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Abstract. In this paper we describe a novel approach to securely obtain
measurements with respect to the integrity of software running on a low-
cost and low-power computing node autonomously or on request. We
propose to use these measurements as an indication of the trustwor-
thiness of that node. Our approach is based on recent developments in
Program Counter Based Access Control. Specifically, we employ San-
cus, a light-weight hardware-only Trusted Computing Base and Pro-
tected Module Architecture, to integrate trust assessment modules into
an untrusted embedded OS without using a hypervisor. Sancus ensures
by means of hardware extensions that code and data of a protected
module cannot be tampered with, and that the module’s data remains
confidential. Sancus further provides cryptographic primitives that are
employed by our approach to enable the trust management system to
verify that the obtained trust metrics are authentic and fresh. Thereby,
our trust assessment modules can inspect the OS or application code and
securely report reliable trust metrics to an external trust management
system. We evaluate a prototypic implementation of our approach that
integrates Sancus-protected trust assessment modules with the Contiki
OS running on a Sancus-enabled TI MSP430 microcontroller.

Keywords: Internet of Things ·Wireless sensor networks · Trust assess-
ment · Trust management · Protected software modules

1 Introduction

In the past decades, security research and security practice has focused on desk-
top and server environments. While threats to these systems grew with increased
interconnectivity and deployment in safety-critical environments, elaborate secu-
rity mechanisms were added. Of course these mechanisms impose certain costs in
terms of a performance decrease on the host system. However, with the availabil-
ity of more potent hardware, these costs quickly became acceptable to a degree
where virus scanners, firewalls and intrusion detection systems can operate in
the background of every modern off-the-shelf PC.

Ongoing developments in our ever-changing computing environment have
lead to a situation where every physical object can have a virtual counterpart
on the Internet. These virtual representations of things provide and consume
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services and can be assigned to collaborate towards achieving a common goal.
While this Internet of Things (IoT) brings us unpreceded convenience through
novel possibilities to acquire and process data from our environment, the situa-
tion with respect to the safe and secure deployment and use of such extremely
interconnected devices is quite different from the server-and-desktop world [26].

Devices in the IoT may be equipped with inexpensive low-performance micro-
controllers that provide just enough computing power to periodically perform
their intended tasks, i.e. obtain sensor readings and communicate with other
nodes. Many nodes are required to operate autonomously for extended periods
of time, solely relying on battery power as they are deployed in environments
where maintenance is difficult or even impossible. Yet, all these devices are inter-
connected and thereby exposed to physical as well as virtual attacks. Even if we
do not consider malicious attempts to disrupt a node’s function, the autonomous
mode of operation, exposure to harsh environmental conditions and the resource
scarceness of small microcontrollers, make these systems prone to malfunction
and the effects of software aging [7] – while other systems may critically depend
on the reliability and timeliness of information obtained from these devices.

The problem of trustworthiness and trust management of low-power low-
performance computing nodes has been discussed in previous research, in partic-
ular in the context of Wireless Sensor Network (WSNs) [12,16,19]. Importantly,
most techniques proposed in this field focus on observing the communication
behaviour and on validating the plausibility of sensor readings obtained from
network nodes so as to assess the trustworthiness of these nodes. This approach
to trust management is suitable to detect the systematic failure or misbehav-
iour of single nodes. However, failures or misbehaviour of a node may not be
detected immediately: the quality of readings from a sensor may degrade gradu-
ally, software failures may lead to non-deterministic behaviour or a node may be
captured by an attacker, exposing benign and malicious behaviour alternately.
In all these cases the malfunctioning node may produce a number of measure-
ments that are accepted as trustworthy by the network before the network will
begin to distrust the node. We believe that this shortcoming can be mitigated
by employing light-weight security mechanisms that guarantee the integrity and
secrecy of programs and data directly on WSN or IoT nodes. An approach to do
so with only marginal interference with legacy code is presented in this paper.

Our Contribution. We describe a novel approach to securely obtain measurements
with respect to the integrity of the software that runs on a minimalist comput-
ing node autonomously or on demand. We use these measurements as an indica-
tion of the trustworthiness of that node. Our approach is based on Sancus [23], a
light-weight hardware-only Trusted Computing Base (TCB) and Protected Mod-
ule Architecture (PMA) [28]. Sancus allows us to integrate trust assessment mod-
ules into a largely unmodified and untrusted embedded Operating System (OS)
without using techniques such as virtualisation and hypervisors, which would incur
unacceptable performance overheads for many embedded applications.

Sancus targets low-cost embedded systems which have no virtual memory.
Recent research on Program Counter Based Access Control (PCBAC) [30] shows
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that, in this context, the value of the program counter can be used unambigu-
ously to identify a specific software module. Whenever the program counter is
within the address range associated with the module’s code, the module is said to
be executing. Memory isolation can then be implemented by configuring access
rights to memory locations based on the current value of the program counter.

Sancus also provides attestation by means of built-in cryptographic prim-
itives to provide assurance of the integrity and isolation of a given Protected
Module (PM) to a third party. By using this feature, our trust assessment mod-
ules can be deployed dynamically, limiting memory consumption and restricting
attacker adaptation. The module may then inspect the OS or application code
and securely report trust metrics to an external trust management system.

Beyond trust assessment, our approach can be used to remotely test and
debug code on a node and to facilitate the deployment of formally verified code in
an untrusted context [1]. We describe and evaluate a prototypic implementation
of our approach that integrates Sancus-protected trust assessment modules with
the Contiki [9] OS, running on a Sancus-enabled TI MSP430 microcontroller, a
single-address-space architecture with no memory management unit. The source
code of the evaluation scenario is available at http://distrinet.cs.kuleuven.be/
software/sancus/esorics15/.

2 Background

This section provides background information on the IoT and the Contiki OS,
which enables extremely light-weight hardware such as TI MSP430 microcon-
trollers to be active components in the IoT. We emphasise on safety and security
limitations of this setup and outline key features of the Sancus PMA as a way
to cope with these limitations.

2.1 Contiki and the IoT

Contiki [9] is one of the most used OSs in the IoT. It is open source and designed
for portability and to have a small memory footprint. Contiki readily runs on
a range of different hardware platforms, including a number of small 8-bit and
16-bit microcontrollers, including the TI MSP430. On these machines, a Contiki
system that supports full IPv6 networking can be deployed in less that 10 KiB
of RAM and 30 KiB of ROM. While the IoT certainly requires the use of light-
weight software on similarly light-weight, low-cost and low-power hardware, the
use of this kind of configurations comes at the expense of safety and security.
That is, microcontrollers such as the TI MSP430 do not feature the hierarchi-
cal protection domains, virtual memory and process isolation that are known
as key mechanisms to implement safe and secure operation in the server and
desktop world. Moreover, implementing computationally expensive cryptogra-
phy and complex secure networking protocols is often contradictory with the
constraints on power consumption and computation power on tiny autonomous
devices. As a result, one would expect WSNs or the IoT in general to become a

http://distrinet.cs.kuleuven.be/software/sancus/esorics15/
http://distrinet.cs.kuleuven.be/software/sancus/esorics15/
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safety hazard and a key target for attacks in the near future [26]. Recent attacks
on Internet connected light bulbs [6] already give an outline of this future.

In particular the lack of protection domains on extremely light-weight hard-
ware makes it very difficult to implement extensible systems securely since soft-
ware components cannot easily be isolated from each other. In the remainder of
this section we present the features of Sancus, a hardware-only TCB and PMAs
that aims to mitigate this difficulty.

2.2 PMAs and Sancus

Sancus [23] guarantees strong isolation of software modules, which are generally
referred to as Protected Modules or PM, through low-cost hardware extensions.
Moreover, Sancus provides the means for remote parties to attest the state of,
or communicate with, the isolated software modules.

Isolation. Like many PMAs [28], Sancus uses Program Counter Based Access
Control (PCBAC) [30] to isolate PMs. Software modules are represented by a
public text section containing the module’s executable code and a private data
section containing data that should be kept private to the module. The core
of the PCBAC model is that the private data section of a module can only be
accessed from code in its public text section. In other words, if and only if the
program counter points to within a module’s code section, memory access to
this module’s data section is allowed.

To prevent instruction sequences in the code section from being misused
by external code to extract private data, entry into a module’s code section
should be controlled. For this purpose, PMAs allow modules to designate certain
addresses within their code section as entry points. Code that does not belong
to a module’s code section is only allowed to jump to one of its entry points. In
Sancus, every module has a single entry point at the start of its code section.
Table 1 gives an overview of the access control rules enforced by Sancus.

Attestation. Sancus allows external parties to verify the correct isolation of a
module as well as to securely communicate with it. For this, Sancus extends the
underlying MSP430 processor with a cryptographic core that includes symmetric

Table 1. Memory access control rules enforced by Sancus using the traditional Unix
notation. Each entry indicates how code executing in the “from” section may access
the “to” section. The “unprotected” section refers to code that does not belong to
a PM.

From/to Entry Text Data Unprotected

Entry r-x r-x rw- rwx

Text r-x r-x rw- rwx

Unprotected/

Other SM r-x r-- --- rwx
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authenticated encryption and key derivation primitives. Sancus also defines a key
hierarchy to ease the establishment of a shared symmetric key.

The root of this hierarchy is a node master key, KN . This node-unique key
is known only to the owner of the node and is not accessible by software. Each
software provider that wants to deploy modules on a node gets assigned a unique
ID, SP, by the node’s owner. This ID is then used to derive a software provider
key, KN,SP, from KN and the software provider is provided with this key along
with its ID. The last level in the key hierarchy is the software module key,
KN,SP,SM. This key is derived from KN,SP using the module identity SM. The
identity of a module is defined as the concatenation of the contents of its text
section and the load addresses of its text and data sections.

When a module is isolated, the hardware will first derive KN,SP and then use
that key to derive KN,SP,SM. Sancus enforces that this key is only accessible by
the newly isolated module. This construction ensures that (1) the key KN,SP,SM

can only be used by a module with identity SM deployed by software provider
SP on node N ; and (2) isolation has been enabled for this module.

Since the software provider has access toKN,SP, it can also calculateKN,SP,SM.
The latter key can then be used as the basis for attestation and secure communica-
tion. Indeed, because of the properties listed above, if the software provider receives
a message created with KN,SP,SM, it will have strong guarantees that this message
was created by a module with identity SM isolated on node N .

3 Trust Assessment Modules

Our approach to trust assessment is designed to integrate seamlessly with the
deployment of low-cost and low-power hardware in WSNs and in the IoT. In
particular, we make use of a Sancus-enabled CPU to run a protected trust
assessment module and to facilitate secure and authenticated communication
with a remote operator of this module. This operator can be, for example, a
human operator with a particular interest in inspecting a specific device, or a
trust management system that keeps track of the integrity and trustworthiness
of a larger network of devices. Our trust assessment module executes as a PM,
in isolation from a base of largely unmodified and generally untrusted OS and
application code. Yet, our approach partially relies on services provided by this
untrusted code, e.g. networking, scheduling and memory management, in a way
such that failure is detected by the trust assessment module or by the remote
operator. Trust assessment modules are capable of inspecting and modifying the
state of the untrusted OS and applications autonomously or on request, giving
the operator a trustworthy means of assessing the integrity of the software on a
node and to take actions accordingly.

In this section we describe the process of deploying and communicating with
Sancus-protected trust assessment modules and discuss inspection targets and
trust metrics. We further outline weaknesses and attack scenarios to our app-
roach. While the examples in this section are given with respect to the Contiki
OS and its internals, we believe that our approach can be easily adapted to sup-
port other OSs in the domain of the IoT, such as TinyOS [18] or FreeRTOS [5].
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3.1 Module Deployment

This section describes how the operator of a trust assessment module can deploy
such a module on a Sancus-enabled computing node. We focus on getting assur-
ance of correct deployment and on establishing a secure and authenticated
communication channel with the module. The principal deployment process
is originally described in [23], where details on the underlying cryptographic
machinery are given. Figure 1 illustrates the process and highlights the TCB. In
summary, each Sancus-enabled computing node N possesses a unique node mas-
ter key, KN , which is managed by the hardware, not directly accessible by the
software running on the node, and shared only with the Infrastructure Provider
(IP). It is the responsibility of the IP to manage the hardware and deployment
of the nodes, and to derive a software provider key, KN,SP , for each party that
is to install PMs on the node N . We refer to these parties as Software Provider
(SPs); they are identified by a unique public ID SP . KN,SP is computed using
a key derivation function that takes KN and SP as input. The computing node
includes a hardware implementation of this derivation function so as to inde-
pendently compute KN,SP . Thus, KN,SP is shared between the IP, an SP and a
specific node N .

The SP, in our scenario equivalent with the operator or Trust Management Sys-
tem, may now deploy a trust assessment module on N . This module can be sent as
a binary program over an untrusted network and be loaded by an untrusted loader
on the node. Each software module has a unique identity SM , which comprises of
the module’s text section (code) and the effective start and end-addresses of the

Fig. 1. Deployment of a trust assessment module on a Sancus node. The TCB, from
the perspective of the operator, is shaded in orange.
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loaded module’s text- and protected data sections. As the module is loaded, the
Sancus-enabled hardware computes a secret softwaremodule key KN,SP,SM , which
is derived from KN,SP and SM , and stored in hardware. Software cannot access
KN,SP,SM directly but may use it to encrypt or decrypt data. The SP may derive
KN,SP,SM if he is provided with a symbol table of the linked module, containing
the start and end-addresses of the module’s text- and protected data sections and
the effective addresses of library code used by the module. This layout informa-
tion is not confidential and may be transferred by the module loader back to the SP
without integrity protection.1 As can be seen, the proceeding outlined above estab-
lishes a shared secret between the SP and the correctly deployed PM SM on node
N . All further data exchanged between these two parties can be encrypted with
KN,SP,SM , providing a secure and authenticated channel. Nonces may be used to
guarantee freshness of messages.

The trust assessment module SM is now ready to execute on the computing
node and may access all data and code on that node, with the exception of
data belonging to other PMs. Consequentially, the module may inspect arbitrary
address ranges and report its findings to the operator as an indication of the
trustworthiness of the node. In the following section we discuss a number of
these trust indicators in detail.

3.2 Trust Indicators

Our approach to trust assessment readily supports measuring a number of trust
indicators as listed and explained in detail below. Importantly, our system is
not limited to these indicators and we believe that additional or alternative
indicators may be more suitable for specific application scenarios. Research, in
particular in the context of software aging and software rejuvenation [7] names
many such indicators that may be securely measured using our approach.

Code Integrity. A particularly useful measurement is code integrity. Sancus-
enabled hardware features a keyed cryptographic hash function to compute a
Message Authentication Code (MAC) of a section of memory using the module’s
secret key. This MAC may then either be reported to the remote operator or
be compared with a MAC stored in the secret section of the trust assessment
module in autonomous operation. Code integrity checks with a MAC are used
by the trust assessment module to establish whether a particular section of
code has been modified, which is then securely communicated to the operator.
Unexpected code modifications may be caused by an attack against the device
or by a malfunction. Candidates for integrity checks are core functions of the OS
such as the scheduler, the memory management system or the network stack,
or application code. MACing all code sections is technically feasible but may
impose unacceptable computational overheads.
1 It is possible for an attacker to modify the module or layout information during load-

ing. However, this will be detected as soon as SM communicates with SP. Successful
communication attests that SM has not been compromised during deployment to N
and that the hardware protection has been correctly activated.
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OS Data Structures. Trust assessment modules are further capable of inspect-
ing and reporting the content of internal data structures of the OS. Interesting
candidates for this are the process table or the interrupt vector table. Similar to
code integrity checks, unexpected changes of these data structures are a strong
indication of a malfunction or a successful attack against a device.

Available Resources. A group of indicators that is heavily used in the domain of
software aging is the availability of resources such as memory and swap space:
as software runs for extended periods of time, small memory leaks can accu-
mulate and degrade performance, eventually leading to failure. In the context
of Contiki and the MSP430 we use the general availability of program memory
and data memory and the size of the largest available chunks of these as trust
indicators. The chunk size is an important characteristic as our architecture does
not feature a Memory Management Unit that could mitigate the fragmenting
effect of repeated allocation and deallocation. Importantly, reliably measuring
the availability of program and data memory requires implementing part of the
allocator, typically a OS component, as part of the trust assessment TCB.

Application Data Structures. Similar to monitoring OS data structures, we have
experimented with using application data as trust indicators. For example, on
WSN nodes that run a webserver, activity can be measured by monitoring the
length of the request queue. Also static content that is used to compile dynamic
websites can be inspected to detect modification due to a bug or a malicious
attempt. Generally all these measures are highly specific with respect to critical
use cases of a node.

Event Occurrence and Timing. A key feature of our trust assessment infrastruc-
ture is to monitor and attest intentional activity on a node. More specifically,
by integrating part of the OS’s scheduler into the TCB, our approach can attest
when critical code on a node has been executed. This allows an operator to infer
which parts of a node are behaving within expected parameters.

Combined Indicators. In particular in the context of autonomous operation of
a trust assessment module, combining trust indicators is desired so as to auto-
matically adapt to changing deployment scenarios. In particular, we have experi-
mented with modules that combine the inspection of OS data structures, i.e. the
process table, and periodically performing integrity checks on the functions asso-
ciated with each process. This can be interleaved with measuring the frequency
of process invocation and execution times, giving the operator a detailed pic-
ture of the behaviour of a computing node and allowing for specific autonomous
responses to faults.

3.3 Fault Recovery

As a trust assessment module or the operator detect anomalies on a node, the mod-
ule is even capable of responding to the situation. Responses may range from a
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simple reset of the node over a more thorough investigation of the fault up to
actively manipulating the system state and restoring damaged code and data.

4 Evaluation

We have implemented the approach described in the previous section as a num-
ber of flexibly configurable trust assessment modules that can be loaded into
a Contiki OS at runtime. In this section we evaluate our implementation with
respect to overheads in terms of module sizes and runtime. We further discuss
security gains, attack scenarios and their mitigation.

4.1 Scenario and Implementation

Our prototypic implementation is based on a developmental version of Contiki
3.x running on a Sancus-enabled openMSP430 [15,23]. We evaluate an appli-
cation scenario in which the trust assessment module regularly reports on the
application processes running on a node, periodically checks the integrity of a
number of code sections of these processes and integrates with Contiki’s sched-
uler to detect and log process invocations. We have further added a public entry
point to the trust assessment module that allows an application to register invari-
ant address ranges, which are then included in periodic integrity checks. This
section gives an overview of entry points and the internal behaviour of our trust
assessment module and the demo scenario.

As outlined in Table 2, our example module provides a number of entry points
to be called from unprotected code. Most importantly, the TAMainFunc is invoked
by the scheduler. In a first run, it will initialise internal data structures of the
module and then populate these data structures with initial measurements from
the unprotected OS. This involves shadowing part of the scheduler’s process list
and MACing the process functions and the interrupt vector table. Subsequent

Table 2. Entry Points of our trust assessment module.

Function Name Description

TAMainFunc Main entry point controlling initialisation and periodic
behaviour

TARegisterInvar Can be used by application code and internally to register
an address range for regular integrity checks

TASecureCallProcess Used by the OS scheduler to invoke application functions;
the trust assessment module extends the call with
counting the number of invocations and measuring time

TAInvarsStatus Returns an encrypted status report on the integrity checked
address ranges

TAProcessStatus Returns an encrypted status report on the processes
currently running on a node
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Table 3. Size and execution time of different trust assessment components on an
MSP430 running at 20 MHz: 1 cycle corresponds to 50 ns. Function sizes include pro-
tected helper functions.

Function Size in Bytes Runtime in Cycles Description

TACoreEnable 58 236,440 Enables module protection and initiates key

generation

TAMainFunc 430 578 Main function, initialisation

73,678 . . . validation run (5 processes, 9 integrity checks)

TARegisterInvar 402 1,242 Stores meta-data and MACs of 32 B

10,762 . . . 199 B

19,930 . . . 399 B

TACheckInvars 498 69,659 Checks integrity of 9 address ranges (1833 B)

TAAddProcess 568 ≤ 18,374 Shadows and entry from the process list and

determines length of process function

TACheckProcesses 288 2,371 Checks shadowed process data against process list

(5 processes)

TASecureCallProcess 392 266 Process invocation with no logging

≤ 731 . . . logs time and number of invocations

TAInvarsStatus 202 10,254 Encrypts meta-data on integrity-checked code and

data (160 B + 16 B nonce)

TAProcessStatus 202 17,488 Encrypts meta-data on running processes (320 B +

16 B nonce)

total 3,742 n/a Code (.text) and data (part of .bss)

invocations result in the current state of the unprotected OS being compared
with the internal state of the module. In addition, TASecureCallProcess is used
by the scheduler to start process functions. As this function is part of the trust
assessment module, it can securely log which process is invoked and keep track
of meta data. Of course, all data, including MACs and meta data on process
invocations is stored in the trust assessment module’s private data section. The
functions TAInvarsStatus and TAProcessStatus return a snapshot of this data,
encrypted with the module’s KN,SP,SM and using a nonce to guarantee freshness.
Thus, the module’s state can be reported to the operator for further assessment.

To test the effectiveness of our trust assessment module, our scenario inte-
grates a number of trivial application processes and a “malicious” process that
aims to perform alterations to OS data and application code. Specifically, our
attacker is invoked by an event timer. With every invocation it performs one
of the following random actions: do nothing, modify a function pointer in the
process list, remove an entry from the process list, overwrite a process function, or
modify an entry in the interrupt vector. Event timing and the Contiki’s scheduler
typically result in alternating invocation of the attacker and the trust assessment
module. Expectedly, all changes performed by the attacker are detected with the
next invocation of the trust assessment module.

4.2 Overheads

Our evaluation shows at what expenses the alterations made by the attacker
are detected. In Table 3 we list measurements of the size of our trust assessment
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components and these components’ execution time. All code of the demo scenario
is compiled either with MSP430-GCC 4.6.32 if no Sancus features are involved,
or with the LLVM-based Sancus toolchain3. The trust assessment module is
executed on an MSP430 configured with 41 KiB of program memory4 and 16 KiB
of data memory, running at 20 MHz. In Table 3 we report execution times in
terms of CPU cycles. With the given clock speed, 1 cycle corresponds to 50 ns
and 10,000 cycles correspond to 0.5 ms. For our evaluation, the MSP430 CPU
is programmed on a Xilinx Spartan-6 FPGA. This renders a precise assessment
of overheads in terms of power consumption infeasible. For a discussion of the
power consumption of the Sancus extensions we refer the reader to [23].

As can be seen from Table 3, our approach does imply non-negligible over-
heads. Whether these overheads are acceptable depends largely on the con-
straints on reactivity and energy consumption versus safety and security require-
ments in a specific deployment scenario. Our trust assessment module is designed
to keep the cost of periodic validation tasks small, typically below 70,000 cycles
(3.5 ms), at the expense of incurring higher initial overheads. Overall, most over-
heads are caused by the use of Sancus-provided cryptographic operations. The
performance and security provided by these operations is evaluated in [23].

As mentioned in Sect. 3.2 certain trust indicators, such as logging process
invocations, required us to modify the Contiki core. These modifications are
always very small, i.e., replacing a call to a Contiki internal function with a
PM-equivalent. Yet, the resulting overhead is considerably high due to switch-
ing protection domains – 26 cycles for an unprotected call and return versus
160 cycles for calling a protected entry point function. Due to passing arguments,
return values, and logging the function invocation with a time stamp, process
invocations through TASecureCallProcess incurs an overhead of 731 cycles.

With respect to runtime performance it is important to mention that Sancus
does not support interruption of protected code execution. Thus, protected mod-
ules run with interrupts disabled, which may lead to important interrupts not
being served by the OS and certain properties of the unprotected code potentially
being broken. Examples for this could be real-time deadlines not being met due
to extensive integrity checks. This issue can be mitigated by splitting up peri-
odic validation tasks, e.g., do not perform all integrity checks but only one per
scheduled invocation of the trust assessment module. Similar approaches have
been used to perform expensive validation tasks in desktop and server environ-
ments [14]. Ongoing research aims to resolve this issue by making Sancus PMs
fully interruptible and re-entrant. Mechanisms for securely handling interrupts
in the context of PMAs have been discussed in [8,17]. The non-interruptibility
of Sancus PMs also makes it necessary to use trampoline functions that re-
enable and again disable interrupts when transferring control to an application

2 http://www.ti.com/tool/msp430-gcc-opensource/.
3 http://distrinet.cs.kuleuven.be/software/sancus/.
4 ROM is often used as program memory in embedded devices. On platforms that

support module deployment at runtime, as we do, program memory is writable.

http://www.ti.com/tool/msp430-gcc-opensource/
http://distrinet.cs.kuleuven.be/software/sancus/
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process in TASecureCallProcess, incurring relatively high overheads for sched-
uled process invocations.

We do neither evaluate nor provide an integration with a trust management
system. In particular, we do not evaluate the infrastructure that has to be in
place to load a software module at runtime, and to communicate with a PM
on the OS level. This infrastructure performs fairly generic tasks, yet its imple-
mentation is highly dependent on the deployment scenario. Contiki and many
other embedded OSs provide module loaders and a network stack that is fully
sufficient to implement the required functionality. Yet, the performance of these
components depend on the storage and communication hardware connected to
the MSP430 and is, thus, beyond the scope of this paper.

4.3 Security Evaluation

Bootstrapping Autonomous Operation. An obvious issue of the scenario pre-
sented and evaluated here is with respect to the suggested autonomous mode
of operation: the trust assessment module automatically discovers running
processes and then periodically checks the discovered data structures and code
sections for unexpected changes. Of course, an attacker may tamper with these
sections at or before boot time, effectively preventing detection in regular checks.
In our scenario it would be the responsibility of the operator to request and
evaluate the output of TAInvarsStatus and TAProcessStatus to detect such
modifications. Alternatively, a trust assessment module may also be provided
with a list of expected processes and MACs by the operator at runtime, using
encrypted communication.

Communication Failure. While the code and the internal state of the PM
cannot be tampered with, it is of course possible that malfunctions or an suc-
cessful attack against the node prevent the trust assessment module from suc-
cessfully communication with the operator or from executing altogether. Yet,
this is detected by the operator who then may conduct actions appropriate for
the deployment scenario.

Preventing Invocation of the Trust Assessment Module. In the evaluated appli-
cation scenario, the trust assessment module is invoked by the scheduler and
its entry point is stored in the unprotected process list. This gives the attacker
process the opportunity to tamper with the pointer to the entry point, allow-
ing it to disable execution of the trust assessment module. Alternatively, an
attacker or a malfunction may disable interrupts while preventing control flow
from returning to the scheduler. In our evaluation scenario these attack would
not be detected by the trust assessment module directly but rather by the oper-
ator who would not be able to communicate with the module.

For autonomous operation, this attack can be easily mitigated by configuring
the trust assessment module to be invoked as an interrupt service routine for
a non-maskable timed interrupt. We can simulate this behaviour by using the
watchdog as a source of timed interrupts, which we have implemented as an
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optional configuration option in our evaluation scenario. To ensure that the
module will complete its tasks, this approach requires the worst-case execution
time of the trust assessment module to be smaller than the interrupt rate. It
is possible to guarantee that the watchdog configuration is not modified by an
attacker by making the control register and the respective entry in the interrupt
vector table part of the secret section of a PM. In combination with extensive
integrity checks, this approach also hinders stealthy attacks where malicious
code would attempt to restore a valid system state before the trust assessment
module is executing. Yet, using a non-maskable interrupt to invoke the trust
assessment infrastructure requires some consideration: It must be possible to
determine the worst-case execution time of the trust assessment module and it
must be acceptable to interrupt application code for that time as the PM itself
is non-interruptible. Using a scheduler to invoke the trust assessment module
allows for more permissible policies that prevent starvation of applications.

Attacker Adaptation. As mentioned in the previous paragraph, a stealthy attacker
that is well adapted to a specific trust assessment module may be able to hide
code or data in address ranges that are not inspected by the module. The attacker
may also restore inspected memory content to the state that is expected by the
trust assessment module right before inspection takes place. Our approach to trust
assessment counters these attacks by allowing the operator to deploy trust assess-
ment modules at runtime, confronting the attacker with an unknown situation.
Alternatively, a generic module may inspect targets by request from the operator
rather than controlled by a deterministic built-in policy.

Process Accounting. Our trust assessment module features logging and report-
ing a time stamp of the latest invocation and the total number of invocations of
scheduled processes. Of course, these numbers are only exact as long as processes
are called through the scheduler, which passes the call through our trust assess-
ment module. As processes may be invoked without using the scheduler, the
numbers reported by our module represent a lower bound on the actual number
of invocations. If more precise measures are needed for a particular process, this
process should be implemented as a PM and perform its own accounting.

Extending the TCB. Of course, the safety and security of a node could be
improved greatly by implementing larger parts of the OS, e.g. the scheduler,
or applications as PMs. PMAs imply a number of complications that are a
direct consequence of the strong isolation guarantees provided: resource sharing
between components is generally prohibited, yet it is often desired for efficiently
implementing communication between components. In Sancus, for example, one
would have to explicitly copy the protected state of a module so as to share it
with another module or unprotected code. While technically feasible, we believe
that it is not trivial to re-implement a more complex code base as a set of neatly
separated PMs. Alternatively one could think of compiling an entire embedded
OS together with its applications as a single PM. This would ensure integrity but
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does not provide for isolation between components and severely restricts run-
time extensibility and the use of dynamic memory. Thus, the trust assessment
modules provided here present a pragmatic approach to measure and improve
safety and security of an IoT node while not interfering with the existing code
on that node. This results in low development overheads and runtime overheads
that should be acceptable for many deployment scenarios.

5 Related Work

This section discusses some related work in the domains of WSNs, trust assess-
ment on high-end systems, and PMAs. Where applicable, we compare the work
with our contributions. Note that this section is not meant as an exhaustive expo-
sition on trust assessment – a domain that can be interpreted rather broadly –
but as an overview of the work that we consider closely related to ours.

5.1 Trust Management in Wireless Sensor Network

Many schemes for trust management in WSNs have been devised by researcher
over the years [12,16,19]. Most of these schemes deal with the problem of distrib-
uting trust management over a network of sensor nodes. Individual nodes usually
obtain trust values about neighboring nodes by observing their externally visible
behavior. These trust values are then propagated through the network allowing
nodes to make decisions based on the trustworthiness of other nodes.

Although our approach does not deal directly with distributed networks, it
can be used to enhance trust metrics used by existing trust management systems.
Indeed, our trust assessment modules can provide nodes with a detailed view on
the internal state of their neighbors; allowing them to make better informed deci-
sions about their trustworthiness. Moreover, since the produced trust metrics are
attested, the bar is significantly raised for existing attacks on trust management
systems where malicious nodes try to impersonate good nodes.

5.2 Trust Assessment on Desktop and Server Systems

Techniques similar to our trust assessment modules have been described for the
domain of desktop and server systems. Copilot [24] and Gibraltar [4] employ
specialised PCI hardware to access OS kernel memory with negligible runtime
overhead. Both systems detect and report modifications to kernel code and data.

A number of approaches use virtualisation extensions of modern general pur-
pose CPU. Here, a hypervisor is employed to inspect a guest operating system.
SecVisor [27] protects legacy OSs by ensuring that only validated code can be
executed in kernel mode. Similarly, NICKLE [25], shadows physical memory in
a hypervisor to store authenticated guest code. At runtime, kernel mode instruc-
tions are then only loaded from shadow memory and an attempt to execute code
that is not shadowed is reported as an attack. Hello rootKitty [14] inspects guest
memory from a hypervisor to detect and restore maliciously modified kernel data
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structures. Due to frequent transitions between execution hypervisor and guest
code, and expensive address translation between those domains, these inspec-
tion systems typically incur significant performance overheads. HyperForce [13]
mitigates this problem by securely injecting the inspection code into the guest
and forcing guest control flow to execute this code.

Our approach to trust assessment using PMs on a Sancus-enabled TI MSP430
provides isolation guarantees that are equivalent to executing the trust assess-
ment code in a hypervisor. Yet, our PM executes in the same address space as
the OSs and application, which makes expensive domain switches and address
mapping unnecessary. In addition, Sancus provides attestation features in hard-
ware that the above systems do not employ. On modern desktop architectures,
these features can be implemented using the Trusted Platform Module.

Sancus enables the implementation of effective security mechanisms on
extremely light-weight and low-power hardware. In terms of inspection abili-
ties and isolation guarantees, these mechanisms are similar to the state-of-the-
art in the desktop and server domain. Our approach to trust assessment mod-
ules illustrates that, using Sancus, comprehensive inspection mechanisms can be
implemented efficiently, incurring runtime overheads that should be acceptable
in many deployment scenarios with stringent safety and security requirements.

5.3 Alternatives to Sancus

The trust assessment infrastructure proposed in this paper is built upon San-
cus [23], a PMA [28]. A number of PMAs have been proposed and can be used
to implement our approach, as long as memory isolation and attestation features
are provided, which we discuss below.

A PMA is typically employed as a core component of a TCB. The key feature
of all PMA is to provide memory isolation for software components. That is, to
enable the execution of a security sensitive component, a PM, so that access to
the component’s runtime state is limited to the TCB, the component itself, and if
supported, to other modules specifically chosen by the protected component. In
addition, execution of the module’s code is guaranteed to happen in a controlled
way so as to prevent code misuse attacks [2]: a module may specify a public
Application Programming Interface (API) to be used by other modules. A range
of PMAs for general purpose CPU has been presented in the last years, including
Intel SGX [21], ARM TrustZone [3], TrustVisor [20] and Fides [29].

Recent research [10,17] has brought PMA techniques to small embedded
microprocessors at an acceptable cost. PMAs such as SMART [10], TrustLite [17]
as well as Sancus [23] utilise the PCBAC [30] approach to provide isolation
an thereby guarantee the integrity of software modules executing on low-power
embedded processors.

A second crucial feature of many trusted computing platforms is the ability to
provide assurance of the integrity and isolation of a given PM to a third party. This
party can be, e.g. another module on the same hosts or a software component on
a remote host. We refer to the process of providing this assurance as attestation,
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which is typically implemented by means of cryptographic primitives that oper-
ate on the PM’s identity. Attestation can be reused to establish a shared secret
for secure communication between the PM and a third party. To the best of our
knowledge, only Intel SGX, SMART and Sancus readily implement attestation.

6 Conclusions

In this paper we present an approach to trust assessment for extremely light-weight
and low-power computing nodes as they are often used in the Internet of Things
(IoT). Insteadof relyingon the externally observablebehaviourof anode,wedeploy
flexible trust assessment modules directly on the node. These modules are execut-
ing in isolation from an unprotected OS and application code. Yet, the modules
are capable of inspecting the unprotected domain and report measurements that
are indicative for the trustworthiness of a node to a trust management system. We
employ Sancus [23] to guarantee isolation, to facilitate remote attestation of the
correct deployment of a trust assessment module, and to secure communication
between a module and a trust management system. Sancus is a Protected Module
Architectureaswell as aminimalhardware-onlyTrustedComputingBase. In terms
of inspection abilities and isolation guarantees, Sancus-protected trust assessment
modules are similar to using virtualisation technology or specialised security hard-
ware in the desktop and server domain.

We have implemented our approach to trust assessment modules on a Sancus-
enabled TI MSP430 microcontroller. Our results demonstrate that, using San-
cus, comprehensive inspection mechanisms can be implemented efficiently, incur-
ring runtime overheads that should be acceptable in many deployment scenar-
ios with stringent requirements with respect to safety and security. Indeed, we
believe that our approach enables many state-of-the-art inspection mechanisms
and countermeasures against attacks to be adapted for IoT nodes and in the
domain of Wireless Sensor Networks, which are in dire need of modern security
mechanisms [26]. These mechanisms include integrity checks and data structure
inspection as discussed in this paper. Yet, more complex mechanisms such as
automatic invariant detection and validation [14], stack inspection [11] or pro-
tection against heap overflows [22] are in scope for our approach.

In the future we aim to improve performance and scalability of the inspec-
tion and reporting process by making Sancus modules fully interruptible and
re-entrant. We are further interested in investigating alternative trust indica-
tors and fault recovery mechanisms, and integrate our trust assessment modules
with a trust management system. Finally we will investigate the deployment of
formally verified code in an untrusted context [1] for Sancus, which can lead to
proving the absence of runtime errors for Sancus-protected security critical code
that runs on an IoT node.
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