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Abstract. Billions of devices are being connected to the Internet creat-
ing the Internet of Things (IoT). The IoT not only requires strong secu-
rity, like current Internet applications, but also efficient operation. The
recently introduced HIMMO scheme enables lightweight and collusion-
resistant identity-based key sharing in a non-interactive way, so that any
pair of Internet-connected devices can securely communicate.

This paper firstly reviews the HIMMO scheme and introduces two
extensions that e.g. enable implicit credential verification without the
need of traditional digital certificates. Then, we show how HIMMO can
be efficiently implemented even in resource-constrained devices, enabling
combined key agreement and credential verification more efficiently than
using ECDH-ECDSA. We further explain how HIMMO helps to secure
the Internet and IoT by introducing the DTLS-HIMMO operation mode.
DTLS, the datagram version of TLS, is becoming the standard secu-
rity protocol in the IoT, although it is very frequently discussed that
it does not offer the right performance for IoT scenarios. Our design,
implementation, and evaluation show that DTLS-HIMMO operation
mode achieves the security properties of the DTLS-Certificate security
suite while exhibiting the overhead of symmetric-key primitives without
requiring changes in the DTLS standard.

Keywords: HIMMO · Lightweight · (D)TLS · Quantum · TTP
infrastructure.

1 Introduction

The Internet of Things (IoT) is connecting billions of smart devices deployed
in critical applications like healthcare, distributed control systems, smart cities
and smart energy. The IoT not only needs strong security solutions, like today’s
Internet, but also efficient approaches to secure the data exchanges between
smart devices, and between smart devices and the Internet.

The Transport Layer Security (TLS) [5] and its Datagram version (DTLS)
are two of the most important protocols used to secure the Internet. DTLS is
becoming the security standard to secure the IoT since it is required by many
Machine to Machine standards such as LWM2M. However, it is very frequently
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discussed that DTLS and its cipher suites are too heavy for many IoT use cases.
In some cases, resource limitations (e.g., memory or energy) of end devices may
prohibit the support of the standard algorithms. In other cases, the large num-
ber of devices and lack of user interface make the managing of large amounts of
credentials for all those devices extremely complex. In some situations, devices
are managed over a cellular connection and each extra byte of consumed band-
width incurs costs. It is estimated that currently 70 % of the IoT devices have
security risks and are often poorly managed [1]. At the same time, the advent of
quantum computers will endanger all key agreement primitives used in (D)TLS
except pre-shared keys [3]. Thus, there is a need for a solution that is secure,
efficient, scalable, simple to use, and if possible, quantum-secure.

The HIMMO scheme [10] is a fully-collusion resistant key pre-distribution
scheme that enables lightweight identity-based key sharing between devices in a
single message, which is ideal for real-time IoT interactions. This paper builds
on the HIMMO scheme and describes a couple of extensions, e.g., enabling
implicit credential verification without the need of traditional digital certificates.
Next, we show how HIMMO can be efficiently implemented even on resource-
constrained devices. We further put HIMMO in the context of the IoT and
describe the design, implementation, and evaluation of the (D)TLS-HIMMO
operation mode as a lightweight alternative to existing public-key based solu-
tions. This new operation mode for (D)TLS allows us to achieve security prop-
erties of a (D)TLS-certificate exchange – key agreement, mutual authentication
of client and server, and verification of credentials – with the resource needs of
symmetric-key primitives.

The rest of this paper is organized as follows. Section 2 describes the features
of IoT scenarios, security needs, and relevant IoT security standards. Section 3
reviews the HIMMO scheme. Section 4 presents an efficient algorithm for key
agreement and performance results. Section 5 introduces the (D)TLS-HIMMO
operation mode. In Sect. 6, we compare DTLS-HIMMO with existing (D)TLS
alternatives. Section 7 concludes this paper and discusses future work.

2 Preliminaries

We consider a network of low-resource devices that should be capable to pairwise
communicate with each other. In order to secure this communication, each pair
of devices should be able to generate a common key. In the HIMMO scheme and
in the extensions we discuss in this paper, one or more Trusted Third Parties
(TTPs) provide all devices with secret information, termed keying material, that
will be used in generating such common keys. It is assumed that the TTP can
provide the keying material in a secure manner.

2.1 Security Standards in the Internet (of Things)

The Internet is protected by two main standard protocols, the Internet Protocol
Security (IPSec) and the Transport Layer Security (TLS). IPSec offers security
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at network layer while TLS protects exchange of information between applica-
tions at transport layer. Both IPSec and TLS have an initial phase enabling
authentication of peers, agreement on a session key, negotiation on the cipher-
suite, etc. Afterwards, the data flow can be secured in the sense of confidentiality,
authenticity, integrity and freshness by making use of the agreed session keys.

The TLS protocol runs on top of TCP and is used to secure our HTTP Inter-
net connections when we access the bank online, we do the tax computation, or
when we access some healthcare services. The Internet is further evolving to
connect many smart objects creating the Internet of Things (IoT) comprising
smart meters, healthcare devices, etc. In a typical use case, devices communi-
cate end-to-end with a back-end server, reporting information such as energy
consumption, maintenance data, etc. by means of protocols such LWM2M that
are protected by Datagram Transport Layer Security (DTLS), the equivalent
of TLS running on UDP. Note that DTLS builds on TLS, and therefore both
protocols are very similar, the only differences are a few extensions ensuring
that protocol can run on UDP. There are more than 200 known cipher-suites
for TLS, e.g. see [2]. OpenSSL is one of the most common and used libraries
implementing TLS and most of its different cipher-suites. For the Internet of
Things, other libraries such as CyaSSL1 are also popular due to their smaller
footprint and simple API supporting more than 70 cipher-suites.

2.2 DTLS-PSK

Pre Shared Key (PSK) mode is a set of ciphersuites applicable to both TLS and
DTLS [6]. Although not in common use on the Internet, (D)TLS-PSK is widely
employed by IoT devices since it has very low resource needs. The ciphersuite
TLS PSK WITH AES 128 CCM 8 [13], for instance, uses PSK as the authenti-
cation and key exchange algorithm.

In DTLS-PSK, both clients and servers may have pre-shared keys with different
parties, the client indicates which key to use with the PSK-identity in the Clien-
tKeyExchange message. The server may help the client in selecting the identity
to use with the PSK-identity-hint in the ServerKeyExchange message. For IoT
devices, the PSK identity can be based on the domain name of the server and,
thus, thePSK-identity-hint neednot be sent by the server [17], so theServerKeyEx-
change is optional. The credentials (the pre-shared keys themselves) are stored as
part of hardware modules, such as SIM cards, and sometimes, on the firmware of
resource-constrained devices themselves. The session keys for the DTLS record ses-
sion are derived from the PSK using the TLS Pseudo Random Function (PRF) as
defined in [5]. The cookie exchange is used to prevent denial of service attacks on
the server. The Constrained Application Protocol (CoAP) [16] mandates the use
of TLS PSK WITH AES 128 CCM 8 for the use with shared secrets [17].

1 Cyassl. http://www.yassl.com/yaSSL/Products-cyassl.html.

http://www.yassl.com/yaSSL/Products-cyassl.html
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2.3 Attack Model and Security Goals

With the HIMMO-DTLS extension, we aim at ensuring all security proper-
ties of DTLS-PSK [6] including also the capability of credential verification.
This work does not provide other security features such as perfect forward secrecy
or non-repudiation. We assume that the TTP can securely distribute the keying
materials to the devices. However, an attacker can later monitor, eavesdrop, and
modify message exchanges. We further assume that the attacker can compromise
arbitrary devices and extract secret keying material which he can combine to
attack the system.

3 HIMMO and HIMMO Extensions

HIMMO is a Key Pre-Distribution Scheme (KPS), a concept introduced by Mat-
sumoto and Imai in 1987 [12]. An elegant and efficient KPS, based on symmetric
polynomials, has been introduced by Blundo et al. [4]. There was no KPS that
is both efficient and not prone to efficient attacks of multiple colluding (or com-
promised) nodes, see the references in [9], until recently the HIMMO scheme
solved this problem. This section reviews the operation of the HIMMO scheme
that enables any pair of devices in a system to directly agree on a common
symmetric-key based on their identifiers and a secret key generating polynomial
as introduced in [10]. The underlying security principles on which HIMMO relies
have been analyzed in [7,8]. Furthermore, this section describes two protocol
extensions of the HIMMO scheme as described in [9].

We use the following notation: for each integer x and positive integer M ,
we denote by 〈x〉M the unique integer y ∈ {0, 1, . . . ,M − 1} such that x ≡ y
mod M .

3.1 HIMMO Operation

Like any KPS, HIMMO requires a trusted third party (TTP), and three phases
can be distinguished in its operation [12].

In the setup phase, the TTP selects positive integers B, b,m and α, where
m ≥ 2. The number B is the bit length of the identifiers that will be used in
the system, while b denotes the bit length of the keys that will be generated.
The TTP generates the public modulus N , an odd number of length exactly
(α+1)B + b bits (so 2(α+1)B+b−1 < N < 2(α+1)B+b). It also randomly generates
m distinct secret moduli q1, . . . , qm of the form qi = N −2bβi, where 0 ≤ βi < 2B

and at least one of β1, . . . , βm is odd. Finally, the TTP generates the secret
root keying material, that consists of the coefficients of m bi-variate symmetric
polynomials of degree at most α in each variable. For 1 ≤ i ≤ m, the i-th root
keying polynomial R(i)(x, y) is written as

R(i)(x, y) =
α∑

j=0

α∑

k=0

R
(i)
j,kxjyk with 0 ≤ R

(i)
j,k = R

(i)
k,j ≤ qi − 1. (1)
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In the keying material extraction phase, the TTP provides each node ξ
in the system, with 0 ≤ ξ < 2B , the coefficients of the key generating polyno-
mial Gξ:

Gξ(y) =
α∑

k=0

Gξ,kyk (2)

where

Gξ,k =
〈 m∑

i=1

〈
α∑

j=0

R
(i)
j,kξj〉qi

〉
N

. (3)

In the key generation phase, a node ξ wishing to communicate with node
η with 0 ≤ η < 2B , computes:

Kξ,η =
〈〈Gξ(η)〉N

〉
2b (4)

It can be shown that Kξ,η and Kη,ξ need not be equal. However, as shown in
Theorem 1 in [9], for all identifiers ξ and η with 0 ≤ ξ, η ≤ 2B ,

Kξ,η ∈ {〈Kη,ξ + jN〉2b | 0 ≤ |j| ≤ 2m}. (5)

In order to perform key reconciliation, i.e. to make sure that ξ and η use the same
key to protect their future communications, the initiator of the key generation
(say node ξ) sends to the other node, simultaneously with an encrypted message,
information on Kξ,η that enables node η to select Kξ,η from the candidate set
C = {〈Kη,ξ + jN〉2b | 0 ≤ |j| ≤ 2m}. No additional communication thus is
required for key reconciliation. The key Kξ,η will be used for securing future
communication between ξ and η. As an example of information used for key
reconciliation, node ξ sends to node η the number r = 〈Kξ,η〉2s , where s =
�log2(4m + 1)	. Node η can efficiently obtain the integer j such that |j| ≤ 2m
and Kξ,η ≡ Kη,ξ + jN mod 2b by using that jN ≡ Kξ,η − Kη,ξ ≡ r − Kη,ξ

mod 2s. As N is odd, the latter equation allows for determination of j. As r
reveals the s least significant bits of Kξ,η, only the b − s most significant bits
Kξ,η, that is, the number 
2−sKξ,η�, should be used as key.

3.2 Implicit Certification and Verification of Credentials

Implicit certification and verification of credentials is further enabled on top
of the basic HIMMO scheme. A node that wants to register with the system
provides the TTP with its credentials, e.g., device type, manufacturing date,
etc. The TTP, which can also add further information to the node’s credentials
such as a unique node identifier or the issue date of the keying material and its
expiration date, obtains the node’s identity as ξ = H(credentials), where H is
a public hash function. When a first node with identity ξ wants to securely send
a message M to a second node with identity η, the following steps are taken.

– Step 1: Node ξ computes a common key Kξ,η with node η, and uses Kξ,η to
encrypt and authenticate its credentials and M , say e = EKξ,η

(credentials|M).
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– Step 2: Node ξ sends (ξ, e, r) to node η, where r is data helping node η to find
Kξ,η.

– Step 3: Node η receives (ξ′, e′, r′). Using r′, it computes its common key Kη,ξ′

with ξ′ to decrypt e′ obtaining the message M and verifying the authenticity
of the received message. Furthermore, it checks whether the credentials′ in e′

correspond with ξ′, that is, it validates if ξ′ = H(credentials ′).

This method not only allows for direct secure communication of message M , but
also for implicit certification and verification of ξ’s credentials because the key
generating polynomial assigned to a node is linked to its credentials by means
of H. If the output size of H is long enough, e.g., 256 bits, the input (i.e., the
credentials) contains a unique node identifier, and if H is a secure one-way hash
function, then it is infeasible for an attacker to find any other set of credentials
leading to the same identity ξ. The fact that credential verification might be
prone to birthday attacks motivates the choice for the relation between identifier
and key sizes, namely, B = 2b. In this way, the scheme provides an equivalent
security level for credential verification and key generation. The capability for
credential verification enables e.g. the verification of the expiration date of the
credentials (and the keying material) of a node, or verification of the access roles
of the sender node ξ.

3.3 Enhancing Privacy by Using Multiple TTPs

Using multiple TTPs was introduced by Matsumoto and Imai [12] for KPS and
can also be elegantly supported by HIMMO [9]. In this set-up, a number of
TTPs provide a node with keying materials linked to the node’s identifier dur-
ing the keying material extraction phase. Upon reception, the device combines
the different keying materials by adding the coefficients of the key generating
polynomials modulo N . Without increasing the resource requirements at the
nodes, this scheme enjoys two interesting properties. First, privacy is enhanced
since a single TTP cannot eavesdrop the communication links. In fact, all TTPs
should collude to monitor the communication links. Secondly, compromising a
sub-set of TTPs does not break the overall system.

4 Implementation and Performance

HIMMO has been designed keeping in mind that we want to achieve very good
performance. In this section, we explain how the key generation algorithm in
Eq. 4 can be implemented in a very efficient way for the specific choice N =
2B(α+1)+b − 1, taking into account that the size of the identifiers (B bits) is
small compared to the size of the coefficients of the polynomial Gξ ((α+1)B + b
bits). Algorithm 1 shows this optimized key generation algorithm that applies an
approximation of the well-known Horner algorithm for evaluating polynomials
in which the specific choice of N is taken into account. In the appendix, we
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motivate some steps of the algorithm and show that

〈〈
α∑

j=0

Gξ,jη
j〉N 〉2b ∈ {key , 〈key + 1〉2b}. (6)

Algorithm 1. Optimized key generation
1: INPUT: B, b, α, η, Gξ,j with j ∈ {0, . . . , α}
2: OUTPUT: key
3: key ← 〈Gξ,α〉2b

4: temp ← �Gξ,α

2b �
5: for j = α − 1 to 0 do

6: temp ← temp × η + � Gξ,j

2(α−1−j)B+b �
7: key ← 〈key × η〉2b + 〈Gξ,j〉2b

8: key ← 〈key + � temp

2(j+2)B �〉2b

9: temp ← � 〈temp〉
2(j+2)B

2B �
10: end for
11: return key

We note that part of the coefficients Gξ,j with j ∈ {0, . . . , α} is not used in
Algorithm 1. This allows for a further optimization in which only the required
parts of the coefficients are stored, namely the b least significant bits and the jB
most significant bits of each coefficient Gξ,j .

Figure 1 provides a brief summary of the performance of the HIMMO scheme
implemented in C and assembler on the 8-bit CPU ATMEGA128L. The first
graph shows the key generation time for α = 26 as a function of b = B. In the
next two graphs we see – as a function of α and for b = B = 128 – the key
generation time and the size of the key generating function.
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Fig. 1. HIMMO Performance: on the left, performance for α = 26 as a function of
b = B; in the middle and right, performance for b = B = 128 as a function of α.
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Table 1. HIMMO performance and comparison with ECDH and ECDH+ ECDSA.

CPU

time

Key mater-

ial+ code

RAM Exchanged

data

Security properties

ECDH [11] 3.97 s 16018 B 1774 B 480 B Key agreement

ECDH+ECDSA [11] 11.9 s 35326 B 3284 B 704 B Key agreement and credential

verification

HIMMO 0.290 s 7560 B 1220 B 448 B Key agreement and credential

verification

Table 1 compares the performance HIMMO using security parameters α = 26
and 2b = B = 160 with that of ECDH and/or ECDSA for a security level of
80 bits. We illustrate a simple interaction scenario between two nodes: a first
node ξ wants to send in a secure way information to η, and η wants to securely
receive the message from ξ and verify its credentials. The first two protocols
involve communicating before node ξ can send an encrypted message, whereas
HIMMO allows node ξ to directly compute the key with η based on its identifier
and send the encrypted message. Also, notice that ECDH only provides key
agreement, to get key agreement and verification of credentials, it is needed to use
also ECDSA, increasing the resource requirements. For this implementation, we
use the ATMEGA128L processor running at 8 MHz since it is a typical resource-
constrained device used in the IoT. Other less constrained devices are emerging
featured by longer word size (32-bit) and slightly higher clock frequency. In
Table 1, CPU refers to the overall computing needs, the memory refers to the
amount of information that needs to be stored in flash, RAM is the RAM memory
needs, exchanged data refers to the amount of data exchanged between ξ and η,
and finally, the security properties illustrate the features of the security protocols.

5 (D)TLS-HIMMO

TLS and DTLS are two of the protocols to protect the Internet today, while
DTLS is becoming the standard for the IoT. Existing (D)TLS operational modes
have pros and cons. PSK is efficient but does not scale well. Raw-public key scales
well but does not offer authentication and is prone to man-in-the-middle attacks.
Certificate-based schemes are too expensive in some scenarios, in particular IoT
related ones, and most of those schemes would also be broken with quantum
computers. This motivates our research in a new (D)TLS cipher suite based on
HIMMO that:

– has the low operational cost of DTLS-PSK,
– enables mutual authentication and credential verification as with certificate-

based schemes,
– is scalable like public-key cryptography and infrastructure,
– is resilient to attacks using quantum computers.

To this end, we extend the DTLS-PSK mode, which is based on identities,
without changing the standard so that it can work with HIMMO. The main dif-
ference from the usual PSK profile lies in using identities to generate a pairwise
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symmetric key and, then, deriving the session keys from the pairwise symmet-
ric key. A TTP provisions keying material to client nodes and the server as
shown in Eq. 2 during an initial setup (e.g. manufacture stage). HIMMO can be
directly used in (D)TLS-PSK mode by exchanging HIMMO’s identifiers in the
ClientKeyExchange and ServerKeyExchange messages. Creation of a new profile
to indicate DTLS-HIMMO (e.g. TLS DTLS-HIMMO WITH AES 128 CCM 8)
can also be considered, but requires standardization.

5.1 DTLS-HIMMO Configurations

The existing PSK profile, such as the one used in TLS PSK WITH AES
128 CCM 8, involves the exchange of two fields, the PSK-identity and PSK-
identity-hint, in the ClientKeyExchange and ServerKeyExchange messages
respectively. Instead of sending a PSK identifier, we use these fields, which can
be up to 128 bytes long [17], to exchange HIMMO information.

Table 2 illustrates these fields of information with exemplary lengths. First,
we find an identifier/flag indicating the use of DTLS-HIMMO. Next, we find a
DTLS-HIMMO message type. The third and fourth field refer to the number
of TTPs and their identifiers, respectively. These are the TTPs associated with
generating and distributing the key material of the client and server. These two
fields are followed by an identifier field. Next, we optionally find the HIMMO
credentials length as well as the credentials themselves. Finally, a field that
contains the key reconciliation data is optionally present. The interpretation of
the identifier field and the absence of presence of the optional fields is derived
from the Message Type field.

This message format is used in the PSK-identity-hint and PSK-identity fields
of the ServerKeyExchange and ClientKeyExchange messages. With these fields
we can enable different ways of using HIMMO with DTLS-PSK. If only the
HIMMO identifier is exchanged in the identifier field, then only mutual authen-
tication is achieved between client and server. Alternatively, the client, or server,
or both of them might exchange their credentials. The credentials could be any
information that today is exchanged in regular digital certificates and, for IoT
scenarios, information such as manufacturer, device type, date of manufacturing,
etc. In this case, the exchange enables unilateral or mutual implicit credential
verification of the parties. We note that in this case, the identifier field does not
contain the HIMMO identifier but a unique random value that concatenated

Table 2. Exemplary format of the PSK-identity-hint and PSK-identity fields enabling
DTLS-HIMMO; Length in Bytes; N = Number of TTPs; M = mandatory, O = optional

HIMMO

flag

Message

type

Number of

TTPs

TTP

ID

Identifier HIMMO cre-

dentials

length

HIMMO cre-

dentials

Reconcilliation

data

Length 2 1 1 N B 1 0 . . . (122 −
B − N)

N

M/O M M M M M O O O
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Table 3. Modes of operation of DTLS-HIMMO profile

Client sends HIMMO’s ID Client sends HIMMO’s credentials

Server sends HIMMO’s ID Messages exchanged

ClientKeyExchange: Client ID and

Reconciliation data

ServerKeyExchange: Server ID

ClientKeyExchange: Clients credentials

and Reconciliation data

ServerKeyExchange: Server ID

Computations

Two HIMMO evaluations Two HIMMO evaluations One hash

evaluation

Properties

Mutual authentication Mutual authentication Verification of

client’s credentials

Server sends HIMMO’s

credentials

Messages exchanged

ClientKeyExchange: Client ID and

Reconciliation data

ServerKeyExchange: Servers

credentials

ClientKeyExchange: Clients credentials

and Reconciliation data

ServerKeyExchange: Servers

credentials

Computations

Two HIMMO evaluations One hash

evaluation

Two HIMMO evaluations Two hash

evaluations

Properties

Mutual authentication Verification of

server’s credentials

Mutual authentication Verification of

the credentials of client and server

with the information in the HIMMO credentials length and HIMMO creden-
tials is hashed to obtain the HIMMO identifier. The reason for this construction
was explained in Sect. 3.2. Finally, we note that the reconciliation data is only
exchanged in the ClientKeyExchange message since it is the server the one per-
forming this operation.

These two different options give rise to four (two each for client and server)
different combinations whose features are explained in Table 3.

5.2 (D)TLS-HIMMO Handshake

The HIMMO enabled PSK message exchanges comprises multiple steps:

– Step 1: The client sends a ClientHello message to the server indicating use of
the PSK mode, such as the TLS PSK WITH AES 128 CCM 8.

– Step 2: The usual HelloVerifyRequest message, with a cookie, is sent from the
server to the client.

– Step 3: The client replies back with ClientHello along with the cookie.
– Step 4: The server replies with ServerHello, ServerKeyExchange and Server-
HelloDone. The PSK-identity-hint of the ServerKeyExchange contains the
DTLS-HIMMO fields as in the exemplary format shown in Table 2.

– Step 5: The client sends the ClientKeyExchange with the PSK-identity field
containing the DTLS-HIMMO fields as shown in Table 2. It also sends the
usual ChangeCipherSpec and Finished messages to the server.

– Step 6: The Server would send back the usual ChangeCipherSpec and Finished
messages to the client.
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The client computes the symmetric pairwise key as follows:

– Step 1: If the server sent its credentials, as indicated in the DTLS-HIMMO
fields, compute ID-Server = H(Server Identifier || Server HIMMO Credentials
Length || Server HIMMO-credentials). In case the server sent the HIMMO
identifier then set ID-Server = Server HIMMO-Identifier.

– Step 2: If the client is also using credentials, compute ID-Client =
H(Client Identifier
||Client HIMMO Credentials Length||Client HIMMO-credentials). Otherwise,
set ID-Client = Client HIMMO-Identifier.

– Step 3: Compute the pairwise key KID-Client, ID-Server as shown in Eq. 4.

Similarly, the server, upon receipt of the ClientKeyExchange message com-
putes the pairwise key as:

– Step 1: Depending upon whether the client sent its credentials or its HIMMO
identifier, compute ID-Client as shown in the steps followed by the client
before. In the same manner, depending upon whether the server uses creden-
tials or its HIMMO identifier, compute ID-Server.

– Step 2: Compute the pairwise key KID-Server, ID-Client using the key reconcil-
iation data sent by the client to arrive at the symmetric pairwise key.

Note that the respective key generating polynomials (Gξ,k in Eq. 2) in the devices
would be configured with either the HIMMO identifier or the hash of the con-
catenation of the identifier, the length of the credentials and the credentials for
its identity ξ, depending upon which mode of operation is used (see Table 3).
Once the client and server have computed the pairwise key, it can be part of
the input to the standard (D)TLS pseudo-random function used to derive the
session keys for the DTLS session as is done with the PSK profile. The DTLS
Finished message authenticates the handshake, and thus, authenticates both
parties as having the correct keying material. If the communicating peer is using
HIMMO credentials for the key exchange, then the successful completion of the
Finished message implies that the credentials it provided are correct and, thus,
authenticates the credentials of the peer.

5.3 Privacy Protection

Protecting the privacy of the communication links is fundamental. HIMMO and
its extensions can be used to ensure the privacy of the involved communication
parties.

A first aspect is the protection of the exchanged credentials that might con-
tain some private information that should not be exposed to the other party,
if not authenticated before, or to a passive eavesdropper. This can be achieved
by the following simple extension of the DTLS handshake. The credentials are
encrypted with the pairwise key shared with the other party. For instance, in
the DTLS-HIMMO exchange, the client protects its credentials by encrypting
them with the HIMMO key shared with the server and that is computed after
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the reception of the ServerKeyExchange message. Thus, the ClientKeyExchange
could contain the Client’s HIMMO identifier and encrypted HIMMO credentials.
The server uses the HIMMO identifier to obtain the common pairwise key, and
decrypts the client’s credentials. Neither a fake server nor an attacker eavesdrop-
ping the communication is able to learn the client’s credentials.

The usage of raw-public keys with out-of-band verification or of digital cer-
tificates requires some type of public-key infrastructure that allows validating
the authenticity of the involved public-keys or installing the digital certificates
in a secure way. A certification authority (CA), or a hierarchy of CAs, plays this
role in today’s public-key infrastructure (PKI). HIMMO relies on a TTP whose
role is similar to that of a CA. Like a CA, the TTP is in charge of validating the
identity of a joining node and securely distributing its key generating function.
The difference is that a single TTP could be misused and the TTP (or anyone
having access to it) could eavesdrop or alter the ongoing data exchanges between
any pair of nodes in a passive way. As explained in Sect. 3.3, the usage of mul-
tiple TTPs avoids this situation, since each device then registers with several
TTPs and combines the received key generating polynomials from each TTP. In
this way, the generated keys between any pair of entities of the system depend
on the information shared by all the involved TTPs. An active attacker that
can compromise a TTP can act as follows: he sets up a new server and tries
to make a client authenticate to that server by setting the number of TTPs in
the ServerKeyExchange message equal to one. One way to protect against this
attack is a policy that a client only authenticates if the number of TTPs in the
SeverKeyExchange message is at least two.

5.4 TTP Infrastructure

The introduction of an infrastructure of TTPs for the DTLS-HIMMO profile
would mean the creation of an alternative to today’s PKI. As outlined above,
each entity in the system would register with a number of TTPs and receive the
corresponding key generating polynomials, each linked to the same or related cre-
dentials. Each entity would store this information either combined, as explained
in Sect. 3.3, or independently. In this case, the TTP identifiers can be exchanged
between client and server during a DTLS-HIMMO handshake. In a first step,
the server provides in the ServerKeyExchange message the TTP identifiers from
which it received its key generating polynomials. In a second step, the client
answers with the common or chosen TTPs in the ClientKeyExchange message.

Such an infrastructure brings new challenges but also advantages. Today, if a
CA is compromised, then it is not possible to easily recover since certificates are
often not signed by more than one CA. On the other hand, if they are, recov-
ering is feasible, but this rapidly increases the bandwidth and computational
requirements since all those certificates need to be exchanged and verified. This
is not the case for above TTP Infrastructure since the capture of a single TTP
does not break the whole system and using more than a TTP (e.g., t) involves
practically the same bandwidth and computational resources as when a single
one is used.
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5.5 Security Considerations of (D)TLS-HIMMO

In [9], it is shown that a collusion attack in HIMMO amounts to solving
a close vector problem in a certain lattice, and that the minimum required
number of nodes, and thus the lattice dimension, is (α + 1)(α + 2)/2. If α is
large enough, α > 25, an approximate solution of this close vector problem,
using the default LLL [14] implementation of Sage [15], and Babai’s nearest
plane algorithm, fails to give a good result, while the lattice dimension becomes
too large for exact methods, for which the running time and memory require-
ments grow exponentially in the lattice dimension. While it is quite likely that
more elaborate approximate classical algorithms would give better results, thus
increasing the minimum required value of α somewhat, currently no quantum
algorithm exists that would speed up the approximate lattice methods, nor is it
foreseen that the quantum speed-ups in the exact lattice algorithms, which use
enumeration techniques, are sufficient to crack HIMMO for these values of α.
Therefore, the scheme presented in this paper could be an interesting approach
to ensure secure digital communications in the Internet in a post-quantum world.

6 Performance of DTLS-HIMMO and Comparison with
Existing (D)TLS Alternatives

We have implemented the DTLS-HIMMO operation mode such that the client
and server run on a Intel Core i5-3437U @ 1.90 GHz with Windows 7 Enterprise.
The DTLS-HIMMO extension is carried out by using DTLSv1.2 in PSK mode as
starting point as explained in Sect. 5. The HIMMO-based DTLS operation modes
include: (i) HIMMO enabling mutual authentication, (ii) HIMMO enabling
mutual authentication and server verification, and (iii) HIMMO enabling mutual
authentication and client and server verification. We compare DTLS-HIMMO
with (iv) DTLS in PSK mode, (v) DTLS certificates enabling server verifica-
tion only and (vi) DTLS certificates with both server and client verification.
Both modes are implemented using the ECDHE and ECDSA using the NIST
secp256r1 curve for ECC computations. All of the analyzed DTLS operation
modes rely on a 128-bit AES in CCM operation mode to secure the DTLS
record layer.

Table 4 provides a qualitative comparison of the above DTLS modes of oper-
ation against their performance and security properties. Performance-wise we
discuss the resource requirements on the client and server and the communica-
tion overhead. Security-wise we consider the capability of the handshakes for key
agreement, authentication, information verification, and scalability.

Due to the identity-based nature of HIMMO, the verification of the client or
server credentials only costs one additional hash computation. For this reason,
the communication overhead can be kept at a very low level compared with cer-
tificates. For ECDHE + ECDSA, key agreement and verification of information
requires several scalar ECC point multiplications, while HIMMO only requires
a polynomial evaluation.
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Table 4. Qualitative comparison of the HIMMO based PSK profile with other algo-
rithms. All algorithms allow for key agreement

DTLS Client CPU Server CPU Handshake Authentication Information Scalability
mode Needs Needs size verification

DTLS-HIMMO HIMMO key HIMMO key Low Mutual No Gξ(x)
generation generation installation

Key reconciliation
DTLS-HIMMO(SA) 1 SHA-256 HIMMO key Server Gξ(x)

(Server HIMMO key generation Low Mutual authentication installation
authentication) generation Key reconciliation
DTLS-HIMMO 1 SHA-256 1 SHA-256 Server Gξ(x)

(Mutual HIMMO key HIMMO key Low Mutual and installation
authentication) generation generation Client

Key reconciliation
PSK - - Low Mutual No Installation

of PSKs
ECDHE + ECDSA Three ECC point One ECC point High Unilateral Server Root

(Server multiplications multiplication verification Certificate
authentication) installation

ECDHE + ECDSA Three ECC point Three ECC point Server Root
(Mutual multiplications multiplication Higher Mutual and client Certificate

authentication) verification installation

This qualitative comparison is supported by the experimental results in which
we have measured (i) the elapsed time, (ii) the amount of data exchanged, and
(iii) the ratio between data exchanged and payload in three different scenarios
for different DTLS modes of operation:

– the DTLS connection is established and 1 KB of data are exchanged,
– the DTLS connection is established and 10 KB of data are exchanged, and
– the DTLS connection is established and 100 KB of data are exchanged.

Figure 2 depicts the total amount of exchanged data for all the cipher suites.
This includes the headers of the underlying protocols (UDP, IP, etc.) as well as
the transfer of 1 KB of data. On the left side of Fig. 3 we see the required time
to establish a secure connection and send the data for different cipher suites. On
the right side of this figure we observe the ratio between the required bandwidth
and the exchanged payload. In both figures, from top to bottom: (1) ECDH-
ECDSA with mutual authentication, (2) ECDH-ECDSA with server authenti-
cation, (3) HIMMO with mutual verification of client’s and server’s credentials
(t = 5, B = 256, b = 32, α = 17), (4) HIMMO with mutual authentication
(t = 5, B = 32, b = 32, α = 50) and (5) PSK. We notice that DTLS-PSK is the
fastest followed by DTLS-HIMMO without credential verification capabilities.
DTLS-HIMMO with credential verification capabilities becomes slightly more
expensive since B needs to be larger than the generated key in this case. We
also observe that the value of the security parameter α does not heavily impact
the performance of the scheme remaining around a factor 8 faster than the ECC
alternative. We note that in this experiment HIMMO is configured to generate a
key 128 bit long by combining five (t = 5) instances in parallel. For the cases of
mutual authentication and mutual credential verification we use HIMMO para-
meters (B = 32, b = 32, α = 50) and (B = 256, b = 32, α = 17) respectively. This
implies that an attacker has to deal with lattices of dimensions as high as 1377
and 1368, respectively, for the HI problem [8]. It is also worth noting that in all
cases the cryptographic operations involved in the transfer of data are negligible
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compared with the DTLS handshake. Figure 2, right side, shows that the usage
of schemes relying on long keys might not be the best solution for use cases in
which little payload needs to be exchanged.

These figures together with Fig. 1 show several advantages of HIMMO com-
pared with other alternatives. The first one is that IoT applications that involve
the exchange of little data, frequently under 10 KB, can benefit from HIMMO
since it offers a better ratio between the amount of transmitted payload and
the overall amount of transmitted data. This is due to HIMMO’s identity based
nature that does not require the exchange of public-keys or long certificates. As
a result, the underlying constrained networks are less overloaded, thus enabling
IoT applications with less costs to network operators. The second advantage is
that same back-end can handle many more clients with the same resources. This
prevents potential DoS attacks and decreases again the price to enable those
applications. Finally, we remark that Fig. 3 shows the DTLS connection time
between two powerful devices. In a real world IoT scenario one of those devices
will have much lower capabilities. However, HIMMO can be still implemented
in a very efficient way as illustrated in Fig. 1.
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7 Conclusions

The HIMMO scheme is the first Key Pre-distribution scheme that is simultane-
ously efficient and secure (in terms of collusion resistance). Specific choices of
the HIMMO parameters enable very efficient implementations that, combined
with the implicit credential certification and verification, improve the perfor-
mance of related public-key schemes by one order of magnitude. HIMMO can
be embedded in TLS and DTLS, the security protocols used to secure the Inter-
net, without requiring any changes in the standards, but offering a significantly
improved performance security trade-off. In fact, the DTLS-PSK mode can be
extended with HIMMO to achieve functionality that today is only possible with
public-key cryptography and a public-key infrastructure, but at the speed and
memory requirements of a symmetric-key handshake. The DTLS-HIMMO hand-
shake offers mutual authentication of client and server, implicit verification of
their credentials costing a single hash computation, client’s privacy-protection
by sending its credentials in encrypted format, and support of multiple TTPs.

We finally remark that HIMMO is post-quantum secure as known attacks
involve solving a close vector problem in a lattice for which currently no quantum
algorithm exists that would speed up the approximate lattice methods, nor is it
foreseen that the quantum speed-ups in the exact lattice algorithms, which use
enumeration techniques, are sufficient to crack HIMMO.

Appendix: Proof of Correctness of Optimized Algorithm

Algorithm 1 is an approximation to Horner’s algorithm for polynomial evaluation
modulo N , taking into account that N is of the special form N = 2(α+1)B+b and
that the argument η is small. In this appendix, we motivate some of the steps in
Algorithm 1, and prove (6) which states that the output of the algorithm nearly
is the wanted key.

Each intermediate value in Horner’s algorithm for computing 〈∑α
j=0 Gξ,jη

j〉N

is obtained as
〈tempj〉N = 〈tempj+1 × η + Gξ,j〉N

for j = α− 1, . . . , 0. As 0 ≤ η < 2B , we can write tempj+1 × η +Gξ,j = tempj =
tempH

j × 2(α+1)B+b + tempL
j , where tempH

j and tempL
j are b and (α + 1)B + b

bits long, respectively. As N = 2(α+1)B+b − 1, we thus have that 〈tempj〉N =
〈tempH

J + tempL
j 〉N ≈ tempH

j + tempL
j . This is only an approximation because

there might be a carry in the addition of tempH
j and tempL

j , requiring a second
reduction. We will show that this second reduction is needed at most once during
the calculation, and ignoring it leads to a difference of one (mod 2b) between the
wanted key and the value returned by the algorithm, so that (6) is satisfied.
The modular reduction happens when the value of key is updated with the
contribution of the MSB stored in temp after being shifted (j + 2)B bits and
added to key (Line 8).
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We now state and prove the main property of Algorithm 1. Let b,B, α be
positive integers and let N := 2(α+1)B+b − 1. For 0 ≤ i ≤ α, let 0 ≤ Gi ≤ N − 1,
and let 0 ≤ η ≤ 2B − 1. We are interested in obtaining the key K, defined as

K := 〈〈
α∑

i=0

Giη
i〉N 〉2b . (7)

For 0 ≤ i ≤ α − 1, we write

Gi = γi2(α−i−1)B+b + δi with 0 ≤ δi ≤ 2(α−i−1)B+b − 1. (8)

We rewrite Algortihm 1, where we added indices to the variables that will be
useful in the analysis the algorithm:

kα := 〈Gα〉2b ; τα := 
Gα

2b �;
for j := α − 1 downto 0 do
begin σj := τj+1 × η + γj ;

kj := 〈kj+1 × η + 〈Gj〉2b + 
 σj

2(j+2)B �〉2b ;

τj := 
 〈σj〉
2(j+2)B

2B �
end;
key:= k0

Theorem 1. If α < 2B, then either K = key or K = 〈key + 1〉2b .

For proving the above theorem, we define Λα, Λα−1, . . . , Λ0 as

Λα := Gα and for 0 ≤ j ≤ α − 1, Λj := ηΛj+1 + Gj − 
 σj

2(j+2)B
�N. (9)

By induction on j, it is easy to see that for 0 ≤ j ≤ α, Λj ≡ ∑α
i=j Giη

i−j

mod N. Note that
∑α

i=j Giη
i−j is the j-th iterate of the evaluation of

∑α
i=0 Giη

i

using Horner’s algorithm.
We will show below (Proposition 2) that for each j,

0 ≤ Λj − τj2(α−j)B+b ≤ (α − j + 1)2(α−j)B+b.

As a consequence, if α < 2B , then 0 ≤ Λ0−τ02αB+b < N. The algorithm implies
that 0 ≤ τ0 ≤ 2B − 1, and so 0 ≤ τ0 ≤ Λ0 < N + 2B − 1. As

∑α
j=0 Gjη

j ≡ Λ0

mod N , we conclude that 〈∑α
j=0 Gjη

j〉N = 〈Λ0〉N ∈ {Λ0, Λ0 − N}, and so

K ∈ {〈Λ0〉2b , 〈Λ0 + 1〉2b}. (10)

In Proposition 3, we show that Λj ≡ kj for 0 ≤ j ≤ α. Combining this result
with (10) proves the theorem.

For 0 ≤ j ≤ α, we define

rj := Λj − 2(α−j)B+bτj .
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Proposition 1. For 0 ≤ j ≤ α − 1, we have that rj = 2(α−j−1)B+b〈σj〉2B +
ηrj+1 + δj + 
 σj

2(j+2)B �.
Proof. Let 0 ≤ j ≤ α − 1. From the definitions of Λj , Λj+1, rj rj+1 and σj we
readily find that

rj = 2(α−1−j)B+b(σj − 2Bτj) + ηrj+1 + ηδj − 
 σj

2(j+2)B
�N.

Writing σj = 
 σj

2(j+2)B �2(j+2)B + 〈σj〉2(j+2)B , and using that N = 2(α+1)B+b − 1,
we obtain that

rj = 2(α−1−j)B+b(〈σj〉2(j+2)B − 2Bτj) + 
 σj

2(j+2)B
� + ηrj+1 + ηδj .

The proposition now follows from observing that

〈σj〉2(j+2)B = 2B
〈σj〉2(j+2)B

2B
� + 〈〈σj〉2(j+2)B 〉2B = 2Bτj + 〈σj〉2B .


�
Proposition 2. For 0 ≤ j ≤ α we have that rj ≤ (α − j + 1)2(α−j)B+b − 1.

Proof. By induction on j. As rα = 〈Gα〉2b ≤ 2b − 1, the proposition is true for
j = α.
Now let 0 ≤ j ≤ α−1. The algorithm immediately implies that τj+1 ≤ 2(j+2)B−1
(make distinctions for j = α − 1 and j < α − 1 for showing this). Moreover,

γj = 
 Gj

2(α−j−1)B
� ≤ Gj

2(α−j−1)B+b
≤ N − 1

2(α−j−1)B+b
≤ 2(j+2)B − 1.

We conclude that

σj = τj+1η + γj < 2(j+2)B(η + 1) < 2(j+3)B , and so


 σj

2(j+2)B
� ≤ 2B − 1. (11)

According to (8), we have that δj ≤ 2(α−1−j)B+b−1, and clearly 〈σj〉2B ≤ 2B−1.
Combining these inequalities with (11) and Proposition 2, we infer that

rj ≤ 2(α−j−1)B+b(2B − 1) + (2(α−1−j)B+b − 1) + ηrj+1 + (2B − 1)

= 2(α−j)B+b + ηrj+1 + 2B − 2 < 2(α−j)B+b + 2B(rj+1 + 1).

According to the induction hypothesis, rj+1 ≤ (α − j)2(α−j−1)B+b − 1, and so

rj ≤ (α − j + 1)2(α−j)B+b − 1.


�
Proposition 3. For 0 ≤ j ≤ α, we have that kj = 〈Λj〉2b .

Proof. By induction on j. The proposition is true for j = α.
Now let 0 ≤ j ≤ α − 1. The definition of Λj implies that

Λj = ηΛj+1+Gj −� σj

2(j+2)B
�(2(α+1)B+b −1) ≡ η〈Λj+1〉2b + 〈Gj〉2b + � σj

2(j+2)B
� (mod 2b).

As kj+1 ≡ Λj+1 (mod 2b), the definition of kj implies the proposition. 
�
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