paper ameliorated the previous two-

step procedure with criteria for choosing the dimensionality as well as the proportion of

zero and non-zero elements of index vectors. Secondly, the proposed understanding of the

RI method helps us to discern its application domain. It is shown that the employed ran-

dom projections by the RI method do not preserve distances other than `2 (e.g., see [16]).

Hence, it is important to note that RI-constructed VSMs can only be used for estimat-

ing similarity measures that are derived from the `2 norm—for example, the Euclidean

distance and the cosine similarity. This being the case, the use of RI-constructed VSMs

for estimating city block distances—such as suggested in [17]—is not justified, at least

mathematically.

Thirdly, the given understanding of the method helps one to generalise the RI method

to normed spaces other than `2. This generalisation can be achieved using α-stable ran-

dom projections—for example, as suggested in [18,19]—and by altering Equation 2. Sim-

ply put, altering a random projection matrix R—hence, index vectors—so that it has an

α-stable distribution6 results in new techniques similar to RI, however, for estimating dis-

tances in `α-normed spaces (e.g., see [20,21,22]).7

Last but not least, the rationale given in this paper enables one to justify several pro-

posed variations of the RI technique mathematically. Although these methods are based on

plausible intuition, similar to RI, they lack theoretical justifications. For example, based

on the description given in this paper, one can identify the method proposed in [23] as

a variation of RI that employs Laplacian smoothing. This idea can be generalised for

coordinating other major processes that are often involved when using VSMs.

6 Note that RI uses a 2-stable projection; that is, R derived from Equation 2 has a standard asymptotic Gaussian

distribution.
7 In this case, new distance estimators are required.
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