Waiting for CSP — Securing Legacy Web
Applications with JSAgents

Mario Heiderich, Marcus Niemietz®™) | and Jérg Schwenk

Horst Gortz Institute for IT-Security, Ruhr-University Bochum, Bochum, Germany
{mario.heiderich,marcus.niemietz, joerg.schwenk}@rub.de

Abstract. Markup Injection (MI) attacks, ranging from classical Cross-
Site Scripting (XSS) and DOMXSS to Scriptless Attacks, pose a major
threat for web applications, browser extensions, and mobile apps. To
mitigate MI attacks, we propose JSAgents, a novel and flexible approach
to defeat MI attacks using DOM meta-programming. Specifically, we
enforce a security policy on the DOM of the browser at a place in the
markup processing chain “just before” the rendering of the markup. This
approach has many advantages: Obfuscation has already been removed
from the markup when it enters the DOM, mXSS attack vectors are
visible, and, last but not least, the (client-side) protection can be indi-
vidually tailored to fit the needs of web applications.

JSAgents policies look similar to CSP policies, and indeed large parts
of CSP can be implemented with JSAgents. However, there are three
main differences: (1) Contrary to CSP, the source code of legacy web
applications needs not be modified; instead, the policy is adapted to the
application. (2) Whereas CSP can only apply one policy to a complete
HTML document, JSAgents is able, through a novel cascading enforce-
ment, to apply different policies to each element in the DOM; this prop-
erty is essential in dealing with JavaScript event handlers and URIs. (3)
JSAgents enables novel features like coarse-grained access control: e.g. we
may block read/write access to HTML form elements for all scripts, but
human users can still insert data (which may be interesting for password
and PIN fields).

1 Introduction

Cross-Site Scripting. XSS attacks are one of the major threats to web appli-
cation security. The goal of an attacker is to execute a (malicious) JavaScript
function of his own choice in the context of the target web page. If he succeeds,
the Same Origin Policy (SOP) of the browser will grant them full acess to all
elements and variables of the target web page (including stored passwords, ses-
sion cookies, and security tokens), and the script may trigger other potentially
harmful actions (drive-by-downloads and alike).

In the literature, three main classes of XSS are described: (1) Reflected XSS,
where the attack vector is sent to the target web server in a HTTP request
(e.g., a search request), this input is integrated by the server into a dynamically

© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 23-42, 2015.
DOI: 10.1007/978-3-319-24174-6_2

24 M. Heiderich et al.

generated web page, and the attack is executed when this page is rendered.
(2) Stored XSS, where the attack vector is stored in a subpage of the target
web application (e.g., discussion forum), and the attack is executed each time a
victim visits this subpage. (3) DOMXSS [1], where the attack vector is inserted
by a (legal) client-side script into the web page. Mutation-based XSS (mXSS)
is a recent new variant [2], which has the potential to circumvent several known
mitigation techniques, including advanced XSS filters.

HTML5 and Scriptless Attacks. Since the advent of HTML5 (HTML,
HTML 5.1 Nightly and HTML.next), new attack techniques are continuously
being discovered. Different browser strategies for processing XML, XHTML!
and HTML content which may all be mixed together can be exploited through
SVG images or MathML markup [3]. Even deactivating JavaScript completely,
a method repeatedly proposed by security authorities, does not protect against
HTML5-based attacks as certain publications [4,5] have shown that Script-
less Attacks are possible. Scriptless Attacks additionally complicate the task
of server- and client-side filters: It is nearly impossible to decide which HTML5
tags may be dangerous before an attack vector has been published.

Markup Injection Attacks. We will use the term Markup Injection (MI) to
denote the superclass of attacks formed by Scriptless Attacks and the different
kinds of XSS vectors. For a MI attack on a web application to be successful, all
three conditions listed below must be fulfilled.

1. Injectability. It must be possible to inject potentially malicious markup into
a web page.

2. Ezecutability. It must be possible for the browser to parse and execute the
markup.

3. Eztractability. It must be possible for the attacker to exfiltrate sensitive infor-
mation (e.g., session cookies) from the browser and to transfer them to a
device where he can retrieve it.

Classical Defense Approaches. As a first line of defense, server- and client-
side filters, which have different restrictions, are deployed. Server-side filters must
be able to detect JavaScript snippets even if they are obfuscated, a task that
becomes harder with every new markup functionality introduced with HTMLS5.
Client-side filters are embedded into the browser (MSIE/ WebKit/ Blink) or can
be installed as a plugin (NoScript). In both cases, they have to apply the same
policy to all visited web applications, which in many cases proves too weak or
too strong.

Novel Defense Approaches. Whereas classical MI countermeasures concen-
trate on condition (1.) injectability (by detecting and removing markup injec-
tions with client- or server-side filters), modern approaches take into account
the other two conditions. For example, Content Security Policy (CSP) [6,7] and

! For example, the different XHTML treatment of self-closing tags.

Waiting for CSP — Securing Legacy Web Applications with JSAgents 25

HTTPonly cookies [8] mitigate extractablility (CSP by allowing HTTP con-
nections only to a small number of white-listed URLs, HTTPonly cookies by
making themselves inaccessible from the DOM), and sandboxed Iframes [9] try
to prevent executability by restricting script execution.

Content Security Policy. CSP 1.0 is fully supported by all current webbrowser
versions. Its main feature is domain whitelisting for <script>, <object>,
<style>, , <media> and <iframe> elements, and for fonts and websock-
ets, to mitigate condition 3 (Extractability) for a successful MI attack. For some
of these elements (e.g. scripts) this strict whitelisting policy can be relaxed by
allowing inline sources through unsafe-inline.

CSP 1.1 has a much broader scope: The whitelisting can be applied to a
broader set of DOM elements (e.g. through form-action), the use of inline
scripts can be protected through script nonces, only whitelisted plugins will be
activated, client-side XSS filters can be activated, and many more. Thus CSP
can be seen as a specification where most research on web application security
has been condensed; subsequently CSP is often cited as a comparison for new
approaches. However, this comparison is a little weak since CSP 1.1 has to be
fully implemented yet. We will nevertheless compare our approach to CSP 1.1
below.

JSAgents Library. Our JSAgents library specifically targets conditions (2.)
and (3.) through DOM meta-programming. It is a client-side solution which, in
contrast to the client-side XSS filters, can be tailored to a given web application.
In addition, it does not have to care about code obfuscation since this has already
been removed by the browser. We can restrict execution of any markup, not only
JavaScript, thus mitigating XSS and in part Scriptless Attacks (Executability);
we can restrict HTTP leakage for elements in the browser’s DOM, and we can
read-protect certain DOM elements (Extractability). Furthermore, we can write-
protect DOM elements; a feature that mitigates complex cross-domain attacks
(e.g., through document.location). We can enforce different policies for each
part of the DOM tree through the use and enforcement of a cascading policy
language (comparable to CSS).

JSAgents vs. CSP 1.1. With CSP 1.1, stronger security guarantees can be
enforced, because CSP is implemented directly in each browser core, it runs with
‘browser root privileges’. Through the DOM metaprogramming approach, we
can never achieve more than ‘page level privileges’. A different CSP 1.1 policy
can be applied to each Iframe, but within each Iframe only a one-level, non-
cascading security policy is applied. Through Cascading Style Sheets (CSS), web
programmers are experienced in cascading style declarations. JSAgents makes
use of the CSS syntax to define cascading security policies, where one, two or
more iterations over the document’s DOM can be made to enforce security rules.
This is especially useful for legacy web applications running in a single document
context (see below). JSAgents additionally allows to block read and write access

26 M. Heiderich et al.

to DOM elements and their attributes, a feature that is not part of CSP 1.1 but
is currently in discussion for input values on the WHATWG mailing list?.

Architectural Overview JSAgents. JSAgents uses a static JavaScript library
(jsa.js) and a customizable configuration file to achieve its application-specific
goals: jsa. js must be inserted into the web page as the first JavaScript function
to be executed. Insertion points may include the web application itself, a HTTP
proxy, or a browser extension (webapp, proxy, and extension mode). As soon as
jsa. js is executed, it uses a FrozenDOM approach to stop other active markup
from being executed and reads the (cascaded) configuration file. The directives
contained in this file are used to set different flags on the elements of the frozen
DOM. After all flags are set, the frozen DOM is parsed and all restrictions
expressed by the flags are enforced: Elements may be deleted, read- or write-
protected, or their actions may be limited to white-listed URLs.

Legacy Web Applications. CSP imposes restrictions on JavaScript event han-
dlers and JavaScript URIs (cf. Section A.2) that makes adoption of CSP nearly
impossible for legacy web applications: A complete redesign of each application
is necessary to be able to use CSP without the’unsafe-inline’ option for scripts.
With JSAgents, we can use the fact that policy files can be cascaded to sketch
a generic solution for this problem: First we disallow all inline scripts, event
handlers, and URIs. Then we can allow those JavaScript embeddings which are
essential for a correct functionality of a web page, based on a whitelist extracted
from the legacy application. Thus we can achieve the same effect as CSP 1.1
script nonces for inline scripts, but in contrast to CSP 1.1 we can extend this app-
roach to JavaScript URIs and event handlers. We were able to deploy JSAgents
successfully for two large classes of legacy applications: (a) Web-mailers and (b)
Identity Providers in Single-Sign-On Systems. In both cases, JSAgents could suc-
cessfully be deployed to enhance security, without affecting functionality. We are
confident that, due to the flexibility of our approach, JSAgents can be deployed
with nearly all legacy applications. In some cases (1 out of 13 IdPs) we have
detected incompatibilities with other large JavaScript libraries, which indicates
that we may not be able to achieve 100 % coverage.

Project Evaluation. We evaluated three different aspects of JSAgents: Secu-
rity, usability, and performance. In Sect. 4, we describe the results of a public
challenge to break JSAgents. The goal of our usability evaluation was to show
that JSAgents policy files can indeed be adapted to the two classes of web
applications mentioned above. During this usability evaluation, we also investi-
gated compatibility with other popular JavaScript libraries: JSAgents is com-
patible with jQuery, Prototype, and Underscore, but has compatibility issues
with RequireJS. Finally, we measured the performance of our solution based on
randomly generated HTML code of different sizes. The results can be found in
Sect. 5.

2 Write-only Form Elements, http://mikewest.github.io/credentialmanagement /write
only/.

http://mikewest.github.io/credentialmanagement/writeonly/
http://mikewest.github.io/credentialmanagement/writeonly/

Waiting for CSP — Securing Legacy Web Applications with JSAgents 27

Contributions. This paper makes the following contributions:

— Novelty. We give a novel, comprehensive, DOM-meta-programming-based
approach to defend against MI attacks. We demonstrate the large potential of
novel DOM meta-programming features like Object.defineProperty and DOM
Mutation Observers.

— Impact. We are able to mitigate most attack classes, including mXSS and
HTTP request leaks. We describe a flexible and powerful policy language such
that JSAgents can be adapted to numerous (legacy) applications scenarios.

— Usability. In contrast to CSP, JSAgents can easily be deployed with legacy
web applications, since no changes to the source code are necessary.

— Public Availability. We present a free open-source project from the JSAgents
core that can be used as a universal client-side HTML filter (“DOMPurify”
project on GitHub).

2 Related Work

From the large body of research on XSS and beyond, we provide a brief overview
of the relevant literature, detailing both scholarly work and research-driven
sources pertaining to this subject area.

XSS Mitigation. Server-side mitigation techniques range from a simple char-
acter encoding or replacement, to a full rewrite of the HTML code. The advent
of DOM XSS was one of the main reasons behind the introduction of XSS filters
on the client-side. The TE8 XSS Filter was the first fully integrated solution [10],
timely followed by the Chrome XSS Auditor in 2009 [11]. For Firefox, client-
side XSS filtering is implemented through the NoScript extension. Unsurpris-
ingly, XSS attacks’ mitigation strategies have been covered in numerous pub-
lications [12-17]. Noncespaces [18] use randomized XML namespace prefixes
as an XSS mitigation technique, which would make detection of the injected
content reliable. DSI [19] tries to achieve the same goal based on a process of
clasifying HTML content into trusted and untrusted variety on the server side,
subsequently changing browser parsing behavior so that the said distinction is
taken into account. Blueprint [20] generates a model of the user input on the
server-side and transfers it, together with the user-contributed content, to the
browser, making its behavior modified by an injection of a JavaScript library for
processing the model along with the input.

Mutation-Based (mXSS) and Scriptless Attacks. Weinberger et al. [21]
give an example of the innerHTML being used to execute a DOM-based XSS.
Comparable XSS attacks based on changes in the HTML markup have been
initially described for client-side XSS filters. Vela Nava et al. [22] and Bates
et al. [11] have shown that the TE8 XSS Filter could have once been used to
“weaponize” harmless strings and turn them into valid XSS attack vectors. This
relied on applying a mutation through the regular expressions used by the XSS
Filter. Zalewski covers concatenation problems based on NUL strings in inner-
HTML assignments in the Browser Security Handbook [23]. Additionally, he later

28 M. Heiderich et al.

dedicates a section to backtick mutation in his volume “The Tangled Web” [24].
Other mutation-based attacks have been reported by Barth et al. [25] and
Heiderich [26]. In the latter, mutation may occur after client-side filtering
(WebKit corrected a self-closing script tag before rendering, thus activating the
XSS vector) or during XSS filtering (XSS Auditor strips the code attribute
value from an applet tag, thus activating a second malicious code source).
Hooimeijer et al. describe the dangers associated with the sanitization of con-
tent [27] and claim that they were able to produce a string that would result in a
valid XSS vector after sanitization, for every single one of a large number of XSS
vectors. The vulnerabilities described by Kolbitsch et al. may form the basis for
an extremely targeted attack by web malware [28]. Those authors state that the
attack vectors may be prepared for taking into account the mutation behavior
of different browser engines. HTML5 introduces a script-like functionality in its
different tags, making the so called “Scriptless Attacks” (a term coined in [4]) a
real threat. For example, SVG images and their active elements can be used to
steal passwords even if JavaScript is deactivated [5].

3 JSAgents Architecture
3.1 Building Blocks

FrozenDOM. The current version of JSAgents uses a technique called Frozen-
DOM [26,29-31]. Upon execution of the JSAgents Core Library, the DOM is
stopped from being rendered as a plain-text element (<plaintext>) and is being
written right after the <script> element that contains JSAgents code. Note that
using plain-text is employed in the sake of supporting legacy browsers; for mod-
ern browsers, JSAgents can make use of the Shadow DOM and the <template>
element. The interrupted rendering flow allows the library to simultaneously
quickly read the document markup and prevent race conditions introduced by
the injected scripts or markup. In case the application uses a JavaScript templat-
ing engine/MVC framework, JSAgents can directly work on the HTML string
that built before rendering and does not need to rely on <plaintext>. Adopting
JSAgents reduces the performance when used on complex websites (see Sect. 5)
but it must be underscored that the user experience on modern browsers (like
Firefox 24+, MSIE9+, and Chrome 30+) is hardly affected at all.

DOM Mutation Observers. By using DOM Mutation Observers (DMO),
JSAgents is able to monitor write-access to selected DOM nodes and trigger
an execution of a callback function in cases where such access has taken place.
This allows us to protect form elements from being overwritten, effectively mak-
ing a commonly used technique of Web Injects against online banking portals
void. JSAgents can detect scripted form element manipulation because actual
keyboard input into form elements does not cause mutation events to be emit-
ted, while, conversely, the scripted access does so. DMO are implemented in all
modern browsers and can be emulated reliably in older versions without DMO
support with the use of onpropertychange.

Waiting for CSP — Securing Legacy Web Applications with JSAgents 29

Object.defineProperty(). Almost arbitrary DOM objects can be set into an
immutable state by using the ESH functionality of Object.defineProperty (),
and thereby be protected from external, potentially malicious, manipulations.
By doing so, we can assure a certain level of integrity for the JSAgents library,
essentially allowing to introduce tamper safety and detectability of manipulation
attempts. Further, it is possible to manage attempts of potentially malicious
scripts coveting to gain a write-access to form elements.

Document.querySelectorAll(). By using the querySelectorAll API
JSAgents is able to select all elements that match very specific criteria from
a given document. Note that the API is similar to the CSS selector API and
thereby helps existing front-end developers to precisely select these elements
they want to impose the security restrictions and capability control onto. Cre-
ating JSAgents policy files is comparable to composing style sheets, as selectors
are identical and property-value assignments use common terminology.

3.2 JSAgents Core Library

The Core Library includes the methods that ensure safe deployment and inner
workings of JSAgents. The library must be executed as early as possible in the
execution flow of the protected website in order to win the basic race condition.
When the core library is executed, a sequence of events enumerated and discussed
below is started (cf. Fig. 1).3

(1) Freezing and Sealing the Original DOM. Markup rendering is stopped
by a plain-text element being written into the actual document. Consequently
all HTML markup after this element is considered to be simple text and is

Freeze DOM
|
e form
flag=read:false

read/write
protectiol

Copy to virtual
DOM

Copy back
to real DOM

Flag Remove Elements

|
form iframe form
flag=read:false || flag=del flag=read:false

Fig. 1. Processing of a JSAgents protected HTML document.

3 For review purposes, we have copied a password protected ZIP file of the
JSAgents code to the following Dropbox URL: https://www.dropbox.com/s/
17kjd8hrmjbzy6c/jsa.zip (password: conference).

https://www.dropbox.com/s/17kjd8hrmjbzy6c/jsa.zip
https://www.dropbox.com/s/17kjd8hrmjbzy6c/jsa.zip

30 M. Heiderich et al.

not parsed into DOM objects. This is necessary to win possible attacker-caused
race-conditions (for instance based on DOM-clobbering, see below).

this.freeze = function () {
// seal existing document before freezing
JSA.seal (document) ;
// freeze and blind the whole document
document .write(’<plaintext id="’ + JSA._random
+’" style="display:none">’);
document.close () ;

Listing 1.1. The code to freeze a document by stopping its execution flow

By calling this.seal(), it is ensured that the attacker cannot tamper with
the existing DOM properties that JS-Agents requires to work (for example DOM
traversal, element and attribute manipulation). This technique effectively defeats
“DOM clobbering”*, a way of overwriting the native DOM methods by using
HTML injections® in any tested browser.

this.seal = function (doc) {
for(var item in doc){
if (typeof doc[item] ===’function’){
Object.defineProperty (
doc, item, {value: doc[item], configurable:false}
)53}

return doc;}

Listing 1.2. Iterating over all methods to seal them reliably from external access

(2) Content Copying to a “fresh” DOM. We now extract the DOM contents
and map them into the safe DOM.

// create JSA document to check on

JSA.doc = JSA.create();

//Copy document and assign random ID values
JSA.doc.documentElement . innerHTML =’<html><head>’ +
document .getElementById (JSA. _random) .textContent;

Listing 1.3. Creating a virtual DOM and assigning random IDs to each element

(3) Enforcing the given Policies. This is done by iterating over the virtual
DOM tree we have created. The enforcer first requests all elements matching
the JSAgents policy selectors and, upon receiving one or more elements, passes
them to the protected _enforce() method. This method is being provided by the
JSAgents enforcer module and compares the policy defined capabilities with the
actual object’s capabilities, eventually taking action in case of any mismatches

4 DOM Clobbering describes malicious declarative DOM manipulation: http://www.
thespanner.co.uk/2013/05/16 /dom-clobbering// .

5 For example, the HTML would overwrite the
method document .getElementById() with an image-object.

http://www.thespanner.co.uk/2013/05/16/dom-clobbering/
http://www.thespanner.co.uk/2013/05/16/dom-clobbering/

Waiting for CSP — Securing Legacy Web Applications with JSAgents 31

being identified. The final goal is the removal of either the attributes or the
specific attribute values, the prefixing of resource URIs or even the removal of
entire elements and there-attached child nodes. However, to make sure the policy
directives and their selectors cascade properly (selector precision over selector
order), the enforcer initially only flags elements for deletion or manipulation.
Only after the final selector’s rules have been enforced, the elements are actually
removed or modified (see below). By design, the enforcer is being defined and
kept as “a module” because adding it to the core library would cause unnecessary
overhead — we acknowledge that possible forks and adaptations of JSAgents
might prefer building their own enforcers and keep the core library untouched.
Using it as a module allows an easy extension and customization; one imaginable
scenario would be that a more exotic or legacy browser needs to be supported.

(4) Remove Elements Flagged as del, Domain White-Listing. After
all necessary enforcement iterations are completed, the final state of element
and attribute flagging is being used as an indicator of whether the element or
attribute should be removed or kept in place. Elements are removed if they are
flagged as del, or if their source domain does not match any of the whitelisted
domains.

this.filter = function () {

// remove elements with kill-switch

var elements = JSA.doc.querySelectorAll (’*’);
for(var index in elements){

if (elements [index].tagName) {

if (elements [index].getAttribute (JSA. _random) ===’del’) {
elements [index].parentNode.removeChild(elements [index
D

333}
Listing 1.4. Deleting marked elements

Note that during the flagging and enforcement no other script in the pro-
tected website can be executed®. Furthermore, beware that the deletion flags
are applied with a token value to make sure that an attacker cannot inject those
attributes and force legitimate elements to be deleted. The token changes every
time JSAgents runs.

(5) Rendering the Document. Read- or write-access restrictions must be
enforced in the “real” DOM. This signifies that the flagged virtual DOM with for-
bidden elements already removed, is now copied back — as shown in the simplified
example: document .body.innerHTML = JSA.doc.body.innerHTML (script con-
tent is, if permitted, reactivated separately). During subsequent parsing, restric-
tions on the parsed elements imposed by the attached flags will be enforced.

5 Only if an external window opened from the same origin injects code, a malicious
script may run concurrently to JSAgents. This may happen if only parts of the
website are protected with the JSAgents library. Partial library usage is considered
a dangerous implementation misbehavior and leads to race conditions that allow
policy bypasses.

32 M. Heiderich et al.

The core library uses DOM Mutation Observers to get on-time notification on
changes happening to the write-protected DOM elements. Only by monitoring
access and changes to the existing elements with working observers, a continuous
level of write-protection can be guaranteed. All DOM objects flagged with access
restrictions are protected — all their property getters are set to return null.

var access = document.querySelectorAll(’*[’+_random+’access
17
for(var elm in access) {
if (access[elm]. tagName) {
for(var i in access[elm]){
// null all properties of the protected element
Object.defineProperty(access[elm], i, {value:
nulll});
3}

Listing 1.5. Read access protection for DOM elements

It is possible to allow access for certain trusted DOM methods if required.
By default, however, all property access is prohibited. Once write-access to a
DOM element with write-access:false is communicated to the JSAgents core
function, a wide range of actions becomes available. Depending on the JSAgents
policy, the library can block write-access (through restoring the element to its
original state), return empty strings upon read-access, and even report attempts
of read or write to protected elements.

// freeze flagged elements
var freeze = document.querySelectorAll (’*[’+_random+’freeze
1)
for(var elm in freeze) A{
if (freeze[elm].tagName) {
var observer = new MutationObserver (function(mutations) {
mutations.forEach(function(mutation) {
alert (’form tamper detected’);

B
s
var config = {
attributes: true,
childList: true,
characterData: true
};
observer.observe (freeze[elm], config);
Object.defineProperty (freeze[elm],’value’, {set: function
OA
return alert(’form value tamper detected’);
)53}

Listing 1.6. Code to handle write-access control to elements

From this point forward none of the elements and attributes that are violating
the JSAgents policies are present. Please note that changing element properties

Waiting for CSP — Securing Legacy Web Applications with JSAgents 33

through the keyboard is not registered as a mutation event by the DOM Muta-
tion Observers, as opposed to the write-access by a script. Thus, for example,
for write-protected form elements, user input from keyboard is not considered to
be write-access, thus laying the foundation for basic access-control functionality.

3.3 JSAgents Modules

The JSAgents library further ships a set of modules that provide functionality
not yet available in modern browsers.

(1) A JavaScript implementation of the MD5 hashing algorithm md5. js is being
loaded via module; MD5 is being used despite security concerns for perfor-
mance reasons. The library allows to upgrade to SHA1 and later releases are
planned to be shipped with a JavaScript implementation of SHA256. It is
important to note that the use cases for hashing algorithms in the JSAgents
library do not depend on collision resistance.

(2) An enforcer.js script is used to enforce various JSAgents policies and
iterate over the target elements. It also imposes the restrictions or permis-
sions the developer wishes to enforce and grant (as discussed in Sect. 3.2).
Furthermore, an extended enforcer allows creation of additional rules — com-
plementary to the already available rules and policies. The enforcer is again
not considered a part of the core library because it might be subject to
customizations, for instance for a website that uses a specific JavaScript
framework.

3.4 JSAgents Policy Files

JSAgents policy files are composed in a JSON format and make use of a very
simple and intuitive dictionary of instructions. This allows even novice devel-
opers to understand the concept and impact of the policy files rather quickly.
Note that the dictionary of available configuration directives might be subject
to change as it is now in its prototypic state. The code shown in Listing 1.7
and Listing 1.8 demonstrates the flexibility of JSAgents policy composition. The
syntax is designed to closely resemble CSS selectors.

Listing 1.7 makes use of the asterisk-selector which causes the JSAgents
engine to indeed choose all available DOM elements on the loaded document
and impose the following (very restrictive) directives. As dictated by this policy,
no Script, Iframe, Object, Embed, Applet, or SVG elements will be present in
the modified DOM. JavaScript and data URIs will be removed from the DOM
and so will be the event handlers. All remaining elements will be frozen, for
example they cannot be modified by the DOM meta-programming from now on.
Read-access to all remaining elements is blocked.

The code shown in Listing 1.8 is a bit more permissive, and demonstrates
the “cascading” features of the policy language. Here we can observe an overall
of four selectors: the asterisk selector, a selector for head-elements, a selector
for form elements and their expected descendants, and, finally, a selector for the

34 M. Heiderich et al.

{ "= o0 A { "x 0 A
"iframe-elements": false, "javascript -uris": false,
"object -elements": false, "data-uris": false,
"embed-elements" : false, "event ~handlers": false,
"applet -elements": false, "script-elements": false,
"svg-elements": false, "style-elements": false
"script-elements": false, },
"javascript-uris": false, "head" : {"script-elements":
"data-uris": false, "same-domain"
"event -handlers": false, }
"write-access": false, "form, input, textarea" : {
"read-access": false "read-access": false,

} "write-access": false

Listing 1.7. A high-security policy: All s)
forms of scripting and read /write-access to ' #W1 dg.et A
DOM elements prohibited script-elements": true

} o}

Listing 1.8. A low-security policy:
Scripting is permitted for scripts living in
the page header and a widget container -
read-/write-access to form content is
prohibited

element(s) applied with the “widget” ID. Depending on the selector, different
policies are assigned and will thus be enforced by the JSAgents prototype. None
of the elements are permitted to contain script-elements — aside from the head-
element which can comprise of script-elements as long as their source points to a
same domain resource, and also the element with the “widget” ID. The selected
form elements are being protected from arbitrary access. No script can have
access to their value properties, all attempts to set their values via JavaScript
will be blocked, a read-access will return an empty value. This is interesting for
websites which wish to impose better protection for user-generated content in
the form elements (account data, passwords, credit card numbers).

The grammar used for the selectors is identical to the CSS grammar and
will be parsed by the DOM document. querySelectorAll() method for ele-
ment selection. No deviations from the standard are implemented. Developers
can freely use any selector string that is available and supported by the browser.
Please note that although the selectors in Listing 1.8 are ordered according to
generality, the ordering of selectors is not relevant for the correct functionality
as JSAgents will always give preference to stronger selectors. Later versions of
the library will also support detailed style directives to avoid HTTP leakage via
backgrounds, list bullets, fonts, cursors, and alike. The set of the currently avail-
able directives and policies for the JSAgents prototype is described as follows:

(1) iframe-elements, object-elements, embed-elements. These policy
directives can be set to true, false or a domain reg-ex. The elements
can be permitted, prohibited or only be permitted if the src attribute

Waiting for CSP — Securing Legacy Web Applications with JSAgents 35

matches the given domain string. If a directive is set to false, all such
elements will be removed from the DOM by the JSAgents core library.”

(2) applet-elements. This policy directive can be set to true, false or a
domain reg-ex. Java applets can be permitted, prohibited, or only be per-
mitted if the code-base or archive attribute matches the given domain
string.

(3) svg-elements. This policy directive can be set to true or false. If set to
false, no SVG elements can be used inside the selected nodes. This does
not exclude the option of using SVG embedded via image elements or CSS.
Recent browser versions have proven to be able to safely deal with SVG
content — once the SVG data is being loaded as an image rather than a
document.

(4) script-elements. This policy directive can be set to true, false or a
domain reg-ex. Script elements can be permitted, prohibited, or only be
permitted if the src attribute matches the given domain string. Note that
the “same-domain” setting does not utilize a regular expression but rather
an exact string matching between origin and domain part of the URL that
the script element is supposed to load from.

(5) style-elements. This policy directive can be set to true, false or a
domain reg-ex. Style (and link) elements can be permitted, prohibited,
or only be permitted if the href attribute/ import URIs match the given
domain string.

(6) img-elements. This policy directive can be used to permit or prohibit
images loaded from external URLs. Especially for web-mail software,
embedded images and comparable resources allow for advertisers and other
parties to track and monitor reception of and reaction to a HTML mail.
With prohibition of external sources, an additional layer of privacy will
be added. To cope with the needs of modern web-mailers, an additional
function ask() was added. By using this function, JSAgents leaves the
decision of loading or blocking external images to the user, instrumenting
a permission-dialog.

(7) javascript-uris. This policy directive can be set to true or false. Once
set to false, none of the elements hosted by the selected element can be
applied with JavaScript URIs. This holds for all attributes supporting URL
strings. Note that an element using JavaScript URIs will be completely
removed in case that the policy setting prohibits its existence. Several
existing tools attempt to rewrite the URL to become a harmless place-
holder value, JSAgents nevertheless removes the entire element for security
reasons.

(8) data-uris. This policy directive can be set to true or false. Once set to
true, none of the elements hosted by the selected element can be applied
with data URIs. This holds for all attributes supporting URL strings.

" It should be noted that Java applets can be loaded via object element as well. Future
versions of the JSAgents prototype will warn the developer in case a policy prohibits
the usage of applets yet allows the arbitrary object usage.

36 M. Heiderich et al.

(9) event-handlers. This policy directive can be set to true or false. If set
to false, all event handlers will be removed from the selected elements.

(10) write-access. This policy allows setting an element to an immutable state
by freezing it and prohibiting access to any of its child properties. This is
particularly interesting for form elements as means of keeping external
scripts and other active content from varying values, actions and other
potentially sensitive data stores. This policy directive can be set to true
or false. Upcoming versions will also allow to define an array of allowed
setters, making sure that trusted JavaScript methods are permitted whilst
untrusted methods are blocked from modifying form values.

(11) read-access. This policy allows to manage read-access to an element. If
set to false, all read-access to its sensitive DOM values will be blocked.
Similar to the freeze-policy, this directive is particularly interesting for the
protection of sensitive data in form elements. The policy directive can be
set to true or false. Upcoming versions will also allow to define an array
of allowed setters, ensuring that trusted JavaScript methods are permitted
while untrusted methods are blocked from modifying form values.

4 Security Evaluation

Since no formal methods are available to test security against MI attacks (XSS
filter bypasses are nearly always found through manual inspection), several semi-
formal empirical evaluations have been performed.

Generic Security Features. Unlike other filter tools, JSAgents cannot be
bypassed by an attacker utilizing obfuscation, unusual character sets, compressed
markup (WBXML) or even mXSS attacks. JSAgents takes the information about
the markup that is to be analyzed directly from the browser’s DOM. That means
that even if a certain version of a given user agent has exploitable flaws that lead
to broken markup being parsed into something active and executable, JSAgents
can still maintain its protective functionality through analyzing the markup after
the browser has processed it.

State-of-the-art Test Vectors. Two major sources of state-of-the-art XSS
attack vectors, “RSnake XSS Cheat Sheet” (now maintained by OWASP, 107
unique vectors®) and “HTML5 Security Cheatsheet” (139 unique vectors?) were
used for an initial hardening of JSAgents.

Public Challenge. To test the security features of the JSAgents core, a demo
was made available online and announced publicly (“DOMPurify” project hosted
on GitHub). Composing an arbitrary HTML string and sanitizing it from XSS
and DOM clobbering attacks using our library is made possible through this
demo. We received feedback from 31 researchers, with an approximate total
of 13,000 attempts to break JSAgents. Only 15 bypasses based on unexpected

8 https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet.
9 http://html5sec.org.

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
http://html5sec.org

Waiting for CSP — Securing Legacy Web Applications with JSAgents 37

browser and DOM behaviors as well as DOM clobbering were identified after that
test phase and could be mitigated successfully (e.g., DOM-clobbering attacks
using a form-node, two input elements applied with the name “attributes” and
similar).

Empirical Security Model Based on Browser Capability Tests. The
currently employed version of the JSAgents core has been hardened against XSS,
DOM Clobbering, Tag Splitting, XML injections, and mXSS attacks by one the
authors who is considered as an expert in this field. Further, capability tests for
HTML, MathML and SVG elements to harden JSAgents have identified several
formerly unknown methods of script execution. This research has resullted in
several new attack vectors like using SVG and the <animate> element to execute
JavaScript from seemingly harmless attributes such as from, to and wvalues, for
example leading to XSS Auditor bypasses in WebKit and Blink. Consequently,
the JSAgents core was updated and now successfully mitigates these attack
vectors.

Preventing Information Leakage. A test-suite was created to enumerate all
currently documented ways for browsers to leak information via HT'TP requests
to third-party servers (images, CSS, videos, HTML manifests, proprietary MSIE
features, CSS image()). JSAgents was then optimized to spot and later remove
those data leaks. This was motivated by a need to allow a web-mailer to present
HTML mails without risking data leakage and unwanted tracking. At the same
time, it made it possible for the web proxies to provide better anonymity (which
they lack based on the fact that proxied HTML is filtered on the server and
thereby prone to attacks using obfuscation and exotic HTML features).

5 Performance Evaluation

To measure the execution time of JSAgents we created random HTML files with
valid elements and attributes, and arbitrary values. Table1 shows the perfor-
mance for files with 10, 100, 608, 1,000, and 10,000 elements. For each test case,
Table 1 contains the average time in milliseconds after 25 tests with the web
API interface console.time (reconstructed for IE10). Next to console.time,
we worked with the JavaScript profiler of Firebug for Firefox and the native
profiler of Chrome to analyze the execution time of our JSAgents functions.
Therefore, there are five additional measurements for each test case in FF and
GC. We used the policies of Listings 1.7 and 1.8 with the following modifica-
tions: (1) For policy 1.7, we used script-elements: "same-domain". (2) For
policy 1.8, we omitted the #widget definition, since this value was not present in
our sample files. Each tested browser was installed on the same virtual machine
with an Intel Xeon E5-2470 processor (2,3 GHz), four assigned cores and 4 GB
RAM. By reading out the measurements via the profiler, we noticed that the
attribute enforcer, source extraction, and innerHTML modification need more
execution time than any other parts of JSAgents. By comparing our results,
the attribute enforcer is the slowest component if there are at least 37 HTML
elements on the website.

38 M. Heiderich et al.

Table 1. Performance evaluation in milliseconds.

Elements \ IE10 \ IE11 \ FF16 \ FF29 \ GC36
Policy of Listing 1.8 with

script-elements: "same-domain"

100 21 23 45 53 25
608 83| 114| 182| 129 T
1,000 132 181 297 208| 121

10,000 1,131 1,437 3,064 | 1,643 | 1,073
Policy of Listing 1.7 without the #widget definition

100 21 23 49 52 25
608 81| 107| 179| 126 74
1,000 124 173 279 202| 117

10,000 1,043 1,403 | 2,923 | 1,524 | 1,031

To make our measurements applicable to real life applications, we computed
the average number of HTML elements of the following main pages: Google
(145), YouTube (1,302), Facebook (383), Twitter (402), and Yahoo (810). This
average number is 608, and for this number (cf. Table 1) JSAgents needs 117 ms
to be fully executed for the modified policy of Listing 1.8 with 11 directives
inside of one selector, and 114ms for the modified policy of Listing 1.7 with
eight directives inside of three selectors. The modified policy of Listing 1.7 is
a little faster than the policy of Listing 1.8; the enforcer is responsible for this
behavior because its execution time increases with a higher number of directives.

6 Future Work

JSAgents is a library and framework that can reliably enforce fine-grained poli-
cies on the DOM of a website or any other browser-based document. Deploying
a security tool on this specific layer has many benefits and enables several novel
use cases and docking points for future work and extensions.

Extensibility Through Modularity. Given that the developer can deploy
a module right in the time window between the document content being fully
loaded and the document being rendered, a large set of additional security and
usability enhancements can be implemented. For example accessibility factors
of the document can be enriched by JSAgents, since the subtitles can be auto-
matically displayed for videos, markup can be annotated from linked content
sources, visibility aspects can be adjusted by applying additional contrast or
manipulating font sizes.

Enhancements of the Policy Language. Future revisions will cover policy
directives capable of managing permissions to use arbitrary non-HTTP protocol
handlers, a flag to enforce “SSL only” resources, and a possibility to pipeline

Waiting for CSP — Securing Legacy Web Applications with JSAgents 39

any existing binary resource through a configurable proxy-URL. An implemen-
tation of fine-grained DOM property access management will be offered. This is
advantageous for developers who wish to use JSAgents with applications that
already make use of a plenitude of JavaScript code and DOM interaction.

A Comparable Approaches

A.1 From XSS Filters to CSP 1.0

Client-side XSS Filters. JSAgents is not a classical XSS filter. This is due
to the fact that each and every XSS filter must be able to make distinctions
between user-supplied and application-supplied markup. Conversely, JSAgents
only sees the combination of both (aside from common DOMXSS sources and
sinks like location.href). However, by employing an approach inherently differ-
ent from that of any common XSS filters, JSAgents can reliably mitigate several
kinds of XSS and markup injection — including DOMXSS and, in part, Scriptless
Attacks. If a web application uses third-party input to build some parts of the
DOM tree, regardless of whether it is user-supplied, stored, or DOM-based (e.g.,
document .URL, document .href, document.referrer), it may specify a white-
list of the allowed HTML elements for that very part of the DOM tree. Any other
type of element will be deleted by JSAgents. Thus, if JavaScript execution and
other potentially malicious HTML5 elements are not allowed in certain parts
of the website, these attacks will be blocked. An example of this approach is
given in Sect. 5, where a common webmail application assumes that the Iframe
containing the body of the rendered email should not contain any active markup.

HTTPonly Cookies. By setting the JSAgents directive read-access: false
for properties such as document.cookie, we effectively turn any cookie into
an HTTPonly cookie, so that document.cookie can no longer be accessed by
scripts. Similar access control can be imposed on form elements to prevent mali-
cious script from stealing its contents or sniffing keystrokes.

Sandboxed Iframes. In their default configuration, sandboxed Iframes have a
virtual origin that is different from any other kind of origin. By default, they
neither allow script execution nor form submission and they are not permitted to
navigate the top level frame (although those restrictions can be lifted gradually).
Two of these properties can easily be modeled with JSAgents: We can remove all
script and form elements from a selected Iframe. Sandboxed Iframes, however,
feature additional properties to gradually release the default security constraints.
In its current state JSAgents is not yet able to emulate this functionality.

HTTP Leak Detection/Proxy Injection. Since JSAgents is targeting
extractability, it is capable of detecting HTML elements that attempt to load
external resources. Depending on the use case, leaking information via direct
HTTP requests might compromise privacy promises of a web application. This
especially holds for web-mailers and web proxies, where a HT'TP request sent to
an arbitrary URL or IP would leak user data and timing information, essentially

40 M. Heiderich et al.

enabling localization and tracking. JSAgents can be instructed to change any of
the existing URLs that point to external resources to be prefixed with a proxy
URL. This would mean that leakage of sensitive user data is avoided.

A.2 Content Security Policy

Content Security Policy 1.0. Large parts of CSP 1.0 can be implemented
and extended with the use of JSAgents. This is achieved by creating a policy
that prohibits any form of inline scripting, objects, embeds and applets, while
implementing a prefix for external resources (or simply blocking the use of exter-
nal resources that are coming from a non-whitelisted domain). Therefore, one
possible application scenario is to (partly) implement CSP in legacy browsers.
However, since JSAgents is not part of the browser core, it is less resistant to
higher-privilege attacks (e.g., web injections by local malware). JSAgents can be
used as a CSP replacement in browsers that do not support it and as a CSP
supplement in browsers with partial or full support.

header (’X-Content -Security-Policy: script-src’self’; style-

src ’self’; img-src’self’ images.mysite.com);

Listing 1.9. Example CSP policy.

The code instances in Listings 1.9 and 1.10 show how an example CSP policy
can be emulated using JSAgents, even if the browser itself does not support CSP.

{II*II . {

script-elements: "same-domain",

style-elements: "same-domain",

img-elements: "same-domain", "images.mysite.com"
1

Listing 1.10. CSP-emulating JSAgents policy.

CSP 1.1 Script Nonces. Introduced with CSP 1.1, script nonces are a way
to permit execution of only those (inline) script elements that have a nonce

Table 2. Comparison between CSP 1.0, 1.1 and JSAgents (Y: available, m: available
via module, n: not available).

Feature CSP 1.0 | CSP 1.1 | JSAgents

connect-src, font-src, frame-src, img-src, media-src, object-src, | Y Y Y
script-src, style-src

base-uri, frame-ancestors

default-src, form-action, plugin-types, referrer, sandbox

reflexted-xss, report-uri

Cascading Properties

DOM node read-access

A PIP™

DOM write read-access

sB|B|B|B|B|B|B
A R

ask() function

=]

Waiting for CSP — Securing Legacy Web Applications with JSAgents 41

attribute with a value identical to a nonce value transmitted in the HTTP header.
This makes inline script injection nearly impossible. In cooperation with the web
application, JSAgents, inspired by Noncespaces [18], can achieve the same goal:
Inline scripts are marked with a fresh nonce value by the web application and
the same nonce value is written into a copy of the configuration file. As a result
of the jsa.js execution with this unique policy, all inline scripts unmarked with
the nonce value from the configuration file will be deleted (Table2).

References

10.

11.

12.

13.

14.

15.

Klein, A.: DOM based cross site scripting or XSS of the third kind (2005). http://
www.webappsec.org/projects/articles/071105.shtml

Heiderich, M., Schwenk, J., Frosch, T., Magazinius, J., Yang, E.Z.: mxss attacks:
attacking well-secured web-applications by using innerhtml mutations. In: CCS
(2013)

Heiderich, M., Frosch, T., Jensen, M., Holz, T.: Crouching tiger - hidden pay-
load: security risks of scalable vector graphics. In: Proceedings of the 18th ACM
conference on Computer and Communications Security, pp. 239-250. ACM (2011)
Heiderich, M., Niemietz, M., Schuster, F., Holz, T., Schwenk, J.: Scriptless attacks-
stealing the pie without touching the sill. In: ACM Conference on Computer and
Communications Security (CCS) (2012)

Stone, P.: Pixel perfect timing attacks with html5. http://contextis.co.uk/files/
Browser_Timing_Attacks.pdf

Sterne, B., Barth, A.: Content security policy 1.0,” W3C, Candidate Recommen-
dation, November 2012. http://www.w3.org/TR/2012/CR-CSP-20121115/
Barth, A., Veditz, D., West, M.: Content security policy 1.1, w3c editor’s draft
12 November 2013. https://dvcs.w3.org/hg/content-security-policy /raw-file/tip/
csp-specification.dev.html

Barth, A.: HTTP State Management Mechanism, RFC 6265 (Proposed Standard),
Internet Engineering Task Force, April 2011. http://www.ietf.org/rfc/rfc6265.txt
Hickson, I.: Html living standard - last updated 21 february 2014. http://www.
whatwg.org/specs/web-apps/current-work /multipage/the-iframe-element.html
Ross, D.: IE8 XSS Filter design philosophy in-depth, April 2008. http://blogs.
msdn.com/b/dross/archive/2008/07/03/ie8-xss-filter-design-philosophy-in-depth.
aspx

Bates, D., Barth, A., Jackson, C.: Regular expressions considered harmful in client-
side XSS filters. In: Proceedings of the 19th International Conference on World
Wide Web, ser. WWW 2010, pp. 91-100. ACM, New York (2010). http://doi.acm.
org/10.1145/1772690.1772701

Zuchlinski, G.: The anatomy of cross site scripting. Hitchhiker’s World 8, November
2003

Bisht, P., Venkatakrishnan, V.N.: XSS-GUARD: precise dynamic prevention of
cross-site scripting attacks. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137,
pp. 23-43. Springer, Heidelberg (2008)

Johns, M.: Code injection vulnerabilities in web applications - exemplified at cross-
site scripting. Ph.D. dissertation, University of Passau, Passau, July 2009

Gebre, M., Lhee, K., Hong, M.: A robust defense against content-sniffing xss
attacks. In: 2010 6th International Conference on Digital Content, Multimedia
Technology and its Applications (IDC), pp. 315-320. IEEE (2010)

http://www.webappsec.org/projects/articles/071105.shtml
http://www.webappsec.org/projects/articles/071105.shtml
http://contextis.co.uk/files/Browser_Timing_Attacks.pdf
http://contextis.co.uk/files/Browser_Timing_Attacks.pdf
http://www.w3.org/TR/2012/CR-CSP-20121115/
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
http://www.ietf.org/rfc/rfc6265.txt
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html
http://blogs.msdn.com/b/dross/archive/2008/07/03/ie8-xss-filter-design-philosophy-in-depth.aspx
http://blogs.msdn.com/b/dross/archive/2008/07/03/ie8-xss-filter-design-philosophy-in-depth.aspx
http://blogs.msdn.com/b/dross/archive/2008/07/03/ie8-xss-filter-design-philosophy-in-depth.aspx
http://doi.acm.org/10.1145/1772690.1772701
http://doi.acm.org/10.1145/1772690.1772701

42

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

M. Heiderich et al.

Saxena, P., Molnar, D., Livshits, B.: SCRIPTGARD: automatic context-sensitive
sanitization for large-scale legacy web applications. In: Proceedings of the 18th
ACM conference on Computer and communications security, pp. 601-614. ACM
(2011)

Gourdin, B., Soman, C., Bojinov, H., Bursztein, E.: Toward secure embedded web
interfaces. In: Proceedings of the Usenix Security Symposium (2011)

Gundy, M.V., Chen, H.: Noncespaces: using randomization to defeat cross-site
scripting attacks. Comput. Secur. 31(4), 612-628 (2012)

Nadji, Y., Saxena, P., Song, D.: Document structure integrity: a robust basis for
cross-site scripting defense. In: NDSS. The Internet Society (2009)

Louw, M.T., Venkatakrishnan, V.N.: Blueprint: robust prevention of cross-site
scripting attacks for existing browsers. In: Proceedings of the 2009 30th IEEE
Symposium on Security and Privacy, ser. SP 2009, pp. 331-34. IEEE Computer
Society, Washington, DC (2009). http://dx.doi.org/10.1109/SP.2009.33
Weinberger, J., Saxena, P., Akhawe, D., Finifter, M., Shin, R., Song, D.: A sys-
tematic analysis of XSS sanitization in web application frameworks. In: Atluri, V.,
Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 150-171. Springer, Heidelberg
(2011)

Nava, E.V., Lindsay, D.: Abusing Internet Explorer 8’s XSS Filters. http://p42.
us/ie8xss/Abusing_TE8s_XSS_Filters.pdf

Zalewski, M.: Browser Security Handbook, July 2010. http://code.google.com/p/
browsersec/wiki/Main

Zalewski, M.: The Tangled Web: A Guide to Securing Modern Web Applications.
No Starch Press, San Francisco (2011)

Bug 29278: XSSAuditor bypasses from sla.ckers.org. https://bugs.webkit.org/
show_bug.cgi?id=29278

Heiderich, M.: Towards Elimination of XSS Attacks with a Trusted and Capability
Controlled DOM (2012). http://www-brs.ub.ruhr-uni-bochum.de /netahtml/HSS/
Diss/HeiderichMario/diss.pdf

Hooimeijer, P., Livshits, B., Molnar, D., Saxena, P., Veanes, M.: Fast and precise
sanitizer analysis with bek. In: Proceedings of the 20th USENIX Conference On
Security, ser. SEC 2011, p. 1. USENIX Association, Berkeley (2011). http://dl.
acm.org/citation.cfm?id=2028067.2028068

Kolbitsch, C., Livshits, B., Zorn, B., Seifert, C.: Rozzle: De-Cloaking internet mal-
ware. In: Proceedings IEEE Symposium on Security & Privacy (2012)

Nava, E.V.: ACS - active content signatures. PST_WEBZINE_0X04, no. 4, Decem-
ber 2006

Di Paola, S.: Preventing xss with data binding. http://www.wisec.it/sectou.php?
id=46¢5843ea4900

Heiderich, M., Frosch, T., Holz, T.: IceShield: detection and mitigation of malicious
websites with a frozen DOM. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID
2011. LNCS, vol. 6961, pp. 281-300. Springer, Heidelberg (2011)

http://dx.doi.org/10.1109/SP.2009.33
http://p42.us/ie8xss/Abusing_IE8s_XSS_Filters.pdf
http://p42.us/ie8xss/Abusing_IE8s_XSS_Filters.pdf
http://code.google.com/p/browsersec/wiki/Main
http://code.google.com/p/browsersec/wiki/Main
https://bugs.webkit.org/show_bug.cgi?id=29278
https://bugs.webkit.org/show_bug.cgi?id=29278
http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/HeiderichMario/diss.pdf
http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/HeiderichMario/diss.pdf
http://dl.acm.org/citation.cfm?id=2028067.2028068
http://dl.acm.org/citation.cfm?id=2028067.2028068
http://www.wisec.it/sectou.php?id=46c5843ea4900
http://www.wisec.it/sectou.php?id=46c5843ea4900

	Waiting for CSP -- Securing Legacy Web Applications with JSAgents
	1 Introduction
	2 Related Work
	3 JSAgents Architecture
	3.1 Building Blocks
	3.2 JSAgents Core Library
	3.3 JSAgents Modules
	3.4 JSAgents Policy Files

	4 Security Evaluation
	5 Performance Evaluation
	6 Future Work
	A Comparable Approaches
	A.1 From XSS Filters to CSP 1.0
	A.2 Content Security Policy

	References

