
DexHunter: Toward Extracting Hidden Code
from Packed Android Applications

Yueqian Zhang, Xiapu Luo(B), and Haoyang Yin

Department of Computing, The Hong Kong Polytechnic University Shenzhen
Research Institute, The Hong Kong Polytechnic University, Kowloon, Hong Kong

{csyzhang,csxluo}@comp.polyu.edu.hk, yin.haoyang@connect.polyu.hk

Abstract. The rapid growth of mobile application (or simply app)
economy provides lucrative and profitable targets for hackers. Among
OWASP’s top ten mobile risks for 2014, the lack of binary protections
makes it easy to reverse, modify, and repackage Android apps. Recently,
a number of packing services have been proposed to protect Android
apps by hiding the original executable file (i.e., dex file). However, little
is known about their effectiveness and efficiency. In this paper, we per-
form the first systematic investigation on such services by answering two
questions: (1) what are the major techniques used by these services and
their effects on apps? (2) can the original dex file in a packed app be
recovered? If yes, how? We not only reveal their techniques and evaluate
their effects, but also propose and develop a novel system, named Dex-
Hunter, to extract dex files protected by these services. It is worth noting
that DexHunter supports both the Dalvik virtual machine (DVM) and
the new Android Runtime (ART). The experimental results show that
DexHunter can extract dex files from packed apps effectively and effi-
ciently.

1 Introduction

Being the most popular mobile operating system [29], Android has attracted
around 60 % more app downloads than iOS, and made nearly $3 billion in rev-
enue from Google Play last year [18], not to mention many other third-party
Android markets. The massive success of Android apps poses lucrative and prof-
itable targets for attackers. For example, it was recently reported that 98 % of
mobile malware targeted on Android devices [21]. In particular, attackers usu-
ally disassemble popular apps, insert malicious components, and then upload
the repackaged apps to various markets for compromising victims’ smartphones
[13,15,16,45,51,53]. Moreover, attackers can make profits by changing the client
IDs of ad components in apps created by others or adding new ad libraries to
these apps [23]. These attacks are due to the lack of binary protections, which
is among OWASP’s top ten mobile risks for 2014 [4].

Recently, a number of packing services (or simply packers) have been pro-
posed to protect Android apps from being reversed, modified, and repackaged
[10,22]. The packers usually adopt various approaches to hide the original exe-
cutable file (i.e., dex file) and impede the attempt of dumping the dex file. They
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also employ code obfuscation techniques to raise the bar of understanding the
internal logics. Note that attackers also use packers to harden malware so that
they could evade signature-based detection and make it very difficult for security
analysts to understand malware [9].

However, little is known about these packers, such as their effectiveness and
efficiency. In this paper, we conduct the first systematic investigation on Android
packers by answering two questions:

– What are the major techniques used by these packers and their effects on
apps?

– Can the original dex file in a packed app be extracted? If yes, how?

We inspect six packing services that provide web portals to allow users to upload
apps for hardening [8,11,12,30,39,50]. Our analysis in Sect. 2 reveals that these
packing services usually employ one or more techniques to protect apps, includ-
ing code obfuscation, dynamic code modification, dynamic loading, and anti-
debugging. Moreover, we quantify their overhead, in terms of app’s size and
launch time, in Sect. 5.1.

Then, we examine whether the original dex file in a packed app can be
extracted. We propose and develop a novel system, named DexHunter, which
provides a general approach to recover the dex files from packed apps. DexHunter
exploits the class loading process of Android’s virtual machine, including both
the Dalvik virtual machine (DVM) and the new Android Runtime (ART) [25].
It is non-trivial to design and develop DexHunter because of many challenging
issues, such as handling dynamic code modification through a general approach,
avoiding anti-debugging techniques, etc. By applying DexHunter to packed apps,
we found that the packers under examination cannot effectively protect apps and
the original dex files can be recovered. Note that in this paper we focus on how to
extract hidden dex files from packed apps without touching on how the packers
obfuscate the code [14], because obtaining the dex files is the prerequisite of
deobfuscating the code, and we will investigate the latter in future work.

In summary, our major contributions include:

– We perform the first systematic examination on Android packers. We examine
their techniques, assess their effectiveness in protecting apps, and evaluate
their overhead introduced to apps. Our findings shed light on the research of
Android apps protection.

– We propose DexHunter, a novel system for recovering the dex files from packed
apps in both ART and DVM. To our best knowledge, DexHunter is the first
system that can handle packed apps running on both Android runtimes. We
implement DexHunter by modifying ART and DVM, and conduct careful
evaluation on its effectiveness and efficiency.

– By applying DexHunter to real apps packed by six packers, we observe that
it can automatically recover most dex files. The results indicate that existing
packing services are not as secure as expected. We also share lessons learnt
when dealing with these packers.
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The rest of this paper is organized as follows. We examine the techniques
used by existing packers in Sect. 2. Section 3 describes the goal and the basic
idea of DexHunter and Sect. 4 details the design and implementation of Dex-
Hunter. Section 5 reports the evaluation result. Section 6 discusses the limitations
of DexHunter and our future work. After introducing related work in Sect. 7, we
conclude the paper in Sect. 8.

2 Analysis of Packing Services

In this section, we analyze six app packers, including, Ali [8], Baidu [11], Bangcle
[12], Tencent [50], Qihoo 360 Mobile [39], and ijiami [30]. The reasons of selecting
them are twofold. First, these packers allow users to upload apps through web
portals and then return packed apps. Hence, attackers can easily use such services
to pack malware. In contrast, other packers, such as Arxan1 and Apperian2, do
not provide such services, thus having few samples for analysis. Although it was
reported that malware used ApkProtect to evade the detection [9], we cannot
access the web page of ApkProtect. Second, China is one of a few countries that
have very high Android malware encounter rates [32] and these packers are the
major packing services in China, which are developed by professional security
companies or big IT companies. We introduce the major techniques used by these
packers in Sect. 2.1 and report the evaluation result of the overhead introduced
by packers on apps in Sect. 5.1.

2.1 Common Techniques Used by Packing Services

Obfuscation. Obfuscation aims at preventing analysts from understanding the
code [14]. Android provides ProGuard to obfuscate apps through modifying
the names of classes, fields, and methods [24]. Advanced techniques to obfus-
cate Android apps, such as reordering control flow graphs, encrypting constant
strings, etc., have been recently proposed [40,52]. Developers can also manu-
ally conduct obfuscation, such as, using Java reflection to call methods and
access fields, implementing major functions in native code and then invoking
them through Java native interface(JNI), etc. They can further obfuscate the
correlation between Java code and native code by registering JNI methods with
semantically meaningless names in the JNI OnLoad function.

Dynamic Code Modification. Android apps are mostly written in Java and
then turned into Dalvik bytecode. Note that it is not easy for apps in Dalvik
bytecode to arbitrarily modify itself in DVM in a dynamic manner. Instead, they
can invoke native code through JNI to modify bytecode in DVM [37], because
the native code is running in the same context as the app’s DVM so that the
native code can access and manipulate the memory storing the bytecodes. As
1 https://www.arxan.com/.
2 http://www.apperian.com/.

https://www.arxan.com/
http://www.apperian.com/
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an example, malware can employ native code to generate malicious bytecodes
dynamically and then execute them in DVM [44].

Before executing the dex file in the new Android runtime (i.e., ART), ART
will compile the dex file into oat file in the ELF format. The native codes in so
files can not only change instructions in dex and oat files, but also modify key
data structures in the memory, such as DexHeader, ClassDef, ArtMethod, etc.,
in order to assure that the contents are correct only when they are used, and
the contents will be wiped out after they have been used.

Dynamic Loading. Android allows apps to load codes from external sources (in
dex or jar format) at runtime. Leveraging this feature, packers usually encrypt
the original dex file, decrypt and load it before running the app.

Anti-debugging. Since Linux allows a process to attach to another process for
debugging, to thwart the debugging through gdb, packed apps usually attach to
themselves using ptrace[1]. The rationale is that only one process can attach to
a target process at the same time. In other words, if an app (target process)
attaches to itself at runtime, gdb cannot attach to it, thus further debugging
operations are prohibited. Some packers will also check whether special threads,
such as the JDWP (Java Debug Wire Protocol) thread, have been attached.
Moreover, advanced packers can check whether the apps are running in an emu-
lator or the underlying system has been rooted.

Table 1. A summary of the six packers’ features.

Packing
service

Obfuscation Dynamic
code mod-
ification

Dynamic
loading

Anti-
debugging

Add
shared
libraries

Insert
classes

Support
ART

Bangcle YES NO YES YES YES YES YES

Tencent YES YES NO YES YES YES YES

360
Mobile

YES NO YES YES YES YES YES

ijiami YES NO YES YES YES YES YES

Ali YES YES YES YES YES YES NO

Baidu YES YES YES YES YES YES YES

2.2 Packers Under Investigation

We identify the major techniques used in the six packers through manual analy-
sis. Since these packers are evolving and do not provide version number, our
examination is based on the packed apps whose original versions were uploaded
those packers’ web portals on March-15-2015. As shown in Table 1, all of them
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add extra shared libraries (i.e., 6th column) and new instructions to the origi-
nal app (i.e., 7th column). Moreover, they adopt obfuscation (i.e., 2nd column)
and anti-debugging techniques (i.e., 5th column). While only half of them use
dynamic code modification (i.e., 3rd column), all except Tecent packer employ
dynamic loading approach. As Google introduced the new runtime (i.e., ART)
to replace DVM, all except Ali packer support ART.

3 DexHunter: Goal and Basic Idea

DexHunter aims at extracting dex files from packed apps through a unified
approach. It first launches the packed app in a real smartphone, and then locates
and dumps the unpacked content when the app is running. We will also correct
some fields corrupted by packers if necessary. Note that DexHunter does not
handle code obfuscation and junk instructions. Moreover, it only considers the
dynamic loading conducted when an app is executed, because most packers do
so to shorten launch time. We discuss how to extend DexHunter to deal with
arbitrary dynamic loading in Sect. 6.

3.1 Basic Idea

Android apps are compiled to dex files, which are in turn zipped into a single
apk file together with other resources. If DVM is utilized, when a newly installed
app is started for the first time, DVM converts the dex file extracted from the
apk file to the odex format. If ART is used, it will turn the dex file into the oat
file upon the installation [20].

An intuitive approach to realize DexHunter is to first locate the odex header
or the oat header in the memory by searching for their magic numbers, and then
dump the corresponding memory by parsing the headers. However, this approach
has several limitations. First, accessing the packed app’s memory requires such
approach to attach to the app’s process, such as using ptrace[1]. Unfortunately,
packed apps usually employ anti-debugging techniques as described in Sect. 2
to prevent itself from being attached. Second, this approach will miss the real
content resulted from dynamic code modification that happens when a class
is being initialized. Note that a class may be loaded without being initialized.
Third, this approach may miss dex files due to corrupted dex headers caused by
packed apps. Fourth, this approach may dump fake odex or oat files because
packed apps can create fake headers.

To tackle these issues, we propose a novel and unified approach that exploits
the class loading process of Android runtime, including both DVM and ART,
to locate and dump the desired files. The rationale behind the basic idea is that
Android runtime can locate and parse the dex file in order to execute it. While
the following analysis is based on the source code of Android 4.4.3, we believe
the basic idea can be applied to future versions.

Since each class should be loaded before it can be used, Android provides
three approaches [28] to load classes: (1) the implicit procedure of loading classes,
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Fig. 1. The three approaches of loading classes and their invocation graphs in ART.
The numbers indicate the invocation order.

such as the new operation, which happens if the corresponding class has never
been used before; (2) the explicit invocation of Class.forName; (3) the explicit
invocation of ClassLoader.loadClass. Although DVM and ART have different
implementations for these class loading approaches, we observe that for a given
virtual machine these three approaches share a few key common functions, which
will be elaborated in Sects. 3.2 and 3.3 for ART and DVM, respectively.

Leveraging this observation, DexHunter inserts codes into a selected key func-
tion to locate the required files and trigger the invocation of <clinit>. Moreover,
we propose novel approaches (Sect. 4.3) to pro-actively load and initialize classes.
To overcome anti-debugging and anti-emulating techniques, we integrate Dex-
Hunter with DVM and ART, and execute packed apps in a real smartphone
running modified DVM and ART as described in Sect. 4.2.

3.2 ART

In KitKat (Android 4.4), the new Android runtime, ART, was introduced to
replace DVM for better performance by compiling an app’s bytecode into native
instructions. Adopting the ahead-of-time compilation (AOT) technology, ART
performs the compilation when an app is being installed. More precisely, the dex
file will be compiled into oat file that adopts the ELF format.

To load a class, ART reads the dex or jar file using a native method called
DexFile openDexFileNative in libart.so. If the corresponding oat file does not
exist, ART invokes a tool named dex2oat to compile the dex or jar file into
an oat file. If the oat file exists but has not been loaded, ART reads it and
puts it into a memory cache map to avoid opening the file repeatedly. After
successfully accessing the oat file, ART creates a structure named OatFile to
record important information of this file. We will detail it when describing how
to dump the dex file in Sect. 4.2.
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Fig. 2. The three approaches of loading classes and their invocation graphs in DVM.

Then, ART can use different methods to load the class, whose invoca-
tion graphs are shown in Fig. 1. More precisely, the explicit invocation of
ClassLoader.loadClass will call the native method DexFile define
ClassNative (i.e., Fig. 1(a)). The invocation of Class.forName will call the
native method Class classForName (i.e., Fig. 1(a)). The new operation will
eventually call the native method artAllocObjectFromCode (i.e., Fig. 1(c)). By
comparing the two sub-figures in Fig. 1, we can locate the common functions
called by these three approaches. More precisely, we select DefineClass as the
key function for inserting DexHunter ’s code, because it creates the Class object
and is responsible for loading and linking classes.

3.3 DVM

Figure 2 illustrates the three approaches of loading classes and their invocation
graphs in DVM. The invocation of Class.forName will call Dalvik java lang
Class classForName. Calling ClassLoader.loadClass will eventually invoke
Dalvik dalvik system DexFile defineClassNative. The implicit class load-
ing will result in the invocation of dvmResolveClass. Moreover, dvmInitClass
is responsible for initializing a class. Before invoking it, the initialization status
is checked through dvmIsClassInitialized. The Reflection to Class.loadClass
in Fig. 2 means that there is a reflection invoking procedure that invokes the
related class loader’s loadClass method at Java level. By analyzing Fig. 2, we
select Dalvik dalvik system DexFile defineClassNative as the key function
for injecting DexHunter ’s code, because it creates the Class object and loads
the class from the dex file directly.

4 DexHunter: Design and Implementation

4.1 Architecture

Figure 3 depicts the major procedure of DexHunter. Given a packed app, Dex-
Hunter first determines whether it is packed by known packing services (i.e.,
those in Table 1) through the signatures to be described in Sect. 4.4. Moreover,
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Fig. 3. Using DexHunter in smartphone to recover dex files from packed apps.

we will check which runtime can run this app. If the app supports both DVM
and ART, we will use the ART version DexHunter to recover the dex file. If the
app is packed by known packers, we will obtain the corresponding parameters
from the profile database, including location for ART and fileName for DVM,
which will be detailed in Sect. 4.2. Otherwise, DexHunter will dump the target
memory but exclude system libraries listed in a while list.

Depending on the selected runtime, the packed app will be installed and
executed in a smartphone with modified libart.so or libdvm.so for ART or DVM,
respectively. If DVM is used, DexHunter will first dump the optimized dex file
from the smartphone and then combine it and its dependent files to reconstruct
the dex file. If ART is adopted, DexHunter will generate the dex file directly.

4.2 Locating and Dumping Dex Files

ART. Note that each oat file contains the information of the original dex file
in its oatdata section [43]. Therefore, after ART opens and reads an oat file, it
will create an OatFile structure to record important information of the file and a
DexFile object containing information related to the original dex file. In partic-
ular, there are three important values in the DexFile object, through which we
can locate the dex file, including:

– begin , which depicts the start address of the memory region containing the
original dex file;

– size , which represents the length;
– location , which indicates the oat file’s location.

We add codes in the DefineClass function to check the value of location
when a class is being loaded. Section 4.5 describes how to decide the packed
app’s location and the system libraries’ location . Therefore, by specifying
the value of location , we can recognize all classes in the original dex file and
then create a thread to accomplish the dumping operation. In this thread, the
DexFile object, which is also a parameter of the DefineClass function, is passed
in and then the thread can get the memory region to which the DexFile object
refers. By invoking the methods DexFile::Begin() and DexFile::Size(), we
can obtain the start address and the length of the memory region containing the
original dex file. As a result, we can recover the original dex file.
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DVM. After loading a dex or jar file, DVM will create a structure named
DexOrJar, which records the information of the file. One member named
fileName refers to the location of the file. Moreover, a DvmDex object, which
represents an open odex file, is associated with the corresponding DexOrJar
object. The DvmDex object has a member named memMap that maintains the cor-
responding memory region of the opened dex file. Its addr member stores the
start address while the length member denotes the length of the memory region.

To dump the desired dex file, we add codes to the selected function
Dalvik dalvik system DexFile defineClassNative and specify the value of
fileName. Once the dex file we expect is located through fileName, the mem-
ory region of the targeted odex file can also be figured out through the related
DvmDex object. More precisely, the member memMap in the DvmDex object records
the specified memory region. The member addr of memMap indicates the start
address while the member length stores the length. As a result, we can obtain
the odex file.

The odex file format was designed to let DVM work more efficiently and it is
usually much smaller than the original dex file, because it only includes critical
information. For instance, in an odex file, references to framework APIs are
replaced by indexes of a pre-loaded vtable and therefore methods can be quickly
invoked. Therefore, odex files rely on dependence files, which are device-specific
and can be found in the directory /system/framework.

Odex files cannot be converted into dex format directly because they rely
on dependencies. Since dependencies are device-specific, they must be copied
from the same device that runs the packed app. Finally, DexHunter uses
smali/backsmali to recover the dex file from the odex file and its dependen-
cies [2].

4.3 Proactive Class Loading and Initialization

For each newly loaded class, its class initializer (i.e. <clinit>) may not be invoked
yet. Since this method is invoked before any other method in the same class,
packers can add codes in <clinit> to perform dynamic code modification.

To deal with this potential issue, we propose a novel approach that turns
ART’s lazy initialization into proactive class loading and initialization. Note
that ART calls <clinit> only after the Class object is used for the first time,
such as invoking static method member, etc. Our approach loads all classes in
the same dex file and initializes them as shown in Algorithm1. More precisely,
in ART, before the dumper thread is created, DexHunter traverses all classes
in the same dex file in DefineClass function, and then invokes the FindClass
function along with every class’s descriptor for loading them. Note that invoking
FindClass can avoid loading the same class repeatedly in the same class loader.
After that, each class is initialized by invoking EnsureInitialized. All these
operations are done in the same loop.

The algorithm for DVM is similar except that FindClass is changed
to dvmDefineClass and EnsureInitialized is replaced with dvmIsClass
Initialized and dvmInitClass.
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Algorithm 1. Traversing and Initializing Classes
input : A ”DexFile” pointer dex file and the number of classes in this dex file n
output: All initialized ”Class” objects belonging to the dex file

for i ← 0 to n − 1 do
ClassDef ← GetClassDef(dex file,i);
Descriptor ← GetClassDescriptor(ClassDef);
ClassObject ← FindClass(Descriptor);
ClassObject ← EnsureInitialized(ClassObject);

end

4.4 Identifying Packers

Known Packers. DexHunter identifies known packers using (1) changes in
files, (2) inserted classes, and (3) location for ART and fileName for DVM.
We observe that all packers add new files, especially native codes (i.e., so files),
as shown in Table 2. Moreover, they modify the original AndroidManifest.xml
and classes.dex. After inspecting packed apps, we find that all packers insert
their own classes into the app, as shown in Table 3. We will describe how to
extract location or fileName in Sect. 4.5. Since it is easy to recognize and
differentiate these inserted files and classes, we use them as features to recognize
known packers. In future work, we will investigate advanced features, such as
Software bertillonage [17], if packers try to hide current features.

Unknown Packers. For unknown packers, we observe that they usually adopt
dynamic code modification with the following common steps. First, they load
packed dex files dynamically into memory, which will be converted to oat files
by ART. Then, they employ memory manipulation functions (e.g., “memcpy”)
to modify the code. Before that, they may call “mprotect” to alter the accessing
attributes of corresponding memory regions, for example, changing a memory
fragment from read-only (r--) to readable and writable (rw-). We can hook
aforementioned functions to capture this behavior patten. If such behavior pat-
tern is observed, DexHunter regards the app as a packed app.

4.5 Extracting the Values of location and fileName

location and fileName provide hints to dump the desired dex files in ART and
DVM, respectively. To examine their values set by different packers and those
used by system libraries, we modify ART and DVM to collect these values.

In ART, we add a function named GetUid to obtain the current process’s user
id by invoking system calls directly instead of using getuid in bionic library due
to the limit of the configuration for compiling Android. Moreover, we modify
DefineClass function to record all location values if the current process’s
user id is equal to that of the target app. Therefore, when DefineClass is used
to generate the Class object for the opened oat file, we can obtain the names
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Table 2. New files introduced by the packers. “xxx” denotes the app’s original package
name.

Packers New files

360 assets/libprotectClass.so, assets/libprotectClass x86.so, assets/libqupc.so

ALi lib/armeabi/libmobisec.so,
lib/armeabi/libmobisecx.so,lib/armeabi/libmobisecy.so,

lib/armeabi/libmobisecz.so

Baidu assets/baiduprotect.jar,assets/libbaiduprotect x86.so,lib/armeabi/
libbaiduprotect.so,

lib/x86/libbaiduprotect.so

Bangcle assets/bangcleplugin/container.apk,assets/bangcleplugin/dgc,assets/meta-
data/manifest.mf

assets/meta-data/rsa.pub,assets/meta-
data/rsa.sig,assets/bangcle classes.jar

assets/libsecexe.so,assets/libsecexe.x86.so,assets/libsecmain.so

assets/libsecmain.x86.so,assets/libsecpreload.so,assets/libsecpreload.x86.so

assets/xxx,assets/xxx.art,assets/xxx.L

assets/xxx.x86,assets/xxx.x86.L

ijiami assets/ijm lib/armeabi/libexec.so,assets/ijm lib/armeabi/libexecmain.so,

assets/ijm lib/x86/libexec.so

assets/ijm lib/x86/libexecmain.so,assets/ijiami.dat

META INF/af.bin, META INF/sdata.bin,META INF/signed.bin

Tencent assets/lib/armeabi/libmain.so,assets/lib/armeabi/libshell.so

Table 3. Inserted classes. The classes in parentheses will only appear if the original
dex file has an Application class. Otherwise, they will not be inserted.

Packers Inserted classes

360 com.qihoo.util.StubApplication, com.qihoo.util.DefenceReport

ALi com.ali.mobisecenhance.StubApplication

Baidu com.baidu.protect.A, com.baidu.protect.StubApplication,
com.baidu.protect.StubProvider

Bangcle com.bangcle.protect.Acall,com.bangcle.protect.MyClassLoader,
com.bangcle.protect.Util

neo.proxy.DistributeReceiver

(com.bangcle.protect.FirstApplication),
(com.bangcle.protect.ApplicationWrapper)

ijiami com.shell.NativeApplication

(com.shell.SuperApplication)

Tencent com.tencent.StubShell.ProxyShell, com.tencent.StubShell.ShellHelper
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Table 4. The values of location or fileName in apps packed by six packers.

Packers String

Bangcle /data/data/package name/.cache/classes.jar

Baidu /data/data/package name/.1/classes.jar

Tencent /data/app/installed apk name

360 internal.dex (/data/local/tmp/fake@apk.dex)

ijiami /data/data/package name/cache/.0000

ALi /data/app-lib/installed apk name/libmobisecy.so (i.e., the path of
libmobisecy.so, which is located in the app’s native library directory)

of all dex files related to the classes being loaded. We first filter out all known
system libraries and then decide which names should be kept according to the
features of different packers. For instance, some packers load the original dex file
dynamically and the oat file bound to the name of installed apk is only a stub.
Hence, such names should be removed.

In DVM, we follow the similar steps to collect the values of file
Name. More precisely, we modify the function Dalvik dalvik system
DexFile defineClassNative to locate the DexOrJar object and get the value
of fileName in this object.

Table 4 lists the location or fileName from six packers we examine. For
apps packed by 360 packer, the value is “/data/local/tmp/fake@apk.dex” when
the apps are executed for the first time. Then, the value is changed to “inter-
nal.dex”.

5 Evaluation

We downloaded 40 open source apps from F-Droid [6] and uploaded them to the
web portals of the six packers. Then, we execute the packed apps and DexHunter
on a Nexus 4 smartphone running Android 4.4.3 with Qualcomm Snapdragon
S4 Pro 1.5 GHz CPU and 2G RAM. Table 5 shows that not all apps can be
successfully packed by those packers and some packed apps cannot be run.

5.1 Overhead Introduced by Packers

We evaluate the overhead introduced by different packers in terms of increased
file size and prolonged launch time. By subtracting the original file size from
the size of packed app, we obtain the increased file size. Figure 4 illustrates that
most packed apps are larger than the original apps and Bangcle introduces more
than 600 KB data. A few packed apps are smaller than the original ones. The
reason is some packers will compress the original dex file.

To measure the prolonged launch time, we randomly select 17 apps and run
each original app and the packed one 30 times in the smartphone. We collect
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Table 5. Creating packed apps.

Packers Number of apps Number of packed apps Numbers of packed apps that
can run

360 40 39 37

ALi 40 39 37

Baidu 40 37 36

Bangcle 40 40 40

ijiami 40 40 40

Tencent 40 40 38

360 ALi Baidu Bangcle ijiami Tencent
-500000
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(a) Increased file size.
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(b) Prolonged launch time.

Fig. 4. Overhead introduced by packers in terms of increased file size and launch time.

the samples of launch time (i.e. from its start to the end of its main activ-
ity’s initialization) measured by executing “am start -n -W MainActivity”, and
then compute the inflated launch time. Figure 4(b) demonstrates that all pack-
ers introduce obvious additional delays. The minimal delay brought by Tencent
packer may be due to the fact that it does not load external dex files.

5.2 DexHunter’s Effectiveness

We apply DexHunter to all packed apps that can run in the smartphone. In fact,
DexHunter can bypass all anti-debugging methods used by these packers. Since
it becomes part of the process created by Zygote, all anti-debugging methods
mentioned in Sect. 2.1 will not stop DexHunter.

For apps packed by 360 packer and ijiami packer, DexHunter can recover the
dex files in both ART and DVM. Moreover, the extracted dex files can be parsed
by de-compilers (e.g., smali/baksmali, IDA, etc.).

For apps packed by Bangle, DexHunter can successfully extract the dex files
in both ART and DVM. The dex files dumped from DVM can be parsed by
de-compilers. However, the dex files recovered from ART have some instructions
that cannot be parsed by baksmali. The reason is that the dex files are extracted
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from the oat files prepared by Bangcle packer that has used some new Dalvik
opcodes [5]. The developer of baksmali said that this issue will be fixed soon.

For apps packed by Tencent packer, we found that the dex files dumped by
DexHunter are incomplete in both ART and DVM, because the method objects
in the heap, which represent hidden methods, are modified dynamically but the
dex file in memory is not changed. However, since the valid data is still in the
dex file’s data section, we can manually correct the attributes and the related
pointers of the hidden methods in the dex file.

For apps packed by Baidu packer, we observe that the dex file’s header will be
wiped if any class’s initializer is executed. Hence, we perform the dumping oper-
ations without pro-actively initializing the classes. Moreover, we found that the
dumped dex files are incomplete. More precisely, in dex files, for each class, there
is a class data item object to describe the members of the class. However, some
class data item objects of the dumped dex file are wiped by Baidu packer. In
order to capture the positions of the class data item objects, we modified the
runtime to record the addresses of class data item objects. When the applica-
tion runs, the wiped class data item objects in so files will be released to the
heap and the pointers, which are in the dex file, to the class data item objects
will also be corrected. After filling in the correct data in the class data item
objects, we can obtain complete dex files.

Since Ali packer only supports DVM, DexHunter recovers the dex files in
DVM. In a dex file, each code item object describes a method and maintains a
pointer to it. But some pointers to code item objects are invalid in the dumped
dex files. We modified DVM to obtain the addresses of code item objects and the
corresponding instructions. Combining the process’s memory layout, we found
that the lost code item objects and instructions are located in a memory region
allocated by the packed app. To repair the dex files, we could also dump this
memory region and record the addresses of the lost code item objects.
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Fig. 5. Dumping speed of DexHunter.
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5.3 DexHunter’s Efficiency

We also evaluate DexHunter ’s efficiency on the same Nexus 4 device. We ran-
domly select 15 apps that can be packed by all six packers. For each sample,
DexHunter performs the dumping operation for 30 times. Note that the time
complexity of the dumping procedure is O(n)(n represents size of the target
memory region in bytes). Figure 5 shows DexHunter ’s dumping speed which is
around 40 KB/s and does not change much among different packers.

6 Discussion

Although DexHunter can recover the dex files from apps packed by existing
packers, it has the following limitations and we will tackle them in future work.
First, some packers will wreck some fields in the dumped dex files as mentioned in
Sect. 5.2. Currently, we repair them through semi-automatic or manual approach.
In future work, we will enhance DexHunter to automate this process.

Second, if an app dynamically loads components from other places after
waiting for a long period or certain conditions, DexHunter cannot dump this
dex file, because DexHunter does not know when the component will be loaded.
We will extend DexHunter to handle it by hooking all methods for dynamic class
loading in future work. Alternatively, we can first conduct static analysis [38] to
determine how to trigger the app’s dynamic class loading and then perform it.

7 Related Work

Hardening Android apps has attracted great attention from the industry [9,26].
Although there are a few simultaneous work from the industry, there lacks of a
systematic study on it yet. In a recent article and presentation [9,34], Apvrille
and Nigam reported the results of manually unpacking apps packed by a few
packers, such as APKProtect and Bangcle. Strazzere and Sawyer reported their
tool, named android-unpacker, to defeat four packers including APKProtect,
Bangcle, 360 Mobile, and LIAPP [48,49]. Since it will attach to the last thread
of an app, we observed that it failed in several scenarios, such as, the thread has
already been attached by a ptrace, the thread is killed, etc. Note that DexHunter
will not be affected by this issue because it is integrated into the runtime. We
developed DexDumper for extracting the dex files of apps running on Android
2.3 or older versions [45]. Note that DexDumper lacks of the functions provided
by DexHunter, including handling apps running on Android with version newer
than 2.3, dealing with anti-debugging, processing odex files, etc.

ZjDroid was released by Baidu Inc. [7] for unpacking packed apps. It relies
on Xposed [3] and locates the dex files by hooking BaseDexClassLoader to
obtain DexOrJar. There are several significant differences between ZjDroid and
DexHunter. First, DexHunter supports both ART and DVM while ZjDroid only
works in DVM. Second, ZjDroid cannot pro-actively load and initialize classes
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and therefore it may miss the real content resulted from dynamic code modi-
fication that happens when a Class object is being initialized. DexHunter can
overcome this issue because it conducts pro-active class loading and initializa-
tion. Third, since ZjDroid waits for user commands to dump the dex files, it may
be evaded by packers that destroy some key data which is used only once. Dex-
Hunter can handle this issue because it extracts the dex files before the first class
in the dex file is used. Fourth, since ZjDroid relies on Xposed and obtains the
information at Java level, it can be easily detected and interrupted by advanced
packed. In contrast, DexHunter will not be affected.

Park described one general unpacking method for packed apps [35]. It is quite
different from DexHunter because it needs to insert codes to packed apps (i.e.,
repackage the packed app). This approach can be easily detected by packed apps.
Moreover, compared to DexHunter, its functionality is quite limited.

Since packing is widely used by malware to evade the signature-based detec-
tion, many studies have investigated how to unpack such malware [19]. However,
all of them focus on packers for Windows/Linux native codes [41]. It is worth
noting that unpacking techniques for x86 binaries cannot be applied to Android
because of two reasons. First, Android and x86 have different execution model.
Second, techniques for x86 unpacking only need to examine x86 instructions
in memory while dumping odex files need to investigate both the memory of
Android runtime (e.g., DVM) and that of the underlying Linux because packers
usually use native codes running on Linux to modify the byte codes in DVM.

We review some representative work of automatically dumping packed native
executables because an app’s native codes can be packed through traditional
approaches. PolyUnpack is the first general approach to automatically identify
and dump packed codes [42]. It first statically analyzes an executable and then
uses debugging APIs to check each instruction. If an instruction sequence does
not exist in the disassembly of the executable, PolyUnpack identifies the packed
codes and then extracts them. Renovo runs a packed executable in QEMU and
monitors each instruction [31]. If new codes are written to memory and then
executed, Renovo regards it as one layer of unpacking conducted by the packed
program. Instead of tracking each instruction, OmniUnpack [33] and Eureka [46]
adopt coarse-grained execution monitoring to improve the performance. The for-
mer uses OllyBone [47] to track executed pages and the latter monitors selected
system calls. Justin employs a set of heuristics to improve the detection of the
end of unpacking and adopts several countermeasures to defeat some evasion
techniques used by malware [27]. Although dynamic approaches could effec-
tively extract packed code, they suffer from some common limitations, such as,
higher overhead compared to static analysis, limited time of executing packed
program, etc. Perdisci et al. developed a classification system for determining
whether an executable is packed or not before sending it to unpacking systems,
thus significantly saving the processing time [36].
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8 Conclusion

We conduct the first systemic investigation on existing Android packers by exam-
ining their major techniques, evaluating their effects on apps, and assessing their
effectiveness. We propose and develop DexHunter, a novel system for recovering
dex files from packed apps in both ART and DVM. To our best knowledge, it is
the first unpacking system that supports both ART and DVM. The experimental
results based on real packed apps demonstrate the effectiveness and efficiency of
DexHunter. This research reveals important issues in existing Android packers
and sheds light on the future research of Android apps protection.
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