Computational Soundness
for Interactive Primitives

Michael Backes, Esfandiar Mohammadi, and Tim Ruffing®™)

CISPA, Saarland University, Saarbriicken, Germany
{backes,mohammadi}@cs.uni-saarland.de, tim.ruffing@mmci.uni-saarland.de

Abstract. We present a generic computational soundness result for
interactive cryptographic primitives. Our abstraction of interactive prim-
itives leverages the Universal Composability (UC) framework, and
thereby offers strong composability properties for our computational
soundness result: given a computationally sound Dolev-Yao model for
non-interactive primitives, and given UC-secure interactive primitives,
we obtain computational soundness for the combined model that encom-
passes both the non-interactive and the interactive primitives. Our
generic result is formulated in the CoSP framework for computational
soundness proofs and supports any equivalence property expressible in
CoSP such as strong secrecy and anonymity.

In a case study, we extend an existing computational soundness result
by UC-secure blind signatures. We obtain computational soundness for
blind signatures in uniform bi-processes in the applied w-calculus. This
enables us to verify the untraceability of Chaum’s payment protocol in
ProVerif in a computationally sound manner.

1 Introduction

Manual security analyses of cryptographic protocols are complex and error-
prone. As a result, various automated verification techniques have been devel-
oped based on so-called Dolev-Yao models, which abstract cryptographic oper-
ations as symbolic terms obeying simple cancellation rules [12,26,35,36,38,40].
Numerous verification tools such as ProVerif [12] and APTE [26] are capable of
reasoning about equivalence properties, e.g., strong secrecy and anonymity.

A wide range of these Dolev-Yao models is computationally sound, i.e., the
security of a symbolically abstracted protocol entails the security of a suit-
able cryptographic realization [3,7,14,20,27,29,31,50,52]. However, virtually
all of these computational soundness results are inherently restricted to non-
interactive primitives such as encryption and signatures.

In contrast, interactive cryptographic primitives such as interactive zero-
knowledge proofs [43], forward-secure key exchange [37], and blind signa-
tures [25], have gained tremendous attention in the scientific community and
widespread deployment in real systems.

The security of interactive primitives is often defined and established in the
Universal Composability (UC) framework [17] or similar frameworks [8,44,48],

© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part I, LNCS 9326, pp. 125-145, 2015.
DOI: 10.1007/978-3-319-24174-6_7

126 M. Backes et al.

which allow to prove strong security guarantees in a composable manner
[23,24,41]. In such frameworks, a primitive is secure if its execution is indis-
tinguishable from a setting in which all parties have a private connection to an
imaginary trusted machine, called ideal functionality, which performs the desired
task locally and in a trustworthy manner.

For interactive primitives, ideal functionalities are a suitable abstraction,
but for non-interactive primitives, DY-style abstractions have two significant
advantages compared to a corresponding abstraction as an ideal functionality
(e.g., for encryption schemes or digital signatures): first, as Dolev-Yao models
do not incorporate shared memory, the verification of concurrent processes that
use Dolev-Yao models is far more efficient, and second, the attacker is purely
defined by symbolic rules and is thus much better suited for automatically deriv-
ing desired properties such as invariants. There is a rich literature on compu-
tationally sound DY-style abstractions. For example, Backes et al. introduced
CoSP, a general framework for computational soundness proofs [3], which decou-
ples the treatment of the Dolev-Yao model from the treatment of the language,
e.g., the applied m-calculus or RCF. Proving = cryptographic Dolev-Yao models
sound for y languages only requires x + y proofs (instead of x - y).

Previous work on computational soundness of verification tools for ideal func-
tionalities [47] does not apply to protocols that combine interactive and non-
interactive primitives with such computationally sound DY-style abstractions.
In this work, we address this gap.

Contribution. We present a generic computational soundness (CS) result for UC-
secure interactive primitives. Given a computationally sound Dolev-Yao model
for non-interactive primitives and given UC-secure interactive primitives, we
show the combined CS for the non-interactive and the interactive primitives.
This allows us to handle protocols that combine interactive primitives with non-
interactive primitives, e.g., protocols that encrypt blind signatures, or proto-
cols that use interactive zero-knowledge proofs about ciphertexts. Our generic
method is compatible with any CS result for non-interactive primitives that is
cast in the CoSP framework for equivalence properties [6].

In a case study, we apply our method to a recent CS result [6]. We obtain
the combined CS for (non-interactive) ordinary signatures and (interactive) blind
signatures. The underlying CS result for non-interactive primitives supports uni-
form bi-protocols, i.e., protocol pairs that always take the same branches and
differ only in the messages that they operate on. Consequently, our case study
supports uniform bi-processes in the applied m-calculus. Finally, we conduct a
computationally sound verification of the untraceability of Chaum’s payment
protocol [25] in ProVerif.

Remark on Supported Equivalence Properties. The aforementioned CS result [6]
is so far the only result established in the CoSP framework for equivalence prop-
erties, and is limited to uniform bi-processes. As a result, it is unclear whether a
larger class of equivalence properties can be expressed within the existing CoSP
framework at all. Thus it is unclear whether our generic result could possibly

Computational Soundness for Interactive Primitives 127

apply to a larger class of equivalence properties, even though we believe that our
core ideas do not fundamentally rely on the specifics of the CoSP framework.
The underlying problem is caused by the current embeddings of languages (such
as the applied m-calculus) into CoSP. These embeddings do not provide a satisfy-
ing solution for concurrency, because they give the attacker full control over the
scheduling of even internal scheduling decisions such as the scheduling of con-
current processes. Yet, CS results established with our generic method cover any
equivalence properties covered by the underlying CS result for non-interactive
primitives. Our work shares this limitation with other state-of-the-art CS results
for equivalence properties [27-29).

Overview. To facilitate understanding, we give a brief overview of the proof strat-
egy taken in the paper. Typical CS results for non-interactive primitives (N1 Ps)
state that the security of a protocol in a symbolic Dolev-Yao setting DY implies
the security of the protocol in a computational setting, where real cryptographic
algorithms are used instead of DY-style constructors and destructors (Fig. 1a).

Our proof strategy contains two computational settings: one setting with a
computational ideal functionality F and one setting with its UC-secure crypto-
graphic realization IP. For the sake of illustration, we start by explaining our
approach with only a single interactive primitive (Fig. 1b).

(i) We transform the computational ideal functionality F to the symbolic set-
ting by incorporating it into a Dolev-Yao model DY .
(ii) We show CS for the Dolev-Yao model with respect to the ideal functionality
JF, which lives in the computational setting.
(iii) Under the assumption that IP is a UC-secure cryptographic realization of
F, we show CS for the Dolev-Yao model DY with respect to the crypto-
graphic realization I P of the interactive primitive.

Next, we consider the setting of the paper (Fig.1c). It consists of crypto-
graphic realizations I Py, ..., IP, of several interactive primitives and addition-
ally of a set of cryptographic realizations NI Ps of several non-interactive prim-
itives.

(i) We transform the computational ideal functionalities Fi, . .., F, to the sym-
bolic setting by incorporating them into Dolev-Yao models DYq, ..., DY,
(Sect. 5).

(ii) We then consider a unified model (DY3, ..., DY,, DYN1p,) that consists of
the Dolev-Yao models for the interactive primitives as well as a single Dolev-
Yao model DYn;p, that incorporates a set of non-interactive primitives.
Under the assumption that DYxp, is computationally sound with respect
to the cryptographic realizations NI P;, we show CS for the unified Dolev-
Yao model with respect to the algorithms (Fi,...,F,, NIPs), i.e., with
respect to the ideal functionalities plus the cryptographic realizations for
the non-interactive primitives (Sect.6).

(iii) Under the assumption that IPy,...,IP, are UC-secure realizations of
Fi,y .-y Fn, we show CS for the unified Dolev-Yao model with respect to
the cryptographic realizations (I Py,...,IP,, NIP;) (Sect.8).

128 M. Backes et al.

DYwips (i) DY1... DYy DYwips

(ii)l

(i) A ... Fa
| |
NIPs | |
.l |

\v * RURTRPREE
IP, ... IP,

(a) CS for (b) CS for an IP (c) Combined CS result for NIPs and IPs (detailed
NIPs (our approach) overview of our approach)

Fig. 1. An overview over different types of CS results for non-interactive primitives
(NIPs) and interactive primitives (IPs). Solid arrows represent computational sound-
ness. Dashed arrows represent UC-security.

2 Related Work

There is a successful line of research for computational soundness of trace prop-
erties [10,27,36,39] such as authentication and for static equivalence properties
(i.e., against passive attackers) [2,11,45].

For equivalence properties against active attackers, however, there are only
few previous results. The simulatable DY-style library of Backes et al. [4,7] was
the first result to show computational soundness against active attackers and
for equivalence properties on payloads. For this DY-style library it is not known
how to formalize more properties than the secrecy of payloads.

Cortier and Comon-Lundh [27] show computational soundness for observa-
tional equivalence for symmetric encryption in the applied m-calculus. The scope
of their work is incomparable to our work: their result is restricted to processes
that do not contain private channels and abort if a conditional fails, whereas our
result is restricted to uniform bi-processes.

An alternative approach to secure abstractions has recently been proposed
by Bana and Comon-Lundh [9,10]. Instead of prescribing what an attacker can
do and showing that no deviating computational behavior is possible, they pur-
sue the approach to define what is impossible for an attacker (e.g., break the
encryption) as first-order logic formulas over symbolic representations. Then,
they specify the protocol in question and the existence of a potential attack in
the same symbolic model. In their framework, inconsistency of a set of axioms
implies security of the protocol. An inherent problem with this style of abstrac-
tion is the verification: it is not amenable to general-purpose DY-style verification
tools, e.g., ProVerif [12] or Tarmarin [49].

Computational Soundness for Interactive Primitives 129

With regard to the composability of computational soundness, Bohl et al. [14]
show how a computational soundness result that has been obtained via deduc-
tion soundness [32] can be extended to hash functions, MACs, signatures, and
symmetric and asymmetric encryption. While they add a set of non-interactive
primitives to a given computational soundness result, we add a set of interactive
primitives to a given computational soundness result.

There is other work that leverages the strength of the UC framework. Backes
et al. [5] prove a computational soundness result for SMPC that is parametric in
the same way as our result. However, their result considers only trace properties
and is specific to SMPC. Canetti and Herzog [20], extended by Canetti and Gajek
[19], show computational soundness for UC-secure key exchange protocols and
signatures. There are two major differences to our work. First, their result is
specific to the used primitives, while our result can be used for a large class
of UC-secure interactive primitives. Second, even though their result holds for
equivalence properties, the authors—in contrast to our work—do not show that
their result can be combined with computationally sound Dolev-Yao models for
non-interactive primitives.

Dahl and Damgard [33] show the computational soundness of a certain class
of two-party protocols with respect to UC security, i.e., symbolic security implies
computational UC security. While they use the UC framework to obtain strong,
composable computational security for protocols that use certain non-interactive
primitives, we use the UC framework to obtain ordinary, non-composable com-
putational security for protocols that use UC-secure interactive primitives.

Kisters et al. [46] and Kiisters et al. [47] leverage non-interference techniques
for ideal functionalities in Java programs. While their method is capable of cov-
ering a large class of protocols and interactive primitives, it does not encompass
DY-style abstractions of non-interactive primitives such as encryption. Thus,
they have to represent all non-interactive primitives as ideal functionalities.
Since the abstraction that uses ideal functionalities inherently contains shared
memory between protocol parties, automated verification techniques are forced
to deal with numerous interleaving runs and the verification costs significantly
increase with the number of ideal functionalities. We show that UC-secure ideal
functionalities of interactive primitives can be combined with computationally
sound DY-style abstractions of non-interactive primitives, thereby minimizing
the amount of ideal functionalities.

Fournet et al. [42] show computational soundness for the refinement type
system F7 (and later F*) by relying on ideal functionalities as abstraction. The
required type annotations serve as local invariants and make the verification
feasible, even with shared memory and many interleaving runs. First steps have
been undertaken towards automated type inference [53] for the type annotations;
however, the automation is incomplete and still requires a significant amount of
human interaction. As the type system is for the computational setting (against
a computational attacker), automated type derivation is inherently harder than
in a symbolic setting (against a symbolic attacker).

130 M. Backes et al.

Delaune et al. [34] and Béhl and Unruh [15] transfer simulation-based security
completely into the symbolic setting, including symbolic composition theorems.
However, these results do not guarantee computational soundness.

3 Review of the CoSP Framework for Equivalence

We review the CoSP framework for equivalence properties [6], in which we cast
our computational soundness result.

Symbolic Model. In CoSP, symbolic abstractions of protocols and of the attacker
are formulated in a symbolic model M = (C,N,T,D): a set of free functions
C, an infinite set N of nonces, a set T of terms (formed by constructors and
nonces), and a set D of destructors, i.e., partial functions from terms to terms.

Protocols. Protocols are represented as infinite trees with the following nodes:
computation nodes are used for drawing fresh nonces and applying constructors
and destructors; input nodes and output nodes are used for sending and receiving
terms; control nodes are used for allowing the attacker to schedule the protocol.
A computation node is annotated with its arguments and has two outgoing
edges: a yes-edge, used for the application of constructors, for drawing a nonce,
and for the successful application of a constructor or destructor, and a no-edge,
used for the failed application of a constructor or destructor. Nodes have explicit
references to other nodes whose terms they use.

Symbolic Operations. We model the capabilities of the symbolic attacker as oper-
ations that the attacker can perform on protocol messages. A symbolic operation
is a finite tree, whose nodes are labeled with constructors, destructors, nonces
from the symbolic model M, or pointers to messages that the protocol has sent
to the attacker. There is a natural evaluation function evalp that evaluates a
symbolic operation O in a bottom-up fashion on a list of terms, resulting in a
term or the error symbol L.

Symbolic Execution. A symbolic execution is a path through a protocol tree. For-
mally, a symbolic execution of a protocol IT is a (finite) list of triples (V,v;, f;)
as follows. Initially, we have V3 = ¢, v1 is the root of II, and f; is an empty
partial function mapping node identifiers to terms. For every two consecutive
tuples (V,v, f) and (V',v/, f') in the list, let o be the nodes referenced by v
and define ¢ through fj := f(¥;). Figure2 depicts a case distinction over v for
defining valid successors V', v/, and f’. Each V; is called symbolic view.

Given a view V| Vo, is the list of terms ¢ contained in (out, t) € V. Vour-mMeta
is the list of terms [contained in (control, (I,1")) € V. Vy, (the attacker strategy)
is the list of terms that contains only entries of V' of the form (in, (x,0)) or
(control, (x,0')), and the first term has been masked with the symbol .

Computational Soundness for Interactive Primitives 131

switch v with
case computation node with constructor, destructor or nonce F'
if m:= F(f) # L then
V' :=V; v := the yes-successor of v; ' := f(v :=m)
else
V'’ :=V; v := the no-successor of v; f' := f
case input node
if there is a term ¢t € T and a symbolic operation O on M with evalo (Vou) =t then
v’ := the successor of v; V' :=V u: (in, (¢,0)); f' := f(v:=1)
case output node

v’ := the successor of v; V' :=V :: (out,t1); f' := f
case control node with out-metadata [
v’ := the successor of v with some in-metadata I’

f = f; V' :=V = (control, (I,1))

Fig. 2. Symbolic execution

Symbolic Knowledge and Equivalent Views. The symbolic knowledge of the
attacker comprises the results of all the symbolic operations that the attacker
can perform on messages output by the protocol. Given a view V', the symbolic
knowledge Ky is a function from symbolic operations on M of arity |Vou:| to
{T, L}, where T unifies all results of evalp(Voy,t) that are not L.

Two views are equivalent if they (i) have the same structure (i.e., the same
order of out, in, and control entries), (i) have the same out-metadata (i.e.,
Vout-Meta = Vurmeta)s ad (4i2) lead to the same knowledge (i.e., Ky = Ky).

Symbolic Indistinguishability. Finally, we define two protocols to be symbolically
indistinguishable if the two protocols lead to equivalent views when faced with
the same attacker strategy.

Computational Implementation. On the computational side, the constructors
and destructors in a symbolic model are realized with cryptographic algorithms,
which we call computational implementations. A computational implementation
is a family A = (A4,)zecupuny of deterministic polynomial-time algorithms A
for each constructor or destructor F' € CUD well as a probabilistic polynomial-
time (ppt) algorithm Ay for drawing protocol nonces N € N.

Computational Ezecution. The computational execution of a protocol is the
interaction between a ppt machine called the computational challenger and a ppt
attacker A. The transcript of the execution contains the computational coun-
terparts of a symbolic execution. The computational challenger traverses the
protocol tree and interacts with the attacker: at a computation node the corre-
sponding algorithm is run and depending on whether the algorithm succeeds or
outputs L, either the yes-branch or the no-branch is taken; at an output node,
the message is sent to the attacker; at an input node a message is received by
the attacker; and at a control node the attacker is asked which edge to take.

Computational Indistinguishability. The CoSP framework for indistinguishability
properties [6] uses termination-insensitive computational indistinguishability [54]

132 M. Backes et al.

(tic-indistinguishability) to capture that two protocols are computationally
indistinguishable. In comparison to the standard notion of indistinguisha-
bility, tic-indistinguishability does not require the interactive machines to
be polynomial-time; instead, it only considers decisions that were made for
polynomially-bounded prefixes of the interaction.

Given two machines A, B and a polynomial p, we write Pr[(A|B))]
for the probability that the interaction between A and B terminates within p(k)
steps and B outputs x.

Two machines A and B are tic-indistinguishable [54] for a machine A (A ~7,
B) if for all p, there is a negligible function u such that for all z,a,b € {0,1}"
with a # b, Pr{(ARLAGK,) by a] + Pr{(BR)IAGK, 2)) Yy b < 1+ (k).
Here, z represents an auxiliary string. We call A and B tic-indistinguishable
(A=, B)if A=~{ B for all ppt machines A.

We define a pair of protocols to be computationally indistinguishable if the
corresponding challengers are tic-indistinguishable. With the previously intro-
duced notions, we define computational soundness, which states that symbolic
indistinguishability implies computational indistinguishability.

Definition 1 (Computational Soundness). Let a symbolic model M and a
class P of efficient protocols be given. A computational implementation A of M
s computationally sound for M if every pair of protocols in P is computationally
indistinguishable whenever it is symbolically indistinguishable.

4 Review of the UC Framework

We briefly review the UC framework [17], as we use it to establish our compu-
tational soundness result. The UC framework is designed to enable a modular
analysis of security protocols. In this framework, the security of a protocol ¢
is defined by comparing the protocol with a setting in which all parties have
a private connection to a trusted machine F, called ideal functionality, which
performs the desired protocol task locally. The ideal functionality F serves as
an abstraction of this task. A protocol ¢ UC-realizes an ideal functionality F if
for all ppt machines A (the attacker) there is a ppt machine S (the simulator)
such that no ppt machine Z (the environment) can distinguish an interaction
with ¢ and A from an interaction with F and S. The environment is connected
to the protocol and the attacker in the real setting or to the functionality and
the simulator in the ideal setting.

Each machine M has two different input tapes. First, it has a subroutine
input tape, which is used when another machine M’, e.g., the environment Z,
calls them as a local subroutine. Second, each machine has a network tape, which
is connected to the attacker A or the simulator S.

The order in which computations are performed in UC is as follows. The
execution starts with the environment Z. Its execution pauses whenever it writes
a message to an input tape of another machine M’. At this point, M’ is activated
and runs until M’, in turn, writes a message to a tape of another machine M.

Computational Soundness for Interactive Primitives 133

5 Ideal Functionalities in the Symbolic Model

We abstract interactive primitives in the symbolic model as ideal functionalities.
As a simple example, consider two parties A and B running an interactive key
exchange. For example in the applied 7-calculus, this is modeled as three parallel
processes A | P | B, where P is the symbolic key exchange abstraction that
generates a fresh key and sends it to both parties on private channels.

Formalizing Ideal Functionalities. An ideal functionality F in CoSP is symboli-
cally abstracted as a CoSP protocol with only computation nodes; it will serve
as a subroutine in another protocol. Technically, F excepts five parameters state,
sid, sender, input, and rand as input. Since destructors and algorithms in CoSP
are stateless as opposed to machines in UC, we model the state explicitly by
the first parameter. A message sent to F is modeled by the parameters sender
and input, where sender represents an identifier of the sending party and input
the contents. If the message comes from the attacker, sender is null(). The sid
parameter gives F access to its session id. The last parameter rand is a fresh
randomness for F.

For the output, F contains result nodes. They indicate the end of an invoca-
tion of F, and the messages computed by the reached result nodes encode F’s
output.

Ideal Functionalities in the Symbolic Model. An ideal functionality yields a poten-
tially complex destructor Dz with the same behavior as the symbolic operation.
To combine ideal functionalities for interactive primitives with Dolev-Yao models
for non-interactive primitives, we formulate the aforementioned process P, which
models the ideal task, essentially as an application of the destructor Dg.

An application of the destructor corresponds to a message sent to the UC
machine implementing the ideal functionality. This allows a CoSP protocol to
use the ideal functionality like a subroutine (as in the UC framework).

Definition 2 (Ideal Destructor). Let F be an ideal model (a set of ideal
functionalities) based on the symbolic model M = (C,N, T,D), and let F € F.

The ideal destructor of F is a destructor Dy : T° — T with (tsate, tsid,
tsender; tinputs trand) > tres. Here tres is the term produced by the reached result
node in the symbolic execution of F with parameters tsiase, tsid, Lsenders tinputs trand-

Extended Symbolic Model. Given destructors D for F € F and a symbolic
model M = (C,N, T, D) (for non-interaction primitives), the extended symbolic
model is Mg := (C,N, T,Dg) where Dp :=D U {Dz/5 | F € F}.

6 Ideal Functionalities in the Computational Model

As a first step to prove computational soundness, we explain how to leverage
existing computational soundness results for non-interactive primitives. The for-
mulation of F as a destructor D enables us to consider an ideal computational

134 M. Backes et al.

execution, in which Dz is implemented by a computational variant (called the
canonical algorithm) Az of F.

Definition 3 (Canonical Algorithm). Let an extended symbolic model My
based on M and a computational implementation A of M be given. The canonical
algorithm of F is the algorithm Ar : N x ({0,1})° — {0,1}" with (bstate, bsids
bsenders Vinput, Orand) — bres. It Tuns the an unbounded variant of the computa-
tional execution of F and stops if the first reached result node is reached. (An
attacker is not involved, because F contains only computation nodes.) The out-
put bres is the bitstring computed by the that node. The first argument of Ar
represents the security parameter and the other arguments determine the inputs.

Ideal Implementations. Recall that we extend a symbolic model M by ideal
destructors Dz, resulting in a new symbolic model Mg. Analogously, we extend
a computational implementation A for M by the canonical algorithms Az, given
that each Ax is computable in polynomial-time. Writing Az instead of Ap,,
the resulting ideal implementation A := (A;)zecuppuN implements My.

Computational Soundness for the Ideal Functionalities. Assume we have a com-
putational soundness result for the implementations of non-interactive primitives
(e.g., Aenec and Agee). That is, the Dolev-Yao model without the special destruc-
tor Dz (only consisting of enc and dec) is computational sound. Then we can
show that also the Dolev-Yao model with the destructor Dz is computationally
sound given that Dz is implemented by Ar.

The following lemma states the computational soundness of the ideal func-
tionalities, which are ideal implementations in the computational model. To
establish the lemma, we need some natural protocol conditions (Appendix A).
They ensure (i) that inputs and outputs of the ideal functionalities are actu-
ally plugged to input and output nodes, (i) that sessions and state are handled
correctly and (iii), that fresh randomness is provided for each call of the ideal
functionality (the rand argument). Within a concrete symbolic calculus, syntac-
tic criteria that imply the protocol conditions can be introduced.

Lemma 1 (Soundness of Ideal Implementations). Let Mg be an extended
symbolic model based on M, and let A be a computationally sound implemen-
tation of M for protocols II in a class of protocols P that fulfills the protocol
conditions (Appendiz A). Suppose that My has the ideal implementation Ap.
Suppose that for every II € P, we have that the full protocol II is in P.

Then the ideal implementation Ax is computationally sound for Mg and P.

For the proof of the lemma (see the full version [30]), we construct a full protocol
I1 from IT by inlining the calls to ideal implementations: Each computation node
v with destructor D is replaced by the tree of the ideal functionality F. The
parameters of F are connected to the nodes referenced by v and the subtree
rooted at the yes-successor of v is appended to every result node of F. The
proof basically uses the fact that the full protocol II does not use any of the
ideal destructors Dz. Thus the computational soundness of M applies.

Computational Soundness for Interactive Primitives 135

7 Real Protocols in CoSP

In the ideal computational execution, the interactive primitives are not imple-
mented by their actual cryptographic realizations: while Az is computational,
it is merely an algorithmic representation of the ideal functionality F. To close
the gap to a real interactive protocol, we assume that there is a an interactive
protocol ¢ that is a UC-secure realization of F.

Formally, we define a real algorithm Ag, which has the same interface as
an algorithm Ag, i.e., it takes bitstrings bsate, » bsid, Dsenders Vinput, branda as input
and produces a triple (b};,c, > ODreceiver boutput) Of bitstrings as output.

The arguments directly correspond to the arguments of canonical algorithms
of ideal functionalities, and the same intuition should be applied in general. In
contrast to an ideal functionality however, there is no “joint state” between the
participants of a real protocol. To enforce this statically, the state argument
state; only represents the state of one single protocol party P.

Since the algorithms can output a state, each UC protocol can be re-
formulated as a real algorithm in our model. If we have a cryptographic real-
ization for every F in an ideal model F, we can extend a computational imple-
mentation A to a real implementation Ag. Ar and Ag allow us to compare
an ideal implementation of the interactive primitives with a real one, as in the
UC framework.

To simplify notation, we write Ay to denote an interactive algorithm that is
either the canonical algorithm for an ideal functionality 8 = F or the algorithm
for a real protocol 8 = ¢.

To make use of the UC framework, we first bring interactive algorithms to
the UC setting by constructing machines in the UC sense from them. We write
1(0) for the machine that runs Ay internally. It basically provides an interface
to a computational CoSP execution that activates 1(f) whenever Ay should be
executed. In case that 6 = ¢ is a real algorithm, we require that p(6) separates
the state of distinct protocol parties. This models a real protocol execution as
the parties can only communicate via the attacker.

8 Computational Soundness for Interactive Primitives

As a final step, we prove computational soundness for the interactive primitives.
We leverage the composability of UC security: If the real protocol ¢ is a UC-
secure realization of the ideal functionality F, then instances of F used in a
larger protocol can be replaced securely by instances of ¢.

Using the UC framework, we would like to show an analogous result in our
model: if the machine u(¢) is a UC-secure realization of u(F), then instances of
the canonical algorithm Az used in a larger protocol can be replaced securely
by instances of the real algorithm Ag. Consequently, if Ar is a computational
sound implementation of the destructor D, then Ay is a computational sound
implementation of the destructor Dg.

136 M. Backes et al.

We require that the ideal functionality F and the real protocol ¢ adhere to
few technical conditions. We explain why these conditions are necessary, what
they exactly are, and why they do not constitute fundamental restrictions.

Problems. Our goal is to consider a UC environment Z that runs a computational
CoSP execution but does not handle computation nodes with the destructor D£.
Instead, this task should be delegated to a UC machine. For a interactive algo-
rithm Ay however, the standard machine p(6) does not suffice for this purpose:

One problem stems from the fact that in the CoSP execution run by Z, com-
munication with the attacker happens only when an input or an output node is
reached in the CoSP protocol. However, the machine 1(6) could just not adhere
to this restriction and exchange messages with the attacker machine even if the
CoSP execution run by Z does not currently process an input or an output node.

The second problem concerns only the ideal setting, and consists of a lack
of information of the environment Z. The CoSP view output by the environ-
ment must contain the communication between F and the simulator S, but this
communication is not visible for Z in UC. In fact, u(F) and S can exchange
arbitrary messages without even noticed by Z.

To understand why this second problem does not arise in the real setting,
consider w.l.o.g. the dummy attacker 4, that will only relay communication
between the environment Z and the machine p(¢).! Thus Z is informed about
all communication between u(¢) and Ay.

Technical Remedy. In the proof of our main theorem, we build a wrapper machine
i1(0) around every machine 1(6). It reports to the environment Z that communi-
cation took place between 1(f) and the attacker, but not what communication.
To ensure that the wrapper machine can be used instead, we assume that the
ideal functionality F and the real protocol ¢ are good, i.e. we require them to
adhere to one technical condition each. We describe the conditions here only
informal. Exact definitions can be found in the full version [30].

Condition on the Ideal Functionality. The condition on the ideal functionality
basically states that the simulator can force u(F) to produce output to the
environment. This helps in a situation where the real attacker sends a message
to p(¢), which sends in turn a message m to the environment. In the ideal setting,
the simulator must force p(F) to send a message indistinguishable from m to the
environment immediately, without replying to the simulator first, because such
a reply would be reported to the environment by the wrapper machine fi(F).

Condition on the Real Protocol. The condition on the real protocol ensures that a
message from the environment to u(¢) leads to a output message to the attacker
immediately. Here the excluded situation is that the real protocol machine p(¢)
answers a request from the environment immediately, whereas the ideal machine

! Canetti shows [17] that it suffices to prove security against a dummy attacker Ag,
which acts as proxy for the environment Z.

Computational Soundness for Interactive Primitives 137

p(F) would have to talk to the simulator first, which is not possible without
being reported to the environment by the wrapper machine fi(F).

Discussion. We stress that both the conditions for the ideal functionality and
the conditions for the real protocol are rather technical requirements instead of
severe restrictions. The conditions are fulfilled by virtually all natural interactive
primitives such as blind signatures [41], zero-knowledge proofs [16], oblivious
transfer [17], and secure function evaluation [17]. In some cases, a technical
reformulation of the ideal functionality or the real protocol is necessary. For
instance, a real protocol that provides access to its results via an request interface
would violate our condition; however it can be formulated such that it reports
the results to the environment without being asked.

Furthermore, the condition for the ideal functionality seems to exclude adap-
tive corruption models. The reason is that these models typically require the ideal
functionality to report parts of its internal state corresponding to a corrupted
party to the simulator, after the simulator decides to corrupt that party. Still,
by modeling corruption in a slightly different but still natural manner, a refor-
mulation is possible. We refer to the full version [30] for a detailed discussion.

The main cause for the two technical conditions is a discrepancy between the
UC framework and the CoSP framework. We use the latter in order to leverage
existing results [6]. As a result, we inherit the restrictions that stem from the
way previous embeddings resolved non-deterministic choices, e.g., concurrent
computations: the distinguisher has full control over all scheduling decisions of
concurrent computations and is fully aware of the execution state with respect to
control flow. As a consequence the distinguisher can observe that communication
between the simulator and the ideal functionality takes place. This is in contrast
to the UC framework, where the distinguisher (the environment) cannot observe
this communication.

Main Result. The main theorem, which is proven in the full version [30], states
that we can extend a computational soundness result for equivalence properties
to a computational soundness result for interactive primitives that are soundly
abstracted by ideal functionalities.

Theorem 1. Let Mg be an extended symbolic model based on M, and let Ag
be a computational implementation of Mg based on A. Let P be a class of CoSP
protocols such that every protocol in P fulfills the protocol conditions for interac-
tive primitives (Appendiz A). Suppose that every F € F is a good ideal function-
ality and every ¢ € Y is a good real protocol (see the full version [30]). Suppose
that for every ideal functionality F € F and the corresponding real protocol
¢ € @, we have that p(p) UC-realizes p(F).

If A is a computationally sound implementation of M for P with respect to
equivalence properties, then Ag is a computationally sound implementation of
Mg for P with respect to equivalence properties.

138 M. Backes et al.

Limitations. While our result can be used with a wide range of natural two-
party and multi-party primitives in the UC framework, it comes with several
limitations.

First, since UC security is a very strong notion, some interactive primitives
cannot be achieved in the UC framework, or they can only achieved under addi-
tional assumptions, or they require less efficient protocols than under ordinary
security definitions. For instance, zero-knowledge proofs and oblivious-transfer
are impossible without additional assumptions [17,22]. However, these primi-
tives are possible if a common reference string (CRS) and authenticated mes-
sage transfer (e.g., using a public-key infrastructure) is assumed [17,18]. Another
example is UC-secure key exchange, which is, depending on the formulation,
strictly stronger than standard key exchange [21], and thus requires less efficient
protocols. We refer to Canetti [17, 2005 revision] for a comprehensive overview
over different primitives in the UC framework.

Second, our result cannot be used to abstract non-interactive primitives using
the UC framework. (While such abstractions are not desirable for automated
verification (see Sect.2), they might be desirable to achieve composability.) The
culprit is the condition for the real protocol. Recall that it imposes that the
protocol does not immediately reply to the environment, i.e., to the caller. While
this is a natural assumption for interactive primitives,? it is very unnatural for
non-interactive primitives. Indeed, all meaningful “protocols” that realize ideal
functionalities for public-key encryption and signatures proposed by Canetti [17]
violate the condition that we impose upon real protocols, because they perform
the cryptographic operation locally without network communication involving
the attacker. However, we are not aware of any natural interactive protocol,
which cannot be reformulated to adhere to the technical conditions outlined
above.

9 Case Study: Untraceable Payments

Untraceable payments, proposed by Chaum [25], allow a payer to perform a
payment to a payee, say a shop, via a bank. In Chaum’s protocol, a payer
basically buys a coupon, i.e., a signed random bitstring, such that the bank
does not know the coupon. Then, the user can pay with this coupon at a shop,
and the shop will check the validity of the coupon with the bank. As the main
cryptographic tool for untraceable payments Chaum suggests blind signatures,
which guarantee that the bank neither learns the message nor the signature while
signing the message.

We verify the untraceability of the payments with the verification tool
ProVerif [12] using a UC-secure abstraction of blind signatures by Fischlin [41].
Our computational soundness theorems entail that the result of ProVerif’s veri-
fication carries over to the computational realization of untraceable payments.

2 Tt is the very nature of interactive protocols that a message is sent on the network,
i.e., the protocol activates the attacker, before it reports results to the caller.

Computational Soundness for Interactive Primitives 139

Ideal Blind Signatures and Their Realization. Our ideal functionality F for blind
signatures models a scenario with one bank BANK and n users USER;. It consists
of a setup phase and offers a signing oracle to the users. In the setup phase, the
bank generates signature keys or receives them from the attacker. Then, the
functionality distributes the verification keys to the bank BANK and all users.

Upon a signing request (Sign, sid, m, vk’) from USER;, the functionality for
an honest USER; waits for the attacker to deliver the message, signs the message
m using the stored signing key sk, and sends the result to USER;. For a malicious
USER;, the ideal functionality F informs .4 about the message. Then it informs
the bank that a signature is being requested.

Fischlin [41] showed the existence of a protocol that UC-realizes an ideal
functionality for blind signatures under standard cryptographic assumptions.
Our functionality differs in details from the one in [41]. Using Fischlin’s con-
struction ¢, we can prove realization if we require that the signature scheme,
used by the ideal functionality is unforgeable. The proof is essentially only a
modification of the proof in [41], and can be found in the full version [30].

Computational Soundness of Signatures and Blind Signatures. We rely on a
symbolic model M, for digital signatures. (It contains also public-key encryp-
tion, which we do not use). The model is computationally sound in CoSP for
uniform bi-protocols with respect to a computational implementation A, [6].
The aforementioned ideal functionality F for blind signatures and its UC-secure
realization ¢ yields a CoSP destructor Dz and a real implementation Ay, respec-
tively. Symbolically, we extend M ;4 by D, resulting in Mg;g p4i9. Computation-
ally, we extend Ay by Ag, resulting in A g peig- Finally, Theorem 1 and the
computational soundness for signatures in uniform bi-processes in the applied
m-calculus [6, Theorem 3] yield the computational soundness of our case study.

Theorem 2. Let QQ be an applied-m bi-process on the symbolic model Mg psig
that is randomness-safe [6] and fulfills the protocol conditions (Appendiz A). If
Q is uniform, then the computational bi-protocol corresponding to Q, which uses
the computational implementation Agg psig, 15 computationally indistinguishable.

Uniform Bi-protocols. We leverage a computational soundness result [6], which is
restricted to uniform bi-protocols. Bi-protocols are pairs of protocols that always
take the same branches and differ only in the messages that they operate on.

Uniform bi-protocols cannot express equivalence between protocols with
processes of different structure. For example, consider a protocol I7; with a client
process that sends some request to a server twice. If the requests are unlinkable
to each other, then formally, the client process is equivalent to a protocol ITs with
the parallel composition of two client processes that send one request each. How-
ever, I and II5 have different structure, i.e., they differ in more than the terms
they operate on. Thus a uniform bi-protocol cannot model this unlinkability.

A uniform bi-process [13] in the applied m-calculus is the counterpart of a
uniform bi-protocol in CoSP. A bi-process is a pair of processes that only differ
in the terms they operate on. Formally, they contain expressions of the form

140 M. Backes et al.

choicela, b], where a is used in the left process and b is used in the right one.
A bi-process @ can only reduce if both its processes can reduce in the same
way. We consider the variant of the applied w-calculus used for the original
CoSP embedding [3]. The operational semantics is defined in terms of structural
equivalence (=) and internal reduction (—); for a precise definition of the applied
m-calculus, we refer to [12]. Formally, a bi-process) in the applied m-calculus
is uniform if left(Q) — Rjegy implies that @ — R for some bi-process R with
left(R) = Riefs, and symmetrically for right(Q) — Ryigns with right(R) = Ryigne.

Verifying Untraceability in ProVerif. ProVerif [12] is an automated verification
tool that can prove the uniformity of bi-processes in the applied m-calculus [1].
We use a wrapper process (Fig.3) in the applied m-calculus that enforces the
protocol conditions from Appendix A.

This wrapper maintains the session identifier in a way that is compatible with
UC, maintains the state of the ideal functionality, and offers an interface that is
compatible with our computational soundness result for interactive primitives.

Model in ProVerif. We used ProVerif to model a small untraceable payment
system with two payers and one payee, say a shop owner. We modeled the
scenario in which the bank is compromised and two honest payers purchase
coupons. Then, one of the payers uses the coupon, and the shop owner leaks
the coupon to the bank by cashing it. We modeled the scenario as a process for
the ideal functionality of blind signatures and one bi-process that models both
the payers and the shop owner. Since we consider untraceability, the bank is not
modeled explicitly, it is the attacker.

To help ProVerif terminate, we replaced the process that executes the very
complex destructor D by an equivalent process consisting of a series of let and if
commands. As there is no communication in the equivalent process, the modified
protocol differs only in the fact that it offers more scheduling possibilities: the
attacker can schedule other processes in the middle of the computation, which is
not possible in the unmodified process with the atomic destructor D . Thus any
attack possible on the unmodified process is also possible on the modified one.

Our code [51] has about 200 lines of code. ProVerif proves uniformity within
under a second on a machine with an Intel i7 CPU (2 GHz) and 4 GB RAM.

Even though the symbolic model M;, includes a length function, we did not
include the corresponding length destructor in the case study, because ProVerif
does otherwise not terminate. Nevertheless, our verification is computationally
sound, because the length functions in the underlying result [6] are only necessary
to handle public-key encryption, which is not part of My;, in our case study.

Formally, we present the following lemma, which can be useful beyond our
case study when applying the result of [6]. The lemma states that we can ignore
a destructor d in the symbolic analysis of a bi-protocol, if (4) d is not used in the
bi-protocol and (i) d can be simulated using other destructors and constructors.

Lemma 2. Let M = (C,N, T,D) be a symbolic model. Consider the model
M = (C,N,T,D’) with D' =D\ {d}. Let IT be a bi-protocol on M'.

Computational Soundness for Interactive Primitives 141

Assume there is a function simD with the following property: given any sym-
bolic operation Oq4 in M, and any view V, but only the symbolic knowledge K‘lyll
of M/, simD outputs a symbolic operation Ogsimp on M that simulates d, i.e.,
Osimp(t) = d(O4(t)) for all sequences of terms t € T*.

Then II is indistinguishable in the symbolic model M if it is indistinguishable
in the symbolic model M'.

In the full version [30], we prove the lemma and give a function SimLength
that simulates the destructor “length” used in [6].

Plugging everything together, the successful ProVerif verification, Theorem 2,
and Lemma 2 prove for our case study bi-process that any realization adhering to
the implementation conditions of A 44 psig [6] is computationally indistinguishable.

let functionalityWrapper_F =
(* initialize *)
in(initInputC_F, any_value);
new attSessC; new protSessInC; new commonSessC;
out (attC, attSessC);
out (initOutputC_F, protSessInC);
new stateC; new resC; new sid;
(
(* initialize state *)
out (stateC, null()

|
'(

(
(* receive from attacker *)
in(attSessC, attInput);
out (commonSessC, (attInput, attSessC))

) |«
(* receive from protocol party *)
in(protSessInC, (protInput, protParty));
out (commonSessC, (protInput, protParty))

AN
(* handle both types of input *)
in(commonSessC, (input, sender));
in(stateC, state);
new rand;
(* exzecute ideal functionality *)
let (state’, (receiver, output)) =

D_F(state, sid, input, sender, rand) in

out(resC, (state’,(receiver, output)))

AN
(* process outputs *)
in(resC, (state’, (receiver, output)));
out (receiver, output);
out (stateC, state’)

Fig. 3. The wrapper for the ideal functionality

Acknowledgments. We thank the reviewers for their helpful and valuable comments.
This work was supported by the German Ministry for Education and Research (BMBF)

142 M. Backes et al.

through funding for the Center for IT-Security, Privacy and Accountability (CISPA)
and the German Universities Excellence Initiative.

A Protocol Conditions

Given a CoSP protocol II, consider the directed graph ref(II) which has the
property that a node v, is successor of a node v, if and only if v, references v
in its annotations. It is a tree because nodes may only reference nodes which are
on the path to the root in the protocol tree. For a node v of II, the reference tree
of v is the subtree of ref(IT) which is rooted at v and reachable from there. We
say that a node v is determined by a node v/ if on the path (through ref(IT))
from v to v’ exclusive, every node has exactly one successor. The corresponding
path is called reference path to v'.

We require that the following criteria are met for for all ideal functionalities
F and all computation nodes v with a destructor D.

1. We say that two interactive nodes belong to the same session if and only if
one of them is contained in the reference tree of the state argument node of
the other. Two interactive nodes with destructor Dz € F are required to be
part of the same session if and only if they have the same sid argument node.

2. Let v/ be the bottom-most predecessor of v that belongs to the same session,
if any. Let be the output computed by v/ in a computational execution of the
protocol. On the path from v/’ to v, there are the following nodes:

— Three computation nodes vgigie; Vreceiver ad Voyspus Which produce the
bitstrings state, receiver and output, respectively. They are determined
by v/. Their reference paths to v’ contain only computation nodes and
v is in the yes-subtree of all these computation nodes.

— If and only if in a computational execution of the protocol, the bitstring
produced by Vyeceiver 18 Apuu(), an output node referencing vy epu-

3. The state argument of v is Vg4t Or a computation node with constructor
null().

4. Vgpate 1s not referenced by other nodes than v.

5. The sender argument is a computation node with constructor nullif and only
if the input argument is an input node.

6. The rand argument of v is a computation node v,4,4 with nonce N € N. On
a path trough v;4,4, there is no other computation node with nonce N. vy4nq
is not referenced by other nodes than v.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
POPL 2001, pp. 104-115. ACM (2001)

2. Abadi, M., Baudet, M., Warinschi, B.: Guessing attacks and the computational
soundness of static equivalence. In: Aceto, L., Ingélfsdéttir, A. (eds.) FOSSACS
2006. LNCS, vol. 3921, pp. 398-412. Springer, Heidelberg (2006)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Computational Soundness for Interactive Primitives 143

Backes, M., Hofheinz, D., Unruh, D.: CoSP: a general framework for computational
soundness proofs. In: CCS 2009, pp. 66-78. ACM (2009)

Backes, M., Laud, P.: Computationally sound secrecy proofs by mechanized flow
analysis. In: CCS, pp. 370-379. ACM (2006)

Backes, M., Maffei, M., Mohammadi, E.: Computationally sound abstraction and
verification of secure multi-party computations. In: FSTTCS 2010, pp. 352-363.
Schloss Dagstuhl (2010)

Backes, M., Mohammadi, E., Ruffing, T.: Computational soundness results for
ProVerif. In: Abadi, M., Kremer, S. (eds.) POST 2014. LNCS, vol. 8414, pp. 42—
62. Springer, Heidelberg (2014)

Backes, M., Pfitzmann, B., Waidner, M.: A composable cryptographic library with
nested operations (extended abstract). In: CCS 2003, pp. 220-230. ACM (2003)
Backes, M., Pfitzmann, B., Waidner, M.: The reactive simulatability (RSIM) frame-
work for asynchronous systems. Inf. Comput. 205(12), 1685-1720 (2007)

Bana, G., Comon-Lundh, H.: A computationally complete symbolic attacker for
equivalence properties. In: CCS 2014, pp. 609-620 (2014)

Bana, G., Comon-Lundh, H.: Towards unconditional soundness: computationally
complete symbolic attacker. In: Degano, P., Guttman, J.D. (eds.) POST 2012.
LNCS, vol. 7215, pp. 189-208. Springer, Heidelberg (2012)

Baudet, M., Cortier, V., Kremer, S.: Computationally sound implementations
of equational theories against passive adversaries. In: Caires, L., Italiano, G.F.,
Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
652-663. Springer, Heidelberg (2005)

Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. In: LICS, pp. 331-340 (2005)

Blanchet, B., Fournet, C.: Automated verification of selected equivalences for secu-
rity protocols. In: LICS 2005, pp. 331-340. IEEE (2005)

Bohl, F.; Cortier, V., Warinschi, B.: Deduction soundness: prove one, get five for
free. In: CCS 2013, pp. 1261-1272. ACM (2013)

Bohl, F., Unruh, D.: Symbolic universal composability. In: CSF 2013. IEEE (2013)
Camenisch, J., Krenn, S., Shoup, V.: A framework for practical universally com-
posable zero-knowledge protocols. In: Lee, D.H., Wang, X. (eds.) ASTACRYPT
2011. LNCS, vol. 7073, pp. 449-467. Springer, Heidelberg (2011)

Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. Full and revised version of FOCS 2001 paper. IACR ePrint Archive:
2000,/067/20130717:020004 (2013)

Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19-23. Springer, Heidelberg (2001)
Canetti, R., Gajek, S.: Universally Composable Symbolic Analysis of Diffie-
Hellman based Key Exchange. IACR ePrint Archive: 2010/303 (2010)

Canetti, R., Herzog, J.: Universally composable symbolic security analysis. J. Cryp-
tol. 24(1), 83-147 (2011)

Canetti, R., Krawczyk, H.: Security analysis of IKE’s signature-based key-exchange
protocol. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 143-161.
Springer, Heidelberg (2002)

Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally compos-
able two-party computation without set-up assumptions. J. Cryptol. 19(2), 68-86
(2003)

Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC 2002, pp. 494-503. ACM
(2002)

144

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

M. Backes et al.

Chandran, N., Goyal, V., Sahai, A.: New constructions for UC secure computation
using tamper-proof hardware. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol.
4965, pp. 545-562. Springer, Heidelberg (2008)

Chaum, D.: Blind Signatures for Untraceable Payments. In: CRYPTO 1982, pp.
199-203. Plenum Press (1982)

Cheval, V.: APTE: an algorithm for proving trace equivalence. In: Abrahdm, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 587-592. Springer, Heidel-
berg (2014)

Comon-Lundh, H., Cortier, V.: Computational Soundness of Observational Equiv-
alence. In: CCS 2008, pp. 109-118. ACM (2008)

Comon-Lundh, H., Cortier, V., Scerri, G.: Security proof with dishonest keys. In:
Degano, P., Guttman, J.D. (eds.) POST 2012. LNCS, vol. 7215, pp. 149-168.
Springer, Heidelberg (2012)

Comon-Lundh, H., Hagiya, M., Kawamoto, Y., Sakurada, H.: Computational
soundness of indistinguishability properties without computable parsing. In: Ryan,
M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 63-79.
Springer, Heidelberg (2012)

Computational Soundness for Interactive Primitives (full version of this paper).
https://www.infsec.cs.uni-saarland.de/~mohammadi/interactive.html

Cortier, V., Kremer, S., Kiisters, R., Warinschi, B.: Computationally sound
symbolic secrecy in the presence of hash functions. In: Arun-Kumar, S.,
Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 176-187. Springer,
Heidelberg (2006)

Cortier, V., Warinschi, B.: A Composable Computational Soundness Notion. In:
CCS 2011, pp. 63-74. ACM (2011)

Dahl, M., Damgard, I.: Universally composable symbolic analysis for two-party
protocols based on homomorphic encryption. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 695-712. Springer, Heidelberg (2014)
Delaune, S., Kremer, S., Pereira, O.: Simulation based security in the applied Pi
calculus. In: FSTTCS 2009, pp. 169-180. Schloss Dagstuhl (2009)

Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic
voting protocols. J. Comput. Secur. 17(4), 435-487 (2009)

Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: Formal analysis of protocols based
on TPM state registers. In: CSF, pp. 66-80. IEEE (2011)

Diffie, W., Van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Des. Codes Crypt. 2(2), 107-125 (1992)

Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf.
Theory 29(2), 198-208 (1983)

Dougherty, D.J., Guttman, J.D.: An algebra for symbolic Diffie-Hellman protocol
analysis. In: Palamidessi, C., Ryan, M.D. (eds.) TGC 2012. LNCS, vol. 8191, pp.
164-181. Springer, Heidelberg (2013)

Even, S., Goldreich, O.: On the security of multi-party ping-pong protocols. In:
FOCS 1983, pp. 34-39. IEEE (1983)

Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60-77.
Springer, Heidelberg (2006)

Fournet, C., Kohlweiss, M., Strub, P.-Y.: Modular code-based cryptographic veri-
fication. In: CCS 2011, pp. 341-350. ACM (2011)

Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. STAM J. Comp. 18(1), 186-207 (1989)

https://www.infsec.cs.uni-saarland.de/~mohammadi/interactive.html

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Computational Soundness for Interactive Primitives 145

Hofheinz, D., Shoup, V.: GNUC: a new universal composability framework. J.
Cryptol. 28(3), 423-508 (2013)

Kremer, S., Mazaré, L.: Adaptive soundness of static equivalence. In: Biskup, S.,
Lépez, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 610-625. Springer, Heidel-
berg (2007)

Kiisters, R., Scapin, E., Truderung, T., Graf, J.: Extending and applying a frame-
work for the cryptographic verification of java programs. In: Abadi, M., Kremer,
S. (eds.) POST 2014. LNCS, vol. 8414, pp. 220-239. Springer, Heidelberg (2014)
Kiisters, R., Truderung, T., Graf, J.: A framework for the cryptographic verification
of java-like programs. In: CSF 2012, pp. 198-212. IEEE (2012)

Kiisters, R., Tuengerthal, M.: The IITM Model: a Simple and Expressive Model
for Universal Composability. IACR ePrint Archive: 2013/025 (2013)

Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696-701. Springer, Heidelberg (2013)

Micciancio, D., Warinschi, B.: Soundness of formal encryption in the presence of
active adversaries. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 133-151.
Springer, Heidelberg (2004)

ProVerif code of the case study. https://www.infsec.cs.uni-saarland.de/
~mohammadi/paper/case_study_untraceable_payments.zip

Sprenger, C., Backes, M., Basin, D., Pfitzmann, B., Waidner, M.: Cryptographi-
cally sound theorem proving. In: CSFW 2006, pp. 153-166. IEEE (2006)

Swamy, N., Weinberger, J., Schlesinger, C., Chen, J., Livshits, B.: Verifying high-
erorder programs with the Dijkstra Monad. In: PLDI 2013, pp. 387-398. ACM
(2013)

Unruh, D.: Termination-insensitive computational indistinguishability (and appli-
cations to computational soundness). In: CSF 2011, pp. 251-265. IEEE (2011)

https://www.infsec.cs.uni-saarland.de/~mohammadi/paper/case_study_untraceable_payments.zip
https://www.infsec.cs.uni-saarland.de/~mohammadi/paper/case_study_untraceable_payments.zip

	Computational Soundness for Interactive Primitives
	1 Introduction
	2 Related Work
	3 Review of the CoSP Framework for Equivalence
	4 Review of the UC Framework
	5 Ideal Functionalities in the Symbolic Model
	6 Ideal Functionalities in the Computational Model
	7 Real Protocols in CoSP
	8 Computational Soundness for Interactive Primitives
	9 Case Study: Untraceable Payments
	A Protocol Conditions
	References

