Updatable Hash Proof System
and Its Applications

Rupeng Yang!?, Qiuliang Xu!®), Yongbin Zhou?®™), Rui Zhang?®9,
Chengyu Hu!, and Zuoxia Yu':?

! School of Computer Science and Technology,
Shandong University, Jinan 250101, China
orbbyrp@gmail.com, xql@sdu.edu.cn
2 State Key Laboratory of Information Security (SKLOIS), Institute of Information
Engineering (IIE), Chinese Academy of Sciences (CAS), Beijing, China
{zhouyongbin,r-zhang}@iie.ac.cn

Abstract. To tackle with physical attacks to real world cryptosystems,
leakage resilient cryptography was developed. In this setting, the adver-
sary is allowed to have access to the internal state of a cryptographic
system, thus violates the black-box reduction used in cryptography. Espe-
cially when considering continual memory leakage (CML), i.e., there is
no predetermined bound on the leakage of the internal information, the
task is extremely tough.

In this paper, we solve this problem by introducing a new primitive
called updatable hash proof system (UHPS). A UHPS can be viewed as a
special Hash proof system (HPS), which served as a fundamental tool in
constructing public key encryption (PKE) schemes in both leakage-free
and leaky settings. A remarkable property of UHPS is that by simply
substituting the HPS component with a UHPS component in a PKE
scheme, one obtains a new PKE scheme secure in the CML setting. More-
over, the resulting PKE scheme enjoys the same advantage of the original
HPS-based PKE, for instance, still “compatible” with known transforms
[8,20,24,32]. We then give instantiations of UHPS from widely-accepted
assumptions, including the symmetric external Diffie-Hellman assump-
tion and the d-linear assumption. Interestingly, we notice that when
instantiated with concrete assumptions, the resulting chosen-ciphertext
secure PKE scheme is by far the most efficient.

1 Introduction

Side-channel attacks are fatal for a real-world cryptosystem. Notably, such
attacks can violate the black-box “provable” security of schemes [3,5,17,21,22,
30,34]. For instance, the only known working attack for AES is via side-channel
attacks [30]. Moreover, it is also possible to launch such an attack remotely,
e.g., the timing attacks could break OpenSSL run on a network server [5].

R. Yang — This work was mainly done when doing the internship at SKLOIS, ITE,
CAS.
© Springer International Publishing Switzerland 2015

G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 266-285, 2015.
DOI: 10.1007/978-3-319-24174-6_14

Updatable Hash Proof System and Its Applications 267

Even worse, via the cold-boot attack, one can read the secret keys stored in
the memory directly [17].

As for a countermeasure, engineers are always required to implement the
scheme in an environment approximate to the theoretical assumptions, e.g.,
using extra protection circuits, adding random circles to CPU occupations, or
adding metal shields against electromagnetic radiation. But in a word, there is
no guarantee whether they have actually realized the design goal.

Leakage Resilient Cryptography. On the other hand, theorists intended to
investigate this problem in a more rigorous way, so the leakage resilient cryptog-
raphy came up. Micali and Reyzin [27] first introduced the notion of physically
observable cryptography, where they assumed “computation and only compu-
tation leaks information” about the internal state. Many works follows their
approach [12,14,31]. However, their assumption could not capture the cold-boot
attack (memory attack) [17], namely, information leakage of the whole internal
state can appear any time during the life span of the scheme.

To cope with memory attacks, Akavia et al. [2] proposed the bounded memory
leakage (BML) model, where adversaries can obtain arbitrary function of the
whole secret state, as long as the total leakage is limited to a certain amount of
bits. But this model is not strong enough since the adversary may launch many
attacks and it is not evident to bound the information leakage to a predetermined
value.

One way to capture more realistic attackers is to relax the restriction imposed
on the leakage function. Dodis et al. [10] proposed the auxiliary input model
where the leakage can be arbitrary large and only with the restriction that the
secret key is computationally hard to compute given the leakage information.

Another (and maybe a more realistic) way is to consider continual leakage
directly. Brakerski et al. [4] and Dodis et al. [9] proposed the continual memory
leakage (CML) model. In their models, the entire lifetime of the scheme is parti-
tioned into some periods, and at the end of each period, the internal secret state
of the scheme is updated. The adversary is allowed to obtain bounded leakage
from the entire internal secret state during each time period, just as in the BML
setting, but the total leakage over the lifetime of the scheme is unbounded.

Continual Memory Leakage Model. One may think that it is easy to con-
struct cryptographic schemes in the CML setting. For example, one can con-
struct continual memory leakage resilient (CML) public key encryption (PKE)
schemes by generating multiple independent instances of a normal PKE scheme,
encrypting messages under all public keys and decrypting with a fresh secret key
at each time period. However, this does not satisfy realistic requirements. One
reason is that the size of the public key and ciphertexts depend on the number
of time periods throughout the lifetime of the scheme. Besides, secret keys not
used at present must be stored in some external leak-free storage and key updat-
ing can only be executed privately. To exclude such trivial solution, which will
not provide actual guidance in practice, the compactness (i.e. all parameters are
independent of number of time periods) and the ability of publicly key updating

268 R. Yang et al.

(i.e. secret keys can be updated with only the public parameters) are required
for constructions of cryptographic schemes in the CML setting.

In fact, it is rather involved to construct cryptographic schemes in the CML
setting. When considering CML-PKE schemes, only a few constructions are
known so far [4,11,23,26]. Most of them are based on concrete number-theoretic
assumptions directly. Especially, no practical chosen-ciphertext (CCA) secure
PKE schme has been presented in this model yet. Therefore, new techniques for
constructing CML-PKE schemes are desired.

Hash Proof System. Since first introduced by Cramer and Shoup [8], hash
proof system (HPS) gained great success in constructing various cryptographic
schemes, such as password-based authenticated key exchange [15], lossy trapdoor
functions [19], (leak-free) CCA-secure PKE schemes [8,24] and PKE schemes in
the BML setting [18,28,32,33].

Especially, when constructing PKE schemes in the BML setting, the tech-
nique of HPS is essential to obtain leakage resilience. The bottom line is that
multiple secret keys are mapped to a single public key in an HPS-based PKE
scheme, thus the adversary cannot determine which secret key is in use even
bounded leakage is given. Meanwhile, honestly generated ciphertexts are com-
putationally indistinguishable from dishonest ciphertexts, whose decryptings are
not determined by the public key but the secret key decrypting it. So the BML
adversary cannot decrypt ciphertexts of an HPS-based PKE scheme (actually,
they cannot obtain any information from these ciphertexts).

Considering that attacks launched in each time period in the CML setting
can just be viewed as bounded memory attacks, one may naturally think that
by augmenting HPS with the publicly key updating ability, it can be applied to
construct CML-PKE schemes straightforwardly. But this simple idea seems not
working: the publicly key updating ability seems incompatible with HPS.

To see this, recall that an HPS is based on a collection of hash functions
indexed by a set of secret keys. When evaluating the hash function on an element
in the domain, different secret keys may lead to the same result, and we say such
secret keys are “equivalent on this element”. All secret keys are mapped to some
public keys and those mapped to the same public key will be equivalent on every
element in a specific subset of its domain. Also, the subset membership problem
(SMP), which demands a PPT algorithm to distinguish a uniform element in
this subset from a uniform element in its complement, is hard in HPS, and that
leads to the ciphertexts indistinguishability in an HPS-based PKE scheme.

When updating secret keys of HPS in the CML setting, one should generate
a new secret key mapped to the same public key. Thus the new key and the old
key will be equivalent on every element in the specific subset. But they will not
be equivalent on every element in the domain. So an adversary can break the
underlying SMP of HPS via the “GUC attack”, namely, generating a secret key,
updating it, and checking whether they are equivalent on the challenge element.

Therefore, the following two questions arise naturally: Whether HPS is still
effective for building PKEs in the CML setting? If yes, how?

Updatable Hash Proof System and Its Applications 269

replace
HPS UHPS

[CPA, LF/BML] Sec. 41,43 [CPA, CML]

replace
HPS UHPS

[CCA, LF/BML] Sec. 1.2 [CCA, CML]

Here, rectangles denote PKE schemes, where “LF/BML” denotes security in the leak-free or the
BML setting, and “CML” denotes security in the CML setting. The “Well-known paradigm”
in the center includes the twin HPS paradigm [8], the “HPS+AE” paradigm [24, 20] and the
“HPS+OT-LF” paradigm [32].

Fig. 1. Constructing CML-PKE schemes from UHPS and its relation with HPS-based
PKE schemes.

1.1 Our Results

In this paper, we investigate these two questions and pose affirmative answers
to them. More precisely, we show that in general, an HPS based PKE scheme
is in fact secure against continuous memory attacks, as long as the underlying
HPS fulfill some additional requirements.

First, we require that secret keys are updated in some pattern, namely,
updated keys and old keys are equivalent on elements in a superset of the spe-
cific subset. Next, as a substitute of the SMP, we require that elements chosen
uniformly from the specific subset and from that superset are computationally
indistinguishable. We remark that the GUC attack is not applicable to this indis-
tinguishability. But updating secret keys with certain patterns will cause new
problems since the adversary is able to obtain leakage about secret keys continu-
ally and thus may learn this pattern (we will discuss how this threatens security
of PKE schemes in the proof sketch of Theorem 5). Therefore, we require that all
updated keys appear independent and uniform to the adversary, although they
are updated with certain patterns.

We call an HPS with these properties “updatable hash proof system”
(UHPS), and show how to instantiate it with some widely-accepted assump-
tions, e.g. the symmetric external Diffie-Hellman (SXDH) assumption and the
d-linear assumption in bilinear groups. Interestingly, our instantiations are just
extensions of the DDH-based HPS in [8] and one can realize them via modifying
existing implementations of DDH-based HPS.

270 R. Yang et al.

The functionalities of UHPS are summarized in Fig.1. In particular, by
simply substituting the HPS component in an HPS-based PKE with a UHPS
component, one obtains a CML-PKE scheme. Interestingly, we show that well-
known transforms that upgrade weak (e.g. CPA-secure) PKE schemes into strong
(i.e. CCA-secure) PKE schemes are still effective for the resulting CML-PKE
schemes. The reason why UHPS is effective in constructing CML-PKE is that
honest ciphertexts and dishonest ciphertexts are still indistinguishable when
secret keys are updated in some pattern. Also, the key indistinguishability in
UHPS can guarantee that real secret keys as well as the pattern are hidden from
CML adversaries. So they cannot obtain any information from these ciphertexts
just as in the BML setting.

We remark that when instantiated with concrete assumptions, our CCA-
secure CML-PKE schemes are much more efficient compared to known results.
To show this, we give a brief overview of known constructions of CCA-secure
CML-PKE schemes in Sect.1.2, and give a concrete efficiency comparison
between these schemes and our schemes in Sect. 5.2. Besides, we observe that
several frameworks for constructing hybrid encryption schemes, including the
framework of “constrained CCA (CCCA) secure KEM + authenticated encryp-
tion (AE) scheme” [20] and the tag KEM/DEM framework [1], are also robust
in the CML setting. Also, it is worth noting that PKE schemes in Wichs’s PhD
thesis [36] can be viewed as instantiations of our CPA-secure PKE schemes. In
fact, our work provides a modular way to reconsider their schemes and makes
the construction of CML-PKE schemes more concise and conceptual simpler.

1.2 Related Work

Now we give a brief overview of approaches applicable to construct CCA-secure
CML-PKE schemes. In principle, the Naor-Yung paradigm [29,35] is robust
against continuous memory attacks. That is to say, in the CML setting, one
can transform any CPA-secure PKE scheme to be CCA-secure. Alternatively,
the CHK transformation [6] can also provide CCA-secure CML-PKE schemes
given suitable building blocks, e.g., identity based encryption schemes with con-
tinual master key leakage resilience [26]. Recently, a contemporaneous work [23]
also shows that one can construct CCA-secure CML-PKE schemes from a vari-
ant of lossy trapdoor function. We remark that due to lack of suitable underlying
building blocks, the latter two approaches are only applicable to a weaker CML
setting where no leakage is allowed during key update.

2 Preliminaries

In this section, we review some useful notations and notions.

Notations. Let S be a finite set, we use ||S|| and U(S) to denote the size of

S and the uniform distribution over S respectively. Also, we write x & S to
indicate that x is sampled uniformly from S. For a bit string s € {0,1}*, we

Updatable Hash Proof System and Its Applications 271

use ||s|| to denote the length of s. We use [n] to denote the set {1,2,...,n}
for any positive integer n. We write negl(-) to denote a negligible function. Let
X ={X,}nen and Y = {Y,, }nen be two ensembles of random variables. We use

X~ Y to denote that X and) are statistically indistinguishable and use X ~ y
to denote that X and) are computationally indistinguishable.

Linear Algebra. Let g be a prime, we introduce some notations of linear algebra
over Z,. We use bold uppercase letters (X) to denote matrices and lowercase
letters with arrow (&) to denote vectors. All vectors used in this paper are column
vectors. Let 0,..., Uy, be m vectors in Zy, then we denote by span(v, ..., viy,)
the linear space spanned by these vectors. Assuming V is a subspace of Z; with
dimension d < n, we denote by V* the orthogonal space of V. We use de(Zng)
to denote the set of n x k-matrices with rank d.

Entropy and Extractors. The min-entropy of a discrete random variable X,
which measures the worst case predictability of X, is defined as Hy(X) = —
log(max, Pr[X = =z]). It is often useful to work with the average case of min-
entropy that was first defined in [13] as Hoo (X | V) = —log(E, .y [max, Pr[X =
2 | Y = y]]). To obtain nearly perfect randomness from sources with high (average
case) min-entropy, one can use the (average case) randomness extractor.

Definition 1 ([13]). A function Ext : X x {0,1}' — Y is an (average case)
(k, €)-strong extractor if for all pairs of random variables (X, I) such that X
is distributed over X and Hoo(X | I) > k (Hoo(X | I) > k), it holds that
A((Ext(X, R), R, I), (Y, R, I)) < € where R is uniform over {0,1}" and Y is
uniform over Y.

Such (average case) randomness extractors can be constructed directly from
any universal hash family [7] as long as k > log(||V||) + 21og (1/€), and the later
primitive can be further constructed directly from natural algebraic operations
(e.g. linear combination in Z, for a prime q).

3 Updatable Hash Proof System

In this section, we define the notion of UHPS, which is a variant of HPS. Since we
intend to use UHPS to construct PKE schemes in the CML setting, publicly key
updating ability is demanded and we need properties to support this in UHPS.
But as stated in Sect. 1, HPS with publicly key updating ability will suffer from
the GUC attack, which breaks the intractability of underlying SMP. Thus we
need a substitute of SMP immune to this attack. This is formalized as the subset
indistinguishability in UHPS. However, to apply the subset indistinguishability,
all secret keys have to be updated in some pattern, which may bring new prob-
lems as the adversary may learn this pattern via requesting continual leakage.
Therefore, we define some key indistinguishabilities in UHPS here to solve these
potential problems. Although several additional properties are defined in UHPS,
we observe that they have already been fulfilled by existing instantiations of
HPS to some degree and will not take too much extra overhead.

272 R. Yang et al.

Similar to a normal HPS, a UHPS is based on a collection of hash functions
H ={Hsx : C — K}skesk. Also there exists an efficiently computable projection
@ from SK to PK, and a specific set V C C such that for any ski, ske € SK,
@(sk1) = @(sk2) if and only if Vo € V, Hg, (2) = Ha,(2). Further, for every
x € V, there exists a witness w € W proving this. Besides, for any « ¢ V,

Hoo (Hsr(2)|0(sk)) is usually required to be large enough when sk & sk, and
this is formalized as the universality in UHPS.

Here, we provide the publicly key updating ability via algebraic operations
and require that UHPS is key homomorphic, i.e. S and K are finite groups
with an efficiently computable operation “+” and Vski,ske € SK,Vz € C, we
have Hspy+sks () = Hsky () + Hsky (z). Now, we can update a secret key sk
by adding it with a specific secret key sk* s.t. Vo € V, Hgpx(xz) = 0. Since
Vo € V, Hskrskr () = Hsr(x) +Hspr () = Hs(x), we have p(sk+sk*) = p(sk),
which indicates that the new key and the old key are mapped to the same
public key.

For secret keys will be updated continually, fresh updating key is required
each time. So we require span(sk™), which is a specific set such that Vsk* €
span(sk*), Hop«(x) = 0 — Hgpw(x) = 0, to be efficiently samplable given an
initial updating key sk*. To generate the initial updating key, we also demand
that VL C C, ker(L) = {sk | Vo € L, Hq(z) = 0} is efficiently samplable given
a trapdoor T € T for L. Besides, due to the requirement for security proofs of
PKE schemes, we require that given trapdoors 71,7, € T for subsets Ly, Lo C C
respectively, it is efficient to generate a trapdoor T3 € 7 for Ly U L.

We stress that although we have provided mechanisms to update secret
keys in UHPS, we will not fix an updating policy, and one can choose various
approaches to performing key update in different scenarios.

Now we present the formal definition.

Definition 2. Let A be a polynomial of the security parameter n, and indicates
the bits of challenge information that can be obtained by the distinguisher for
“partial key indistinguishability”. A \-UHPS §) consists of five algorithms:

— Instance Generation. $.Param(1™): The instance generation algorithm
takes as input the security parameter 1", and outputs an instance H =
(C,V,H, K, SK,PK, T, W,) of UHPS with a trapdoor T* € T for V. Here,
all sets in H are finite non-empty sets.

— Subset Sampling. 9.V Samp(H): The subset sampling algorithm outputs

o &V with a witness w € W forxeV.
— Complement Sampling. $.ISamp(H): The complement sampling algo-

rithm outputs & C\V with a trapdoor T € T for {x}. We remark that
we can tolerant a negligible statistical error here, namely, we only require that
the sampled elements are statistically indistinguishable from U(C\V).

— Public Evaluation. $).Pub(H,pk,z,w): Given pk € PK and x € V with its
witness w € W, the public evaluation algorithm outputs k € K.

- Private Evaluation. $.Priv(H,sk,z): Given sk € SK and x € C, the
private evaluation algorithm outputs k = Hs(x).

Updatable Hash Proof System and Its Applications 273

Moreover, we require that $ has four basic properties, indicating its correctness
and hardness requirements:

1. Correctness. For any instance H, any (sk,pk) s.t. pk = p(sk), and any
x € V with its witness w, we have 9. Pub(H , pk,x,w) = $.Priv(H, sk, x).

2. Subset Indistinguishability. As a substitute of SMP, this indicates the
indistinguishability between elements in V and not in V, namely, for arbi-

trary positive integer [, let (H,T*) « $.Param(1™), x & V, ski,...,sk &
ker(V), o’ & C\V, and ski,...,sk] & ker(V U {z'}), then we have
(H,x,sky,...,sk) ~ (H,x',sky,...,sk)).

3. Full Key Indistinguishability. For any PPT adversary A = (A;, As), it is
hard to distinguish whether two secret keys are “linearly dependent”, i.e. for
some function § negligible in n, we have

Pr[(H,T") « $.Param(1"); T — A, (H,T*):b & {0,1};
1
sk, skq & ker(L); sko & span(sk) : Aa(sk, sky) = b] — 3=]
where L is a subset of C for which T is a trapdoor.
4. Partial Key Indistinguishability. When only partial information is
revealed, it is hard to determine whether an updating key is legal. More
precisely, for arbitrary function f with range {0,1}*, let (H,T*) «

$H.Param(1™), x & C\V, ski, sk & ker(V U {z}), skj & ker(V), then we

have (H, sky, f(H, ski, ska),x) % (H, sk, f(H, skq, skb),z). Note that the
function f must be independent of x.

In order to indicate how secret keys mapped to the same public key behave
in evaluating hash functions on elements not in V, we define the “universality”
of UHPS similarly to that of normal HPS with only minimal variance due to the
need of keeping some algebra properties of UHPS.

Definition 3 (Universal UHPS). Let T be a function on n. Then a UHPS is
T-universal if for each instance H, for any pk € PK and any x € C\V, we
have Hoo(Hsk (z) | ¢(SK) = pk) > 7 where SK is a random variable with
distribution U(SK).

Definition 4 (Universaly UHPS). Let T be a function on n. Then a UHPS is
T-universaly if for each instance H, we can augment it with an efficiently com-
putable functions n from C x K to Y, and for any pk € PK, any xz,x* € C\V s.t.
x#x*, anyy €Y, we have Hyo(n(z, Hsix (x)) | p(SK) = pk,n(z*, Hsx (z*)) =
y) > 7, where SK is a random variable with distribution U(SK).

Interestingly, universaly, UHPS can be constructed directly from universal
ones by applying the approach in [8] and we give more details about the con-
struction in the full version.

274 R. Yang et al.

4 Building CML-PKE from UHPS

In this section, we demonstrate the usefulness of UHPS: By substituting a HPS
component in the PKE schemes with a UHPS components, some well-established
paradigms remain effective in building CML-PKE schemes. As a by-product,
the new schemes from UHPS can inherit many interesting features from the
corresponding HPS-based schemes. For example, all CCA-secure PKE schemes
constructed in this paper can be transformed into tag-KEM/DEM [1], therefore,
can be extended to threshold PKE schemes in the CML setting; besides, the
scheme from UHPS plus AE can be formalized in the “CCCA KEM + AE”
framework. In general, UHPS is applicable to almost all known HPS-based PKE
schemes.

Key update is a must for CML-PKE schemes. This is because otherwise the
adversary can learn the entire secret state by repeatedly requesting more and
more leakage, and no security can be guaranteed then. An adversary considered
in this case is further allowed to learn any bounded leakage information (namely,
up to A\ps bits) in each time period. In some cases, we will consider update phases
separately, so we also give another bound Ay on the size of leakage during key
updating. We remark that no information can be leaked after the challenge phase,
since otherwise the adversary can embed the challenge ciphertext into the leakage
query and obtain information about the message. We give the formal definition
of PKE schemes in the CML setting as well as its security definition with various
security level (namely, the CPA-security and the adaptive CCA-security!) in the
full version.

Two scenarios are mainly considered in the CML setting, namely, the one not
allowing leakage during key update (i.e. Ay = 0) and the one allowing leakage
during key update (i.e. Ay = Apr > 0). The primary difference between con-
structions of PKE schemes in these two cases is that constructions in the latter
case have a more involved key update algorithm. Here, we focus on constructions
in the former case and only consider constructions in the latter case in Sect. 4.3.
Due to the limit of space, all security proofs and some constructions are omitted
and will be given in the full version.

4.1 A CPA-Secure Scheme

We start with a CPA-secure CML-PKE scheme from UHPS, which will help
us understand how UHPS functions in constructing CML-PKE schemes. The
resulting PKE scheme [I;, which is a variant of the HPS-based CPA-secure
PKE scheme [8], consists of four algorithms:

— Parameters. Denote n as the security parameter. Let $ be a 7-universal
A-UHPS and (H, T*) < $.Param(1™) be an instance of §). Let Fuxt : K x
{0,1}¢ — {0,1}* be an average case (T, §)-strong extractor where § is negligible

! We only consider adaptive CCA secuirty in this paper, so we will just write CCA
instead of adaptive CCA for short.

Updatable Hash Proof System and Its Applications 275

innand 7 —¢ > 2log(1/4). Sample sk* & ker(V) with T*. The public
parameter of IT; is Params = (H, sk*, Ext).

— Key Generation. The key generation algorithm of II; samples sk & sk
and evaluates pk = ¢(sk). Then it sets PK = pk and SK = sk + sk* where
sk & span(sk*).

— Encryption. Given a public key PK = pk, to encrypt a message M € {0, 1}*,

the encryption algorithm samples rand & {0,1}? and runs .V Samp(H) to

sample C' &V with a witness w. Then it evaluates K = 9.Pub(H,pk,C,w),
and ¥ = FEzt(K, rand)® M, Finally, it outputs CT = (C, ¥, rand) as cipher-
text.

— Decryption. Given a secret key SK = sk, to decrypt a ciphertext CT" =
(C, ¥, rand), the decryption algorithm computes K’ = $.Priv(H, sk, C)
and outputs M’ =¥ @ Ext(K', rand).

— Key Update. Given a secret key SK = sk, the update algorithm samples

sk & span(sk*) and outputs a new key SK' = sk + sk*.

Correctness. Let SK; = sk(® be the secret key obtained by applying the
update algorithm ¢ times to the initial secret key generated by KeyGen and
PK = pk be the public key. It is obvious that the correctness holds if for any
honestly generated ciphertext CT = (C, ¥, rand), and for arbitrary natural
number 4, we have $.Priv(H, sk®, C) = $.Pub(H,pk,C,w) where w is the
witness for C' € V. This follows directly from the correctness of UHPS because
(kM) = @(sk + sk*') = pk, where sk* € span(sk*).

Security. Security of II; is guaranteed by Theorem 5 stated as follows.

Theorem 5. II; is secure against chosen-plaintext attacks in the CML setting
with period leakage amount Apy = X and Ay = 0.

Proof Sketch. Similarly to security proofs of PKE schemes constructed from a
normal HPS, we prove Theorem 5 by first altering the way in which the challenge
ciphertext is generated, i.e., a challenge ciphertext CT* = (C*, ¥*, rand*) s.t.
C* ¢ V is generated instead. This is indistinguishable from an honestly gen-
erated ciphertext due to the subset indistinguishability of UHPS. However, we
cannot subsequently apply the universal property of UHPS to complete the proof
directly. This is because all secret keys throughout lifetime of the scheme will still
decrypt CT* correctly, and the adversary who can obtain leakage about these
secret keys continually may learn enough knowledge to break the scheme. There-
fore, we should argue that such leakage information will not provide the adver-
sary with practical assistance. It is sufficient to establish the indistinguishability
between the real secret keys (i.e. secret keys generated and updated honestly)
and the ideal secret keys (i.e. secret keys chosen uniformly over keys mapped
to the public key). We do this in two steps. First we apply the full key indis-
tinguishability of UHPS to argue that real secret keys and “semi-ideal” secret
keys are indistinguishable. Here we use “semi-ideal” to denote secret keys gen-
erated honestly and updated with fresh updating keys chosen uniformly from

276 R. Yang et al.

ker(V U {C*}). However, semi-ideal secret keys can still decrypt CT™* correctly.
Fortunately, indistinguishability between semi-ideal secret keys and ideal secret
keys can be derived from partial key indistinguishability of UHPS since the
adversary can only obtain bounded leakage in each time period.

4.2 CCA-Secure Schemes

Then we move on to CCA-secure CML-PKE schemes, which is the main con-
tribution of UHPS. Generally, the bottom line to construct CCA-secure PKE
schemes is to prevent the adversary from querying unintended ciphertexts whose
decryption will damage the security of the scheme. This is usually performed by
applying a suitable authentication.

Three main paradigms are proposed to construct CCA-secure PKE schemes
from HPS. In [8], the construction applies a universal, HPS to provide the
authentication and applies a universal HPS to mask the message. Another app-
roach is to employ a single universaly, HPS together with an AE scheme to
provide both the authentication and the privacy [24]. Besides, in [32], a new
paradigm avoiding the usage of universaly HPS is given and it applies a univer-
sal HPS to mask the message and a one time lossy filter (OT-LF) to provide
the authentication. We observe that UHPS is applicable to all these three par-
adigms. More precisely, by substituting HPS with corresponding UHPS, we can
obtain CCA-secure PKE scheme in the CML setting.

We remark that our universal, UHPS is far less efficient compared to our
universal UHPS and it has a much larger secret key, thus the scheme from
universal UHPS plus OT-LF can achieve both the best efficiency and the best
leakage rate (which will be defined in Sect.5.2) among all three schemes. So
we only present its construction here, and give the other two constructions in
Appendix A.

Roughly speaking, an OT-LF is a family of functions indexed by a public key
Fyy, as well as a tag t. Each function will be injective unless the tag comes from
some specific set. Moreover, it is hard to generate or even recognize such non-
injective tags without a trapdoor Fiq associated with F,. We refer the reader
to [32] for more details about OT-LF. The presented PKE scheme [Ty consists
of four algorithms:

— Parameters. Denote n as the security parameter. Let $ be a 7-universal
A-UHPS and (H, T*) <« $.Param(1™) be an instance of §). Let LF =
(LF.Gen, LF.Eval, LF.LTag, LF.DITag) be a (K, {1F)-OT-LF with the tag
space C x {0,1}! x {0,1}? x 7.. Let Exzt : K x {0,1}¢ — {0,1}* be an
average case (7 — {pp,0)-strong extractor where § is negligible in n and
T—Lrp—1t > 2log(1/6). Sample sk* & ker(V) with T*. The public parameter
of Il is Params = (H, sk*, Ext, LF).

— Key Generation. The key generation algorithm of Il samples s & SK,
evaluates pk = (sk), and runs LF.Gen(1™) to obtain Fj. Then it sets PK =

(pk, F,y,) and SK = sk + sk* where sk* <& span(sk*).

Updatable Hash Proof System and Its Applications 277

— Encryption. Given a public key PK = (pk, F,i), to encrypt a message M €
{0,1}*, the encryption algorithm samples rand & {0,1}4, . & 7., and runs

$H.VSamp(H) to sample C &V with a witness w. Then it evaluates K =
$.Pub(H,pk,C,w), ¥ = Ext(K, rand) ® M, and ¥ = LFp,, ;(K) where
t = (tq,te) and t, = (C, ¥, rand). Finally, it outputs CT = (C, ¥, rand, 7, t.)
as ciphertext.

— Decryption. Given a secret key SK = sk, to decrypt a ciphertext CT =
(C,¥,rand,T,t.), the decryption algorithm computes K’ = §.Priv(H, sk, C)
and checks whether ¥ = LFp, (K') where t = ((C,¥,rand),t.). If T =
LFg,, +(K'), the decryption algorithm outputs M’ = ¥ @ Ext(K',rand). Oth-
erwise, it rejects with L.

— Key Update. Given a secret key SK = sk the update algorithm samples
sk & span(sk*) and outputs a new key SK' = sk + sk*'.

Correctness of 15 follows directly from correctness of 117 and security of I1s
is guaranteed by Theorem 6 stated as follows.

Theorem 6. II, is secure against a posteriori chosen-ciphertext attacks in the
CML setting with period leakage amount A\py = min(A\, 7 — (¢ + {pp + w(logn)))
and A\y = 0.

Proof Sketch. Proof of Theorem 6 is similar to that of Theorem 5, however, the
simulator has to deal with decryption oracle queries here. Fortunately, all decryp-
tion oracle queries can be answered by the simulator directly until the “partial
key indistinguishability” of UHPS is employed in the proof. As this is a sta-
tistical indistinguishability, the simulator can answer decryption oracle queries
unless the decryption of the submitted ciphertext is not determined by the pub-
lic key. This occurs only when a ciphertext CT = (C, ¥, rand, T, t.) with C ¢ V
is queried. But such queries cannot pass the verification in the decryption algo-
rithm with a non-negligible probability. To see this, recall that Ho (Hs,(C)) is
large when C ¢ V since the underlying UHPS is universal and leakage in each
time period is bounded, where sk is the current secret key. Also, it is hard for the
adversary to sample a non-injective function of OT-LF. Therefore, the adversary
can generate the correct 7" with only a negligible probability. We remark that for
privacy, lossy function of OT-LF need to be used when generating the challenge
ciphertext and that is why we should use an OT-LF rather than a family of
injective one-way functions.

4.3 PKE Schemes with Leakage During Key Update

We stress that, our claim that UHPS is effective in constructing CML-PKE
schemes is in fact valid in the setting where leakage during key update is allow-
able. Compared to PKE schemes in Sects.4.1 and 4.2, which are only proved
secure in the CML setting without leakage during key update, schemes secure in
this section have nothing more than a better key updating policy. This is based

278 R. Yang et al.

on the ideas of [11,25]. More precisely, the secret key of the PKE scheme con-
sists of multiple secret keys of UHPS, and can be updated by computing linear
combinations of secret keys of UHPS consist in it.

As more involved algebra operations are introduced here, three additional
properties of UHPS are required. First, we require that for each instance H
and any secret key sk € SK, we have span(sk) = {r o sk | r € Z} where
r o sk is denoted as the key obtained by adding sk r times. Assume the order

of K is g, then for any secret key sk, we can sample sk’ & span(sk) by just

sampling r & Zq and computing sk’ = r o sk. Next, we require that ¢ is
prime. The last requirement is that ker()) is m-decomposable, namely, ker())
can be represented by m uniform and independent keys in ker()). More pre-

cisely, for any | > m, let sk; & ker(V) for i € [l], then with all but negligible

probability, we have “sampling sk’ & ker(V)” is equivalent to “first sampling

I2M

ski & span(ski), ..., sk] & span(sk;) then computing sk’ = ski + ... + sk},
where the probability is taken over the choices of sk;. Although look unusual,
these requirements is satisfied by the construction in Sect.5.1. We remark that
we will use the augmented notion of UHPS with these additional requirements
throughout Sect. 4.3.

Now, we are ready to give a formal description of our constructions. Due to
the limit of space, we only give a construction with CPA-security here and give
CCA-secure ones in the full version. The presented scheme II3 consists of four
algorithms:

— Parameters. Denote n as the security parameter. Let §) be a 7-universal A-
UHPS and (H, T*) « $.Param(1™) be an instance of §). Assume the order
of K is q and ker(V) is m-decomposable. Let Ext : K x {0,1}¢ — {0,1}* be
an average case (7,0)-strong extractor where J is negligible in n and 7 — ¢ >
2log (1/9). Sample sk* & ker(V) with T*. Let [, a be positive integers. The
public parameter of IT5 is Params = (H, sk*, Ext,q,m,l,a)

— Key Generation. The key generation algorithm of I3 samples sk & sk
and evaluates pk = ¢(sk). Then it sets PK = pk and SK = [ski,.. .,skl]T

where sk; = sk + r; o sk* and 7; & Zg for i € [l].
— Encryption. Given a public key PK = pk, to encrypt a message M € {0,1}*,

the encryption algorithm samples rand & {0,1}? and runs 9.V Samp(H) to

sample C & V) with a witness w. Then it evaluates K — H.Pub(H, pk,C,w),
and ¥ = Ezt(K, rand)® M, Finally, it outputs CT = (C, ¥, rand) as cipher-
text.

— Decryption. Given a secret key SK = [skl, cee skl]T, to decrypt a cipher-
text CT = (C,¥,rand), the decryption algorithm computes K'=§).Priv
(H, sky,C) and outputs M’ =¥ @ Ext(K', rand).

— Key Update. Given a secret key SK = [skl, ey sk‘l} T the update algorithm

samples A’ & Rka(ZfIXl), computes A by setting A; ; = A,i,j/<22:1 Al k),

Updatable Hash Proof System and Its Applications 279

which implies A - [1,...,1]T = [1,...,1]7, and outputs a new key SK' =
Ao SK.

Correctness. Let SK; = {Sk%i)""’Skl@)]T be the secret key obtained by

applying the update algorithm ¢ times to the initial secret key generated by
KeyGen and PK = pk be the public key. As shown in the proof of the cor-
rectness of Ily, to prove the correctness of II3, it is sufficient to prove that for
arbitrary natural number 4, we have cp(skgi)) = pk. We first write the initial
secret key SKy as SKy = [skl,...,skl]T = [rl osk* +sk,...,r 0sk* —&—%T =
(71, ,rl]T osk*+[1,..., 1]T o sk, where r1,...,r; € Z,. Assume that for any
positive integer j, the jth update matrix is A;, then we have

SKiZAi~Ai_1...A105K0
:AzAzflAl [7’1,...71"1]TOS]€*+A1'-Aifl...Al- [1,...,1]1-0%
= [T’l,...,rﬂToskz*—l— [1,...,1]To§
Thus, we have skgi) =1} o sk* + sk for some 7} € Z, which can lead to the fact
that o(sk{”) = pk as we need.

Security. Security of I3 is guaranteed by Theorem 7 stated as follows.

Theorem 7. Il5 is secure against chosen-plaintext attacks in the CML setting
with period leakage amount Ay = min(A\/2, (a — 2m — 3)logq — w(logn)) and
)\U:)\M ifagl—m.

5 Instantiations of Updatable Hash Proof System

In this section, we give instantiations of UHPS from widely-accepted number the-
oretic assumptions, such as the SXDH assumption and the d-linear assumption.
Interestingly, one can in fact implement our instantiations simply via modifying
existing implementations of DDH-based HPS in [8], since the former are just
extensions of the latter. Here, we extend the original 2-dimensional vector space
to a high dimensional one; moreover, as specific secret keys will be made public
when constructing PKE schemes, secret keys will be group elements rather than
integers; to keep the function of secret keys, we will also base on a bilinear group
instead of a normal group. Due to the limit of space, we omit the instantiation
from the d-linear assumption here and give it in the full version. Besides instan-
tiations of UHPS, in Sect. 5.2, we also consider parameters of our PKE schemes
when built from concrete instantiations of UHPS.

Let G1, Gy and G be three groups of prime order ¢, and g, h be generators of
G1 and Go respectively. Let e be a bilinear map e : Gy x Gy — G7. Our instantia-
tion works on the bilinear group (G1,G2,Gr,q,9,h,e). Let R = {r; ;}icim],jem
be a matrix in Z7"*", we denote by gf the matrix {g" }icm) jen) € GI"
Similar definitions hoﬁld in Gy and ﬂGT as well. Let a, b be two vectors in
Zy, we define e(g% hb) = e(g,h)® b, This can be computed efficiently since

e(g,)70 = e(g, h)=im @it = TT1L, e(g, h)™® =TI, e(g, h%).

280 R. Yang et al.

5.1 Instantiation from the SXDH Assumption

The instantiation = is described as follows. Each instance H of = works with a
bilinear group (G1, Go, Gr,q, g, h,e). More precisely, let x be a positive integer,
then C, K and SK in H are G}, Gr and Gf respectively. Also, for any x =
g% in C and sk = A% in SK, we have Hq(z) = e(g”,h%). Now, let 7 be a
vector in Zy. Then we define V to be g*P?(?) and for any & = ¢"7 in V, the
witness for x € V is r € Z,;. We also define PK to be Gy and ¢ to be the
function ¢(sk) = Hsk(gP). Note that for any sk; = h% and sky = h®? in
SK, we have op(sk1) = o(sks) if and only if 51 — 55 € span(p)* if and only
if Vo € V, Hgr, (x) = Hsp,(x). It is easy to check that I and SK are groups
as we need. Also, for any sk; = h%1 and ske = h®2 in SK, we can evaluate
sks = sky + sko by setting sks = h81+s2, and Vz € C, assuming =z = gﬂ we
have HSks() = e(gﬂ h51+82) = e(gﬁ hSI) ’ (gﬁ hSQ) = HSkl()+ HSkz() For
any secret key sk = h¥, we define span(sk) = {h"% | r € Z,}. It is easy to see
that this is in fact the set {sk’ | Vo € C,Hs(z) =0 — Hg(z) = 0}. For

any L C C, let £ be the vector space spanned by exponents of all elements in L.

Obviously, for any sk = h¥ in SK, sk € ker(L) if and only if € £+, so we can

set the trapdoor for L to be a basis of £. Also, given trapdoors T1,T> € 7 (i.e.

Ty and Ty are basis of vector spaces) for subsets L1, Ly C C respectively, we can

evaluate the trapdoor T3 for L; U Ly by just evaluating a basis for span(T) UTy).

In addition, algorithms of = works as follows:

— Instance Generation. To generate an instance of =, the instance generation
algorithm first samples a bilinear group (G1, Gz, Gr, ¢, g, h,e) from distribu-
tions in an ensemble indexed by n where the SXDH assumption holds. Then it
samples p’ & Zq and sets public parameters as described above. The trapdoor
T* for V is exactly the vector p.

— Subset Sampling. The subset sampling algorithm first samples u & ZLg,
then sets w = u and = = (g?)™“.

- Complement Sampllng The complement sampling algorithm first samples
ﬁ & Zy then sets x = g7 and T = 6 Note that x is statistically indistinguish-
able from a uniform element in C\V.

— Public Evaluation. Given a public key pk = e(g, h)® and an element x € V
with its witness w = u, the public evaluation algorithm sets k = (e(g, h)*)".

— Private Evaluation. Given a secret key sk = h° and an elemgnt z=g¢%in
C, the private evaluation algorithm computes k = Hgx(z) = e(g”, h°).

Theorem 8. Under the SXDH assumption, = is a log(q)-universal ((k —

4)log(q) — w(log(n)))-UHPS if k > 5.

Due to the limit of space, we give the proof to Theorem 8 in the full version.

5.2 Parameters

Now we discuss the security level and efficiency of our CML-PKE schemes from
the SXDH assumption, namely, in what extent our PKE schemes can resist CML
adversaries and how much they will cost when implemented in practice.

Updatable Hash Proof System and Its Applications 281

Generally, the degree of leakage resilience of a scheme can be measured by
the leakage rate, which indicates the ratio of the tolerated leakage amount to the
size of the secret state in each time period, i.e. the leakage rate p = Aps/||sk||.
Via simple computation, we can get the leakage rate of each scheme When instan-
tiated with the SXDH assumption, and they are 1—o(1), £ —o(1) and 35 —o(1)
for ITy, II> and II3 respectively. We observe that II; can achieve a better leak-
age rate compared to Ily. This is because to achieve CCA-security, we must
ensure that the adversary is not able to get an authentication, which prevent
the adversary from querying “bad ciphertexts”, via the leakage. So the allowed
leakage amount is smaller in this case. Besides, II3 have a much worse leakage
rate compared to II; and Il since it has a much larger secret key.

We would also like to give an efficiency comparison between constructions of
CCA-secure CML-PKE schemes based on UHPS and other known constructions.
For simplicity, we only compare the best efficiency that can be achieved for each
approach. Computation and communication overhead caused by operations such
as signature and normal hash function are ignored as they are very low. Besides,
our comparison is under a security level of 128, which means that breaking
these schemes is as hard as breaking a 128-bit block cipher. The comparison
is summarized in Table 1. Here, we use “NY” to denote the scheme constructed
under the Naor-Yung paradigm, and the building blocks include the PKE scheme
in [36], a normal Elgamal PKE scheme, and the Groth-Sahai proof system [16];
we use “CHK” to denote the scheme constructed by applying the CHK transform
[6] to the identity-based encryption scheme in [26]; we use “LTDFE” to denote
the CCA-secure PKE scheme presented in [23]; we use “ours” to denote Il
instantiated from the SXDH assumption. We remark that the construction from
CHK transform works in composite-order groups while other three constructions
work in prime-order groups, so basic operations will execute slower in this case.

Table 1. Efficiency Comparison.

PKE schemes | ||g|| ||lg¢|| | CT overhead |Enc Dec Upd
NY 256 | 3072 16||g]| + 2/|g¢|| | [0,24] [0,49] [5,0]
CHK 3072|6144 | 4|g|l + |lge|l | [6,0] [12,4] [12,0]
LTDF 256 3072 9|gl* + llgll | [Mllgll + 1,0 | Mllgll +1,4lg]] | [4,0]
Ours 256 | 3072 | 5|lgll + llg:ll |[11,0] [5,5] [5,0]

Here, ||g|| and ||g¢|| denote the size of group elements in Gi and Gr respec-
tively and “CT overhead” denotes the difference between ciphertext and plaintext
length.Moreover, “Enc”, “Dec” and “Upd” represent computation overhead during
encryption, decryption and key update respectively and an element “[a,b]” means
there will be a exponentiations and b pairings executed in corresponding algorithm.

2 This can only achieve a weaker non-adaptive CCA security, but we just compare
with it for simplicity.

282 R. Yang et al.

Acknowledgments. We appreciate the anonymous reviewers for their valuable sug-
gestions. This work was supported by the National Natural Science Foundation of China
(Grant No. 61173139, 61472416 and 61272478), and Strategic Priority Research Pro-
gram of the Chinese Academy of Sciences (Grant No. XDA06010701, XDA06010703).

A Omitted Constructions in Sect. 4.2

In this section, we present the omitted constructions of CCA-secure CML-PKE
schemes discussed in Sect. 4.2, namely, the one from twin UHPS, and the one
constructed from universals UHPS plus AE. We only give the formal description
of each schemes here and give their security analysis in the full version.

CCA-secure CML PKE from twin UHPS. The presented PKE scheme 11,4
consists of four algorithms:

— Parameters. Denote n as the security parameter. Let $ be a 7-universal
A-UHPS and (H, T*) <« $).Param(1™) be an instance of $). Let Ext : IC x
{0,1}¢ — {0,1}* be an average case (T, §)-strong extractor where § is negligible
in n and 7 — ¢ > 2log (1/9). Consider a variant of $ which is identical to $
except that its hash functions will further take strings in {0,1}% and {0, 1}* as
input but these extra inputs will be ignored when evaluating hash functions.
Let $' be a 7-universal, UHPS constructed from this variant via the approach
in [8]. Let H' be an instance of . Recall that H' can be generated with H
directly and T* is exactly the trapdoor for HT. Also for any L € C, combining
multiple secret keys of § in ker(L) will lead to a secret key sk’ of $' in
ker(L x {0,1}% x {0,1}*). Assume SK' = SK*. Then sample sk* & ker(V)
with 7% where sk* is a secret key of . Set sk*T = (sk*,..., sk*). The public
parameter of Iy is Params = (H, sk*, H sk, Ext).

— Key Generation. The key generation algorithm of IT, samples sk & SK,
sk & SKT and evaluates pk = o(sk), pkt = t(skf). Then it sets PK =
(pk, pkt) and SK = (sk, sk') where sk = sk 4 sk*, skt = skt 4 sk*", sk* &
span(sk*), and sk*1 & span(sk*1).

— Encryption. Given a public key PK = (pk:,pk’T)7 to encrypt a message
M € {0,1}", the encryption algorithm samples rand & {0,1}% and runs

$H.VSamp(H) to sample C &V with a witness w. Then it evalu-
ates K = $.Pub(H,pk,C,w), ¥ = Ezt(K,rand) ® M, and KT =
n((C, rand, W),YJT.Pub(HT,ka,(C’, rand,¥),w)). Finally, it outputs CT =
(C, ¥, rand, K1) as ciphertext.

— Decryption. Given a secret key SK = (sk,sk'), to decrypt a cipher-
text T = (C, ¥, rand, K'), the decryption algorithm computes K =
n((C, rand, J/),f)T.Priv(HT, skT, (C,rand,¥))) and checks whether K/ =
K. If K" = K1, the decryption algorithm computes K’ = $.Priv(H, sk, C)
and outputs M’ =¥ @ Ext(K’, rand). Otherwise, it rejects with L.

Updatable Hash Proof System and Its Applications 283

— Key Update. Given a secret key SK = (sk,sk'), the update algorithm

samples sk*’ & span(sk*), sk*’ & span(sk*T), and outputs a new key SK’ =
(sk', sk!’") where sk’ = sk + sk*' and sk!’ = skt 4 sk*1.

Correctness of Iy can be proved similarly to that of IT; and security of I, is
guaranteed by Theorem 9 stated as follows.

Theorem 9. 11, is secure against a posteriori chosen-ciphertext attacks in the
CML setting with period leakage amount Apy = min(\, 7 —w(logn)) and \y = 0.

CCA-secure CML PKE from UHPS plus AE. The presented PKE scheme
IT5 consists of four algorithms:

— Parameters. Denote n as the security parameter. Let $ be a 7-universaly
A-UHPS and (H, T*) « $.Param(1™) be an instance of $. Assume the
range of 7 is V. We further require that 7 = log(||||) and this can be fulfilled
by our instantiated UHPS. Let A€ = (AE.Enc, AE.Dec) be an AE scheme.

Sample sk* & ker(V) with T*. The public parameter of II5 is Params =
(H, sk*,2A¢).

— Key Generation. The key generation algorithm of IT5 samples sk S sk
and evaluates pk = @(sk). Then it sets PK = pk and SK = sk + sk* where
sk & span(sk™*).

— Encryption. Given a public key PK = pk, to encrypt a message M, the
encryption algorithm first runs $.VSamp(H) to sample C &V with a
witness w. Then it evaluates K = n(C,$.Pub(H,pk,C,w)), and ¥ =
AE.Enc(K, M). Finally, it outputs CT = (C, ¥) as ciphertext.

— Decryption. Given a secret key SK = sk, to decrypt a ciphertext CT =
(C, @), the decryption algorithm computes K' = n(C,$.Priv(H, sk, C)),
and outputs M’ = AE.Dec(K', 7).

— Key Update. Given a secret key SK = sk the update algorithm samples
sk & span(sk*) and outputs a new key SK' = sk + sk*'.

Correctness of IT; follows directly from correctness of 11y and security of IT5
is guaranteed by Theorem 10 stated as follows.

Theorem 10. 15 is secure against a posteriori chosen-ciphertext attacks in the
CML setting with period leakage amount Apy = min(A,log(1/e) — w(logn)) and
Ay =0 if A€ is e-secure.

References

1. Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: a new frame-
work for hybrid encryption and a new analysis of kurosawa-desmedt KEM. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128-146. Springer,
Heidelberg (2005)

284

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

R. Yang et al.

Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474-495. Springer, Heidelberg (2009)

Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513-525. Springer,
Heidelberg (1997)

. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole

in the bucket: public-key cryptography resilient to continual memory leakage. In:
FOCS, pp. 501-510. IEEE (2010)

Brumley, D., Boneh, D.: Remote timing attacks are practical. In: USENIX Security
Symposium, p. 1. USENIX Association (2003)

Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 207-222. Springer, Heidelberg (2004)

Carter, J.L., Wegman, M.N.: Universal classes of hash functions. In: STOC, pp.
106-112. ACM (1977)

Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, p. 45. Springer, Heidelberg (2002)

Dodis, Y., Haralambiev, K., Lopez-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: FOCS, pp. 511-520. IEEE (2010)

Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: STOC,
pp. 621-630. ACM (2009)

Dodis, Y., Lewko, A., Waters, B., Wichs, D.: Storing secrets on continually leaky
devices. In: FOCS, pp. 688-697. IEEE (2011)

Dodis, Y., Pietrzak, K.: Leakage-resilient pseudorandom functions and side-channel
attacks on feistel networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 21-40. Springer, Heidelberg (2010)

Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523-540. Springer, Heidelberg (2004)
Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS, pp. 293—
302. IEEE (2008)

Gennaro, R., Lindell, Y.: A framework for password-based authenticated key
exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656. Springer,
Heidelberg (2003)

Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415-432. Springer,
Heidelberg (2008)

Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold boot
attacks on encryption keys. In: USENIX Security Symposium, pp. 45-60. USENIX
Association (2008)

Hazay, C., Lépez-Alt, A., Wee, H., Wichs, D.: Leakage-resilient cryptography from
minimal assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 160-176. Springer, Heidelberg (2013)

Hemenway, B., Ostrovsky, R.: Extended-DDH and lossy trapdoor functions. In:
Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp.
627-643. Springer, Heidelberg (2012)

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Updatable Hash Proof System and Its Applications 285

Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553-571. Springer,
Heidelberg (2007)

Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, p. 388. Springer, Heidelberg (1999)

Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104-113. Springer, Heidelberg (1996)

Koppula, V., Pandey, O., Rouselakis, Y., Waters, B.: Deterministic public-key
encryption under continual leakage. Cryptology ePrint Archive, Report 2014/780
(2014). http://eprint.iacr.org/

Kurosawa, K., Desmedt, Y.G.: A new paradigm of hybrid encryption scheme.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426-442. Springer,
Heidelberg (2004)

Lewko, A., Lewko, M., Waters, B.: How to leak on key updates. In: STOC, pp.
725-734. ACM (2011)

Lewko, A., Rouselakis, Y., Waters, B.: Achieving leakage resilience through dual
system encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 70-88.
Springer, Heidelberg (2011)

Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278-296. Springer, Heidelberg (2004)

Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18-35. Springer, Heidelberg (2009)
Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: STOC, pp. 427-437. ACM (1990)

Ors, S.B., Gurkaynak, F., Oswald, E., Preneel, B.: Power-analysis attack on an asic
aes implementation. In: Information Technology: Coding and Computing, pp. 546—
552. IEEE (2004)

Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462-482. Springer, Heidelberg (2009)

Qin, B., Liu, S.: Leakage-resilient chosen-ciphertext secure public-key encryption
from hash proof system and one-time lossy filter. In: Sako, K., Sarkar, P. (eds.)
ASTACRYPT 2013, Part II. LNCS, vol. 8270, pp. 381-400. Springer, Heidelberg
(2013)

Qin, B., Liu, S.: Leakage-flexible CCA-secure public-key encryption: simple con-
struction and free of pairing. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383,
pp. 19-36. Springer, Heidelberg (2014)

Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): measures and
counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, p. 200. Springer, Heidelberg (2001)

Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS, pp. 543-553. IEEE (1999)

Wichs, D.: Cryptographic resilience to continual information leakage. Ph.D. thesis,
New York University (2011)

http://eprint.iacr.org/

	Updatable Hash Proof System and Its Applications
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	3 Updatable Hash Proof System
	4 Building CML-PKE from UHPS
	4.1 A CPA-Secure Scheme
	4.2 CCA-Secure Schemes
	4.3 PKE Schemes with Leakage During Key Update

	5 Instantiations of Updatable Hash Proof System
	5.1 Instantiation from the SXDH Assumption
	5.2 Parameters

	A Omitted Constructions in Sect.4.2
	References

