Skip to main content

An Improved Brain MRI Segmentation Method Based on Scale-Space Theory and Expectation Maximization Algorithm

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing -- PCM 2015 (PCM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9315))

Included in the following conference series:

Abstract

Expectation Maximization (EM) algorithm is an unsupervised clustering algorithm, but initialization information especially the number of clusters is crucial to its performance. In this paper, a new MRI segmentation method based on scale-space theory and EM algorithm has been proposed. Firstly, gray level density of a brain MRI is estimated; secondly, the corresponding fingerprints which include initialization information for EM using scale-space theory are obtained; lastly, segmentation results are achieved by the initialized EM. During the initialization phase, restrictions of clustering component weights decrease the influence of noise or singular points. Brain MRI segmentation results indicate that our method can determine more reliable initialization information and achieve more accurate segmented tissues than other initialization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Masroor Ahmed, M., Mohammad, D.B., Masroor Ahmed, M., et al.: Segmentation of brain MR images for tumor extraction by combining kmeans clustering and perona-malik anisotropic diffusion model. J. Bus. Educ. 1, 27–34 (2008)

    Google Scholar 

  2. Zeger, L.S.M.S.L.: A smooth nonparametric estimate of a mixing distribution using mixtures of gaussians. J. Am. Statist. Assoc. 91(435), 1141–1151 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Brandes, U., Gaertler, M., Wagner, D.: Engineering graph clustering: models and experimental evaluation. J. Exp. Algorithmics 12, 1–5 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Cimiano, P., Hotho, A., Staab, S.: Comparing conceptual, divisive and agglomerative clustering for learning taxonomies from text. In: Proceedings of Eureopean Conference on Artificial Intelligence Ecai Including Prestigious Applicants of Intelligent Systems Pais (2004)

    Google Scholar 

  5. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion). J. Royal Statist. Soc. Ser. B 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  6. Yang, M.S., Lai, C.Y., Lin, C.Y.: A robust EM clustering algorithm for Gaussian mixture models. Pattern Recogn. 45(11), 3950–3961 (2012)

    Article  MATH  Google Scholar 

  7. Abraham, A., Das, S., Roy, S.: Swarm intelligence algorithms for data clustering. In: Soft Computing for Knowledge Discovery and Data Mining, pp. 279–313 (2008)

    Google Scholar 

  8. Melnykov, V., Melnykov, I.: Initializing the EM algorithm in Gaussian mixture models with an unknown number of components. Comput. Statist. Data Anal. 56(6), 1381–1395 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhou, X., Wang, X., Dougherty, E.R.: Gene selection using logistic regressions based on AIC, BIC and MDL criteria. New Math. Nat. Comput. 1(1), 129–145 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hansen, M., Yu, B.: Bridging AIC and BIC: an MDL model selection criterion. In: Proceedings of IEEE Information Theory Workshop on Detection, Estimation, Classification and Imaging, vol. 63 (1999)

    Google Scholar 

  11. Xie, C., Chang, J., Liu, Y.: Estimating the number of components in Gaussian mixture models adaptively for medical image. Optik – Int. J. Light Electron. Opt. 124(23), 6216–6221 (2013)

    Article  Google Scholar 

  12. Calinski, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Statist. 3(1), 1–27 (1974)

    MathSciNet  MATH  Google Scholar 

  13. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-1(2), 224–227 (1979)

    Article  Google Scholar 

  14. Rouseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20(1), 53–65 (1987)

    Article  Google Scholar 

  15. Witkin, A.P.: Scale-space filtering: A new approach to multi-scale description. In: IEEE International Acoustics, Speech, and Signal Processing

    Google Scholar 

  16. Carlotto, M.J.: Histogram analysis using a scale-space approach. IEEE Trans. Pattern Anal. Mach. Intell. 9(1), 121–129 (1987)

    Article  Google Scholar 

  17. Yuille, A.L., Poggio, T.A.: Scaling theorems for zero crossings. Pattern Anal. Mach. Intell. IEEE Trans. 1, 15–25 (1986)

    Article  MATH  Google Scholar 

  18. Wasserman, L.: All of Nonparametric Statistics. Springer Texts in Statistics (2006)

    Google Scholar 

  19. Kisku, D.R., Rattani, A., Gupta, P., et al.: Offline signature verification using geometric and orientation features with multiple experts fusion. In: 2011 3rd International Conference on Electronics Computer Technology (ICECT), pp. 269–272. IEEE (2011)

    Google Scholar 

  20. Yeo, C., Ahammad, P., Ramchandran, K.: Coding of image feature descriptors for distributed rate-efficient visual correspondences. Int. J. Comput. Vis. 94(3), 267–281 (2011)

    Article  MATH  Google Scholar 

Download references

Acknowledgement

The paper is supported by the following fund projects: The National Natural Science Foundation of China (61402204); The Natural Science Foundation of Jiangsu Province (BK20130529); Research Fund for Advanced Talents of Jiangsu University(14JDG141); Science and Technology Project of Zhenjiang City (SH20140110); China Postdoctoral Science Foundation (Project No. 2014M551324); Special Software Development Foundation of Zhenjiang City (No. 201322); Science and Technology Support Foundation of Zhenjiang City(Industrial) (GY2014013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqing Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Song, Y., Bao, X., Liu, Z., Yuan, D., Song, M. (2015). An Improved Brain MRI Segmentation Method Based on Scale-Space Theory and Expectation Maximization Algorithm. In: Ho, YS., Sang, J., Ro, Y., Kim, J., Wu, F. (eds) Advances in Multimedia Information Processing -- PCM 2015. PCM 2015. Lecture Notes in Computer Science(), vol 9315. Springer, Cham. https://doi.org/10.1007/978-3-319-24078-7_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24078-7_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24077-0

  • Online ISBN: 978-3-319-24078-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics