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Abstract. Vulnerable Android applications (or apps) are traditionally
exploited via malicious apps. In this paper, we study an underexplored
class of Android attacks which do not require the user to install mali-
cious apps, but merely to visit a malicious website in an Android browser.
We call them web-to-app injection (or W2AI) attacks, and distinguish
between different categories of W2AI side-effects. To estimate their preva-
lence, we present an automated W2AIScanner to find and confirm W2AI
vulnerabilities. We analyze real apps from the official Google Play store
and found 286 confirmed vulnerabilities in 134 distinct applications. This
findings suggest that these attacks are pervasive and developers do not
adequately protect apps against them. Our tool employs a novel com-
bination of static analysis, symbolic execution and dynamic testing. We
show experimentally that this design significantly enhances the detection
accuracy compared with an existing state-of-the-art analysis.

1 Introduction

In this paper, we present a detailed study of an underexplored class of application
vulnerabilities on Android that allow a malicious web attacker to exploit app
vulnerabilities. It can be a significant threat as the remote attacker has full
control on the web-to-app communication channel and no malicious apps are
needed on the device. A successful attack can exploit web APIs (WebView) and
native APIs on Android.

The Android platform provides a web-to-app communication bridge which
enables web-to-app interaction. The web-to-app bridge is used in Android to
facilitate installed applications to be invoked directly via websites. This feature
has many benign uses. It is used by many popular applications on the official
Google App Store, e.g., the Google Maps app can seamlessly switch to the Phone
app when phone numbers of businesses displayed on Google Maps are clicked,
without explicitly starting the Phone app.

The web-to-app bridge exposes Android apps to unvetted websites when the
user visits them in a browser. Without proper sanitization on the URI or “extra
parameters” derived from the URI, a vulnerable app ends up using these values
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to start a malicious web page in a WebView or abuse Android native APIs.
While it is known that the web-to-app bridge can lead to vulnerabilities [34], in
this work, we study whether existing apps are susceptible to attacks from this
channel in any significant way, and if so, to what extent. We systematically study
and classify attacks which we call Web-to-App Injection (W2AI). Web-to-App
Injection attacks are different from other recently disclosed vulnerabilities. Such
vulnerabilities arise either in the implementations of hybrid mobile application
frameworks, or in application code written on top of such frameworks which
access external device interfaces (e.g. camera) [9,14,17,26]. In contrast, attacks
studied in this paper affect Android applications via the web-to-app bridge.
Furthermore, W2AI attacks can be easily combined with existing app-to-app
attacks.

W2AIScanner. To enable detection for W2AI on a large scale, we describe a
tool that analyzes Android apps for W2AI vulnerabilities. Existing static analysis
techniques alone are insufficient for conducting such analysis as the complexity
and size of applications limits the precision of static analysis. Dynamic analysis,
such as random testing and unguided symbolic execution, face the complemen-
tary problem of path space explosion, leading to expensive analysis. In this work,
we employ a refinement-based static analysis combined with dynamic testing to
overcome the challenges of these individual techniques. W2AIScanner can auto-
matically analyze APK files and produce working (0-day) exploits. Thus, it shows
a significant enhancement of the accuracy over the results generated by a purely
static state-of-the-art analysis. It constructs a witness exploit, a URI, to be sub-
sequently used by security analysts (or app store) to construct specific attack
payloads for determining the severity of discovered vulnerabilities.

Results. First, to measure the prevalence of W2AI vulnerabilities, we present
the first comprehensive study of web-to-app injection (W2AI) attacks in Android.
We analyzed 12,240 applications from the official Google App Store where 1,729
of them expose browsable activities. Our tool, found 134 apps (7.75% of 1,729
apps) to have W2AI vulnerabilities by automatically constructing 286 attacks.
Our results suggest that developers often neglect the risk posed by web-to-app
vulnerabilities to Android users, taking insufficient countermeasures. We con-
tacted the Android security team to disclose the vulnerabilities to the vulnerable
apps. The Tencent security team has confirmed our reported vulnerabilities in
the Tencent Android SDK (2.8) [3].

Second, we find that W2AI attacks introduce a broad range of possible
exploits in installed Android applications which are analogous to vulnerabili-
ties commonly known to occur in web applications — such as open redirect,
database pollution, file inclusion, credential theft, and so on. Further, these vul-
nerabilities are not specific to implementations of certain application frameworks
(or SDKs), as they can arise in application written in different SDKs. Third, we
demonstrate that our analysis technique provides significantly higher precision
than state-of-the-art static analysis techniques, at an acceptable analysis cost.
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2 Overview

In Android, intents are the primary ways for an Android app to share data
with other apps and to access system services [1]. An intent object carries infor-
mation that Android uses to determine the component to start execution, plus
information that the recipient component uses to properly perform the action.
For example, the email app can be invoked to send an email via an intent by
any other app.

A web page can invoke a component in an installed app if the target app
declares one or more of its activities as being BROWSABLE in the app’s manifest.
When a user clicks a web hyperlink, in a certain format, Android translates it
into an intent (object). We use intent hyperlink to refer to the hyperlink or
its string and use URI intent to refer to the workings of the intent mechanism
in Android. Intent hyperlinks carry parameters within the hyperlink – the frag-
ment identifier, and information about the target activity specified as a tuple
(scheme, host, path), etc.

2.1 Web-to-App Injection Attacks

URI intents expose a new channel of attacks targeting installed apps.

Threat Model. In a W2AI attack, we assume that the adversary is a standard
web attacker [4], who controls a malicious website. To expand the coverage of
victims, the attacker can disseminate the shortened URL of the malicious site
through emails, social networks, ads, etc. We make the following conservative
assumptions. We assume that the victim, Alice, only installs legitimate apps
from Google Play on her Android device. We also assume that at least one app
with adequate permissions on her device is benign but buggy, hence a W2AI
vulnerability exists.

W2AI Attacks. Analogous to a conventional web attack, when Alice directly
visits the malicious website or clicks a link redirected to the site, a W2AI attack
occurs. A generic scenario for W2AI follows: (1) The attacker crafts and publishes
a malicious intent hyperlink in a social network; (2) A user clicks the malicious
link redirecting to the attacker’s site in her mobile browser; (3) The site loads
the malicious intent hyperlink in an iframe or a new tab; (4) The browser parses
the hyperlink, generates the URI intent and launches the corresponding activity
in the vulnerable app; and (5) Hence, the payloads derived from the URI intent
running in the app can access the user’s private information or perform privileged
operations on behalf of the app.

W2AI vulnerabilities arise due to dataflows in the native Android code, rather
than in application logic written in HTML5 code [9,14,17,26]. Unlike other
vulnerabilities that exploit app-to-app communication interfaces [8,24,40,42],
we emphasize that W2AI attacks do not need an installed malicious app on the
device to launch attacks.
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2.2 Categories of W2AI Vulnerabilities

Android applications typically use data derived from the intent hyperlink with
Android API interfaces which can be divided into two categories, WebView and
native interfaces. If the attacker-controlled data are used in these interfaces with-
out any validation, the attacker can feed payloads to abuse them. We divide the
W2AI vulnerabilities into: (i) abusing WebView; and (ii) abusing Android native
app interfaces.

Abusing WebView Interfaces. WebView is a browser component provided
by Android, which provides the basic functionalities of normal browsers (e.g.,
page rendering and JavaScript execution) and enables access to various interfaces
(e.g., HTML5 APIs and JavaScript-to-native bridge). Certain applications take
parameters in the intent hyperlink and treat them as web URLs, thereby loading
them into WebView during execution. When this happens, the attacker’s HTML
code runs in the WebView. Furthermore, if the vulnerable application enables
execution for JavaScript in the WebView, the attacker can run JavaScript in
its HTML page, and can access all interfaces exposed to it by WebView. We
further classify the vulnerabilities arising from unfettered access to the exposed
interfaces into 4 sub-categories:

(1) Abusing the JavaScript-to-Native Bridge. JavaScript code loaded in the Web-
View can access native methods via the android.webkit.JavascriptInterface. The acces-
sible native methods are specific to each application. In our experiments, we
have found up to 29 distinct JavaScript-to-native interfaces accessible by a sin-
gle app, e.g., many apps enable access to interfaces that retrieve the device’s
UUID, version and name, thereby opening up the threat of privacy-violating
attacks. Furthermore, several interfaces allow reading and modifying the user’s
contact list and app-specific local files.

(2) Abusing HTML5 APIs. WebView enables access to standard HTML5 APIs,
akin to normal web browsers, e.g., if the vulnerable app has the proper permis-
sions and WebView settings, the attack web page running in the WebView can
use JavaScript to call the HTML5 geolocation API. We found 29 apps with such
tracking vulnerabilities.

(3) Local File Inclusion. When the user visits the malicious site, the site can trick
the browser to automatically download an HTML file into the user’s SD card
by setting the HTML file as not viewable. When the site triggers the browser
to parse the intent hyperlink that refers to the downloaded HTML file, e.g.,
file:///sdcard/Downloads/attack.html, it launches the vulnerable app to load the HTML
file in its WebView. If the vulnerable app has certain WebView settings, the
malicious JavaScript code in the HTML file can read any files under the app’s
directory or the readable system files (e.g., /etc/hosts) and send them to the
attacker.

(4) Phishing. The attacker’s web page can impersonate or phish the user interface
of the original application. Since there is no address bar displayed by WebView
that users can use to inspect the current page’s URL, users cannot distinguish
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the phishing page from the normal page. Such attacks via the web-to-app bridge
are harder for users to discern than the conventional phishing attack on the
web [12].

Abusing Android Native App Interfaces. Android Apps, even if WebView
is not used, can expose native Android interfaces to URI intents if input is not
properly sanitized. These lead to the further four categories of vulnerabilities:

(1) App Database Pollution. Android provides native interfaces for apps to exe-
cute SQL query statements to manage the app’s database. Therefore, if the SQL
queries are derived from the URI intent, it allows the web attacker to pollute
(e.g., add or update the table’s fields) the vulnerable app’s database.

(2) Persistent Storage Pollution. Android native interfaces enable apps to store
persistent states, e.g., authentication tokens, in the persistent storage (e.g.,
SharedPreferences and local files). Many vulnerable apps directly treat the parame-
ters from the URI intent as the content to add or update the persistent storage.
An attack URI intent can pollute the target app’s persistent storage.

(3) Open Re-delegation. Android native interfaces provide the ability to launch
specific activities addressed by name. If the name parameter is derived from
URI intent, it allows the web attacker to invoke any in-app private activities
directly, which are not required to be marked browsable. Moreover, the attacker
might embed an additional intent hyperlink as a parameter to the original intent
hyperlink and force the benign app to invoke another app. This leads to a broad
range of problems such as permission redelegation [13]. Permission re-delegation
is a confused deputy problem whereby a vulnerable app accesses critical resources
under influence from an adversary. Though these attacks are previously known
to be possible via the app-to-app [13], we show that they can be affected under
influence of a website through the web-to-app bridge.

(4) App-Specific Logic Flaws. Android enables apps to perform various opera-
tions (e.g., popping up messages) via native interfaces. Due to the app-specific
logic flaws, the vulnerable app directly uses the data from the URI intent as
parameters to these operations. For example, we found that an attacker can
exploit vulnerable apps to display a fabricated PayPal transaction status.

We use a real app as an example to explain how the W2AI attack works. The
example app is WorkNet (3.1.0), a Korean information app with 1–5M down-
loads. It has a browsable activity, kr.go.keis.worknet.WorknetActivity, which
loads arbitrary URLs in URI intents and is vulnerable to the following W2AI
attacks: abusing JavaScript-to-native bridges, abusing HTML5 APIs, local file
inclusion and phishing. The attack’s life cycle is as follows: (1) The attacker
hosts a malicious website, which loads an intent hyperlink ("intent://#Intent;scheme=
worknet;action=android.intent.action.VIEW;S.url=http://attacker.com;end;") into a new tab
using window.open. The attacker posts the site’s shortened link on social net-
works, e.g., Facebook. (2) When the user visits the attacker’s site (by clicking
the link on social networks, ads, and so on) in her Android browser, the site loads
the hyperlink in a new tab. (3) The user’s browser parses the hyperlink to the
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URI intent which contains extra parameters and launches the WorknetActivity

activity with the intent. (4) The activity loads the URL (http://attacker.com)
derived from the malicious URI intent into the WebView without proper valida-
tion. Now the attacker’s site is loaded with its JavaScript code running in the
WebView. The attacker can utilize whatever is available to this activity, e.g.,
abusing JavaScript-to-native bridges.

We find that WorkNet has 21 such interfaces, e.g., accessing contacts, local
files, device information, etc. Furthermore, being a WebView app, the attacker’s
site can mimic the UI of the original page. In the background, the scripts
access the user’s private data (e.g., device information and contacts), sending
them to the attacker’s server. In addition to abusing the JavaScript-to-native
interfaces, the web attacker can also abuse HTML5 APIs to track Alice’s geolo-
cation and leak the content of local files via file inclusion in this app. From this
example, we can see that the W2AI attacker can not only mount conventional
web attacks (e.g., unvalidated redirect in the example), but can also hijack the
vulnerable app to perform privileged operations on sensitive resources (e.g., local
files and contacts) without any installation of malware in the user’s device.

2.3 Detection Challenges

Our aim is to design a system that both detects and also confirms W2AI vul-
nerabilities. The target of W2AI attacks are sinks defined as sensitive/critical
Android and Java APIs used to inject data which make the application vulner-
able. The API calls which fetch intent objects containing data under the control
of the attacker are called sources.

At the high level, detecting W2AI vulnerabilities can be considered a source
to sink reachability analysis for Android apps. Existing analysis for Android apps
[5,16,25]. employ static analysis techniques but this only gives potential reach-
ability. Many of the potential source-sink flows detected may be false positives
(i.e., potential vulnerability is signaled as a flow, even though it can never occur
during execution) as we show in Sect. 4. We eliminate the false positives by gen-
erating intent hyperlinks which can be shown during execution to actually reach
and affect a sink. In other words, we only report vulnerabilities when we can
automatically generate a 0-day W2AI attack. This makes the task of explaining
and understanding a vulnerability significantly easier for security analysts or the
app developers.

The complexity of the Android environment and apps also raises practical
challenges. Figure 1 shows a simplification of the code of the WorkNet app,
explained in Sect. 2.2, which has W2AI vulnerabilities. The browsable activity
that is triggered by intent hyperlinks is MainActivity. When the user clicks on
the malicious intent hyperlink in the default browser, the system generates an
intent, launching MainActivity. Unlike Java programs, Android apps do not have
a main method. When an intent invokes an activity, the Android runtime invokes
the onCreate() or onNewIntent() callback methods. Next, the getIntent() and
onNewIntent() methods obtain the intent messages. Once an intent is sent to
an activity, any invocation of the getIntent() method throughout the activity
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MyRunnable

run(){...
  L15: if(timeOutError(this.timeout))

my_activity.
onReceivedError();

  L16: loadUrlNow(this.url);}

public MyRunnable(String s3,int t1){
  L13: this.url = s3;
  L14: this.timeout = t1;}

MainActivity MyWebView

String url;  int timeout;

Object getProperty(String key, 
                        Object default){
  L9: Intent i2 = my_activity.getIntent();
  L10: return i2.getExtras().get(key);}

loadUrlNow(String s4){
  L11: if(s4.startsWith(“file://”) ||
     s4.startsWith(“javascript://”) || … )
  L12: local_webview.loadUrl(s4);}

loadUrl(String s1,int n1){...
  L4: String s2 = (String)

getProperty("url", null);
  L5: if (s2 == null) loadUrlNow(s1,n1);
  L6: this.url = s2;
  L7: my_activity.
    runOnUiThread(new MyRunnable

          (s2,t1));
  L8: MyRunnable dummy = new 

MyRunnable(s2,t1);}

showWebPage(String s7,...){
  L20:  if((s7.startsWith(“file://”) ||

  !s7.equals(this.url)) 
  L21:  loadUrl(s7);
  L22: Intent i3 = new Intent("android.

intent.action.VIEW");
  L23: startActivity(i3.setData

(Uri.parse(s7)));}5

MainActivity my_activity;  String url;

  onReceivedError(String s5){
   L17: Intent i3 = getIntent();
   L18: String s6 = i3.

getStringExtra(“errorUrl”);
   L19: appview.
              showWebPage(s6,...);}   

onCreate(Bundle...){...
  L1: this.mUrl =

        “http://m.work.go.kr/”;
  L2: init();...}

init(){...
  L3:appview.
    loadUrl(this.mUrl,60000);...}

1

MyWebView appview;

2 4

3

6

Fig. 1. An execution sequence which retrieves malicious parameters from an intent
hyperlink. There are three classes separated by dashed lines: MainActivity, MyWebView and
MyRunnable. MainActivity is the browsable activity, MyRunnable is an inner class of MainActivity
implementing the Runnable interface. Methods are shown in boxes.

yields the same intent until setIntent(Intent) is called. Thus, the intent objects
at lines L9 &L17 will refer to the same intent hyperlink.

We explain the possible execution paths in Fig. 1, where the browsable activ-
ity loads malicious parameters in a malicious intent hyperlink clicked by the user:
(1) The MainActivity is launched and onCreate() is invoked storing the default
URL in this.mUrl used by loadUrl() at L3. (2) However, the application does not
load the default URL into the WebView immediately. Instead, getProperty() is
called which invokes getIntent() at L9. This method looks for the “extra para-
meter” (i.e., the parameter returned by get[type]Extra() API with type string),
having the key "url". If this parameter exists in the URI intent, runOnUiThread()
at L7 is called which runs the MainActivity’s UI thread. (3) Next, MyRunnable

class is instantiated storing the malicious URL in this.url and run() method
is invoked by the Android runtime. Line L15 in MyRunnable forks a thread (not
shown) to check whether the network connection times out within timeout limit.
In case of timeout, it calls onReceivedError() in the MainActivity which looks for
another extra parameter with key "errorUrl" at line L18. (4) If the string condi-
tions at line L20 are met, a string from the malicious URL is eventually loaded
to the WebView (path 1 with sink 1, loadUrl(), at line L12). (5) Otherwise, the
string will be incorporated into a new intent and attack suceeds to start another
app (path 2 with sink 2, startActivity(), at line L23). (6) Alternatively, the
malicious URL obtained at line L4 is loaded by the WebView (path 3 with sink
1, loadUrl() at line L12).

(2) Refining Control Flow Graph
and Reachability Analysis

Specification

(3) Static Flow Refinement & 
Symbolic Execution

(4) Attack Validation and Concrete 
Value Propagation

Intent Hyperlink Exploit

<source1 - sink1>
<source2 - sink2>
...

(1) Source-Sink Pair 
Identification

Fig. 2. Architecture of W2AIScanner
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In this example, there are two vulnerable sinks at lines L12 and L23 with
three paths to reach them. However, analyzing these vulnerabilities require deal-
ing with challenges that are not currently dealt with satisfactorily in existing
systems. The main reason is limitations in constructing the control flow graph
(CFG) from the Dalvik code. We saw that paths one and two occur due to
(nested) inner threads. The app also uses runOnUiThread() which changes execu-
tion to the main UI thread of the activity. Existing tools such as FlowDroid [5]
do not report this path since the generated CFG lacks the edges necessary for
the vulnerable paths. We remark that we have found 818 browsable apps using
threads in our dataset. In this example, the getIntent() invocations happen to
give the same intent message in all the code. The analysis needs to determine
what intent getIntent() refers to. This example also shows that the analysis
needs to be field-sensitive, since the malicious URL is stored in this.url field,
and also object-sensitive to refer to the correct instance of MyRunnable class.

Our analysis not only aims for accuracy in finding the paths for the source-
sink flow but also needs to generate instances of intent hyperlinks to confirm the
vulnerability. We use symbolic reasoning on strings and other constraint solving
in our analysis (lines L11, L20) to this end. In addition, the operations on intent
parameters can be dependent on the intent filters in the app manifest. Hence, in
addition to the bytecode analysis, intent filters from the app manifest need to
be taken into account in the analysis.

3 Detecting and Confirming W2AI Vulnerabilities

We describe a tool, W2AIScanner, which can automatically detect and confirm
W2AI vulnerabilities. In order to deal with the challenges described in Sect. 2.3,
W2AIScanner works in four phases as shown in Fig. 2. We now describe each of
these phases.

3.1 Source-Sink Pair Identification

Our design starts with a less precise analysis followed with an on-demand refine-
ment of the analysis. The more efficient but less precise analysis identifies poten-
tially vulnerable areas in the app that further benefit from a more precise and
costly analysis which can reduce false alarms.

We start with a specification including a set of sources and sinks. The sources
are the getIntent() and onNewIntent() methods that fetch the intent objects
which start the activity and provide data inputs to the app. We choose a subset of
the sinks provided by Susi [29] and also sinks relevant to the categories described
in Sect. 2.2.

The initial CFG used by our analysis is the inter-procedural control flow
graph in Soot [21] constructed based on the call graph created by SPARK [22].
In the first step, we generate pairs of source and sink program points for the given
specification. We have two design choices: (i) locating all possible program points
in the initial CFG by comparing the method signatures in the reachable methods;
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and (ii) using an existing information flow analysis system like FlowDroid [5] to
collect source-sink pairs with data dependency on inputs.1

We have observed that using FlowDroid, we need to perform the analysis
for fewer source-sink pairs and remove some of the irrelevant pairs, thereby
decreasing the analysis time. Hence, we use FlowDroid with a conservative set-
ting. For instance, it is possible to choose the flow sensitivity of the backward
alias search, we conservatively choose it to be flow-insensitive. Starting from the
browsable activities,2 FlowDroid finds pairs of source and sink program points
using dataflow analysis. In the next step, we utilize these source-sink pairs for
reachability testing and refining the initial CFG constructed by FlowDroid.

3.2 Refining the Control Flow Graph and Reachability Analysis

The less precise dataflow analysis in the previous step may introduce false alarms
and the constructed CFG may also miss edges (informally, we call them as gaps).
We compensate for this inaccuracy by a subsequent on-demand refinement and
symbolic execution. We start with the initial CFG from the previous step. Given
a source method, Sc, and a sink method Sk, W2AIScanner starts traversing
and refining the CFG with Sc being the starting node using depth-first search.
We resolve virtual methods and interface calls using a backward variable type
analysis, which considers assignments between callsites and class object instan-
tiation program points. In our motivating example, a node for method run()

in MyRunnable class is added because the CFG misses the edge from L7 to this
method. In this example, the class implementation for the Runnable interface at
L7 is resolved to MyRunnable class. Then, the run() method is loaded and its
nodes are added to the CFG.

While refining the CFG, a reachability analysis is also performed to reduce
the state explosion problems in the symbolic execution phase. When a branching
node is visited, it examines whether Sk is reachable from each of the branches
and caches the reachability result. The CFG traversal stops in this step if Sk is
reached and continues for the next source-sink pair. If a new sink is detected,
it will be added to the source-sink pairs to be examined later by the symbolic
execution. In Sect. 4, we show that accurate thread handling helps in finding
interesting vulnerabilities that are not detected by FlowDroid [5].

One problem is that Sc can be invoked anywhere in the program. Therefore,
the caller of the method where Sc resides might not be known (e.g., line L9 in
Fig. 1). Our analysis is conservative, thus, it returns to all possible callsites to
continue the analysis. Note that a path may have more than one sink. In that
case, the analysis continues until it reaches the other sinks.

In order to deal with backward edges caused by loops and recursive calls, a
node in a specific calling context is visited within a bounded number of times.
1 FlowDroid [5] is a static state-of-art analyzer for Android built upon Soot [21]

(based on the Interprocedural Finite Distributive Subset (IFDS) algorithm [30]) and
incorporates the Android component lifecycle.

2 We have modified the entry point selection implementation to pick the browsable
activities.
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Later we unify all the reachability results for nodes visited in different calling
contexts and use them in the symbolic execution. If a path does not include
any backward edges but is too long, we enforce a depth limit for the depth first
search.

3.3 Symbolic Execution and Static Flow Refinement

Static analysis is generally not sufficient to confirm vulnerabilities. However,
confirmation with concrete execution needs concrete inputs in the form of an
(attack) intent hyperlink. We employ symbolic execution [15,19] commonly used
for automated test generation to help in generating the inputs. Our symbolic
executor does not require any initial inputs and employs optimizations to reduce
the number of paths that need to be explored using the sink reachability analy-
sis conducted in the previous step. The final generated intent hyperlinks are
produced by a combination of the symbolic execution and validation phases.

The initial dataflow analysis used for reachability analysis in the first step
might produce a large number of flows, many of which may be false positives.
Thus, a strategy is required to reduce the number of initial flows. W2AIScanner
achieves an initial reduction by removing infeasible paths using symbolic exe-
cution. A path is feasible if there exists a program input for which the path is
traversed during program execution, otherwise the path is infeasible [20]. So we
immediately remove the infeasible paths.

The symbolic executor works on a worklist of statements. Our analysis picks
a source-sink pair, (Sc, Sk), starts from the source statement Sc and symbolically
executes the program until it reaches sink Sk. The reaching definition analysis
starts simultaneously and the intent object returned by Sc is marked as data
dependent on input. From this point, any parameter extracted from the source
intent object that has string, numeric, URI or boolean types is stored in a sym-
bolic variable. A URI can be decomposed into many substrings. We model the
URI class and convert it to string and integer compartments. We store symbolic
variables in a symbolic variable pool which is updated when translating a defin-
ition statement. If a statement has a call invocation, we need to decide whether
to enter the method or not. The symbolic execution enters a method if the sink
reachability result shows that entering the method will lead to a program point
where Sk is invoked. If the method is available (i.e., it is not an external method)
and the method callsite has a definition of a variable, the flow fact at the callsite
is updated when the analysis returns from the method. Otherwise, the method
call is considered dependent on inputs if any of its use variables (arguments or
the instance variable) are dependent.

For IF statements, the sink reachability result is examined for each of the
branches. If none of the branches are reachable to Sk, no new job will be added
to the worklist and the next path will be traversed. If only one of the branches is
reachable, that branch will be taken. Finally, if both branches are reachable to
Sk, W2AIScanner will search for the immediate postdminator (ImPodm). Based
on the CFG of a method, if W2AIScanner finds an ImPodm inside the method,
a new pending merge state will be added to the merge stack.
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An optimization arises during the analysis: if there is no ImPodm inside the
method, we cannot merge the two branches which are reachable to the same
sink Sk. If one of these branches does not contain input-dependent variables,
forking it will produce spurious paths whose constraints will not be used for
generating inputs. To avoid these paths, we introduce a dummy ImPodm: (1) We
add a merge state to the merge stack when execution reaches an always feasible
conditional statement and the mergepoint can be any of the exit statements
of the method. An exit statement is a program point where execution exits
a method; (2) When execution reaches any exit statement, it does not exit the
method. Instead, if the method contains another distinct path, that path is added
to the worklist; (3) Finally, when all paths inside the method are traversed and
execution is exiting the method, the states at all of the exit statements which
are data dependent on input and the constraints for class fields are merged and
there will be only one merged state for all exit statements. In order to choose the
program counter for this dummy ImPodm, we create a dummy exit statement.
The data dependency results are also utilized to remove irrelevant constraints
on the path formula if possible.

This step also involves a reaching definition analysis performed together with
the symbolic execution. This analysis is field-sensitive and distinguishes objects
originating at different allocation sites but reaching the same program point.
We use symbolic values to point to a heap object. In an execution path, there
may be variables whose values are used but not resolved, we employ an (on
demand) backward copy constant search for more accuracy. The values are over-
approximated in two ways: (i) The variable is a method parameter where we
consider all possible callers of the method. Therefore, the result might be a set
of possible values which will be considered one by one; (ii) The variable is a
class field, so we do an over-approximation by considering all of the definition
statements for this field variable in its declaring class.

In practice, symbolic execution on real world applications with large code-
bases face some additional challenges. The backward edges due to loops and
recursions or long paths may lead to scalability issues. In particular, loops pose
many challenges in the analysis since even the Android activity lifecycle itself is
a large loop. W2AIScanner employs a bounded symbolic execution and models
iteration blocks of code (e.g., Iterator class in Java) to address these obstacles.

Threads. One challenge in supporting threads is passing arguments. Usually
threads are initialized with arguments that are stored in class fields. Later, these
class fields are queried in the body of the run methods and a field-sensitive
analysis is required to keep track of them. Method arguments can also be passed
to threads in specific ways (e.g., AsyncTask) which are more complicated than
binding method arguments in the callsite for normal method invocations (where
there exists a one-to-one mapping between actual parameters at callsite and
formal parameters of the method). We model different ways provided by Android
to use threads and also support binding arguments for them.

Once we get the abstract description for all the sinks and external methods
in terms of formulas, we solve them and check the feasibility of each path. For
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feasible paths, a solution to the constraints is a witness which can be used to
construct an intent hyperlink to drive the execution down this path. These intent
hyperlinks are used at the last step to dynamically execute the program. We
employ the CVC4 SMT solver [23] which deals with string, integer and boolean
constraints. We provide intermediate formulas for string operations that are not
directly supported by CVC4 such as (startsWith and split). Once the solver
has instantiated some/all of the symbolic variables, we use them to instantiate
an intent hyperlink. In order to incorporate the generated inputs to the intent
hyperlink, our analysis resolves the key-value mappings (explained shortly) in
the intent hyperlink syntax.

3.4 Attack Validation and Concrete Value Propagation

W2AIScanner automatically generates intent hyperlinks that can exploit the
W2AI vulnerabilities. An intent hyperlink can be divided into two parts:
(i) the scheme part which has to be matched with the intent filter for the activ-
ity defined in the manifest file; and (ii) the data inputs which are of key-value
forms described below. The first part is collected by the manifest parser com-
ponent which retrieves the intent filter specification for the source activity. It
creates all possible schemes that will match the intent filter. Path is one of the
elements in intent filters that will be checked for accepting an intent. It can
be provided by developers in a special pattern (similar to regular expressions).
We use the algorithms from the Android framework to find values that match
these patterns.

The data inputs that make up an intent hyperlink are derived from the Intent
class methods. In Sect. 2 we discussed that an intent hyperlink follows a specific
syntax. Here is a simplified meta intent hyperlink:

intent://HOST/PATH?query=[string1]#Intent;scheme=[string2];action=[string3];S.key

=[string4];end;

where data input can be sent through the [string] fields to the Android applica-
tion code. There are several possible ways to send data via an intent hyperlink:
(i) a data URI which references the data resources consisting of the scheme,
host and path as well as query parameters which are the key-value mappings
preceded by the “?”; (ii) intent extras, the key-value pairs whose type can also
be specified in the intent hyperlink (e.g., the S in S.key = [string4 ] refers to
the string extra). Note that an intent hyperlink can have more parameters with
other types, e.g., int; (iii) other intent parameters such as categories, actions,
etc., that can be sent as string values.

As we explained in the previous step, there are intent APIs for each form of
the inputs described above that can be utilized in the application code to get
the data inputs. For instance, Intent.getStringExtra(String key) returns the
extras in the intent whose type is string and is mapped to key. We infer such
types and use them in generating intent hyperlinks. We define such methods
as entry methods if they are invoked on an input intent object. These methods
are considered as the input methods in the symbolic execution which generates
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test inputs for variables initialized by these entry methods. While constructing
symbolic formulas in the previous step, we also correlate the entry methods with
the intent filters in the manifest file to generate more accurate intent hyperlinks.
The entry methods return string, integer and boolean types as well as the URI
type.

We also need to find keys corresponding to each input parameter. We use
constant propagation, explained in the previous step to find the values of the
arguments of API calls such as getStringExtra(String name). If it fails to resolve
the key names, an arbitrary string value is generated.

Once we have the key-value pairs and other necessary inputs for the source-
sink flows and the intent filter specifications for the target browsable activity,
these can all be put together to form an intent hyperlink. Therefore a group of
paths generated in the symbolic execution phase might contribute to a single
intent hyperlink.

Attack Validation. The intent hyperlinks generated in the static phase are used
by the dynamic executor explained below to validate whether they exploit the
sink methods. The dynamic executor runs the generated inputs and inspects the
results. Running the generated inputs, two possible scenarios might happen: (1)
the sink method is invoked at runtime and the generated input is accurate enough
to cause the exploit; (2) the sink method is invoked but it is not exploited. In this
case, first we use the concrete values obtained from the runtime execution path
and assign them to the unknown variables which symbolic executor has failed
to resolve. The new path formula is passed to the solver again and we generate
a new intent hyperlink. This procedure continues until intent hyperlinks do not
change any more (i.e., analysis reaches a fixpoint).

In order to run the concrete generated inputs and obtain the execution trace,
we chose to use a high-level but standard interface, Java Debug Wire Protocol
(JDWP) [2] which is supported by the Android runtime (both Dalvik and Art)
and independent of framework releases. One complexity is that the execution is
run in Dalvik bytecode but the analysis is in Jimple (a 3-address intermediate
instruction representation). We re-translate the generated execution trace back
to Jimple. Dexpler [6] keeps a mapping between byte code instruction addresses
and Jimple statements. We fetch the Jimple statements using these mappings.
In order to assign the concrete value of a variable from execution trace to Jimple
registers, for each method, we have to find the relation between variables on
the execution stack and the Jimple registers in the method Body. After running
the generated intent hyperlinks, we will use these register mappings to find out
accurately which Jimple registers should be updated to be further processed
during the analysis.

The validation component has to verify whether the generated intent hyper-
link results in an exploit. This decision is based on the execution trace, concrete
values and the attack policies provided by the security analyst. The attack policy
consists of rules for each class of vulnerabilities. Depending on the category of
the sink method reached on the execution trace, it applies different policy checks.
There are two main classes of vulnerabilities: abusing WebView interfaces and
abusing native app interfaces.
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Table 1. Overall statistics of vulnerable apps in each W2AI Attack category

Category Sub-Category # of Sinks # of Vulnerable Apps ID

Abusing
WebView
Interfaces

Abusing
JavaScript-to-Native
Bridge

9 52 1

Abusing HTML5 APIs 10 29 2

Local File Inclusion 9 63 3

Phishing 11 84 4

Abusing
Native
App
Interfaces

App Database Pollution 14 10 5

Persistent Storage
Pollution

72 7 6

Open Re-delegation 39 23 7

App-Specific Logic
Flaws

16 18 8

The first category is validated by sending a malicious URL through the intent
hyperlink parameters. When a vulnerable application loads the malicious URL,
the data retrieved from the device is sent to our server and we can confirm
the attacks accordingly.3 Attacks which abuse native app interfaces are more
complex to validate. First we verify if the sink method is reached on the execution
trace. But this is not sufficient. We should also check whether the concrete values
of the sink method parameters are directly affected by the intent hyperlink fields.
For this purpose, we compare the values resolved for the sink method parameters
in the symbolic execution phase with the values observed after running the intent
hyperlink. Then, according to the policy, we check for other methods (which we
call category settings) on the path that should exist so that the exploit is not
prevented from occurring. After confirming the sink method to be exploitable,
the intent hyperlink will be reported as an exploit.

4 Evaluation

We assess the prevalence of web-to-app injection attacks on a large scale and also
assess the detection capabilities of W2AIScanner. We choose the top 100 apps of
all categories in Google Play plus the dataset used in [17]4 giving a total of 12,240

3 As an example, if the app has flows that reach the WebView.loadUrl sink and enables
setAllowFileAccess, setJavaScriptEnabled and setAllowFileAccessFromFileURLs settings, the
app is vulnerable to local file inclusion attacks.

4 Since numerous apps were out of the shelf (the dataset in [17] contains 15,510 apps),
we could only download 9,877 apps in Google Play on April, 2014.
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apps. We ran on Ubuntu 14.04 with an Intel Core i5-4570 CPU PC (3.20 GHz)
with 16 GB of RAM. Apps are tested both on the Android 4.4 emulator as
well as real Android devices, Galaxy Nexus and Nexus 7. W2AIScanner utilizes
the adb command to launch the activity to validate the exploits that abuse
WebView interfaces or native app interfaces and perform privileged operations
(e.g., inserting data into the app’s database) which is explained in Sect. 3.4.

Prevalence of W2AI Vulnerabilities in Apps. In the dataset, 1,729 apps
have at least one BROWSABLE activity. W2AIScanner detected 286 W2AI vulner-
abilities in those apps with BROWSABLE activities. This shows that our system is
effective as a vulnerability detection tool for W2AI attacks.5

Table 1 gives a breakdown of the detected vulnerable apps into our 8 cate-
gories. The column, # of sinks, gives the number of sinks defined by our specifi-
cation for that category. There can be overlaps among the different categories of
sinks. For example, WebView.loadUrl() can be the sink for the first 4 categories.
In total, we have 153 distinct sinks for 8 categories. An app may have vulner-
abilities from more than one category. For instance, the WorkNet example has
vulnerabilities from categories with ID 1 to 4. Thus, the sum of that column is
greater than the number of vulnerable apps. The column, # of vulnerable apps,
gives the number of apps for which we found a confirmed vulnerability for that
class.

For each category, we have found at least one vulnerable application with
more than 1 Million downloads. A popular application is Wikipedia (1.3.4) which
is vulnerable to categories with ID 2 and 4. We have also detected and confirmed
14 Dropbox applications that are vulnerable to open-redelegation attacks where
attacker can force them to invoke other apps hosting on the phone. One app-
specific logic vulnerability appears in 587 apps, here we count it as only one
unique vulnerability to avoid to skewing the results. Once this vulnerability is
exploited, attacker can send fake Paypal payment notifications to the phone. The
Tencent Android SDK (2.8) is also confirmed to be vulnerable to W2AI attacks.
More details on representative applications in each attack category is given in
Appendix A.

Effectiveness of W2AIScanner in Detecting W2AI Vulnerabilities. Our
objective is effective detection of W2AI vulnerabilities with the following goals:
(i) potential vulnerabilities found by the analyser should have only few false
positives and the generated intent hyperlinks should be accurate; and (ii) it
should find vulnerabilities which may be missed due to imprecision at the initial
whole app-level analysis phase.

Figure 3(a) depicts the ratio of number of paths generated by W2AIScanner
and those reported by vanilla FlowDroid. For most of the apps, there is a consid-
erable reduction in the number of reported flows which means that either most of
the false positive flows are rejected or the combination of symbolic execution and
data-flow analysis has effectively reduced the number of generated paths. The
ratio can also be greater than one as we detect flows not found by FlowDroid.

5 We, in fact, process 12,240 apps, first rejecting those without browsable activities.
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Figure 3(c) shows that W2AIScanner is able to effectively detect false positive
sinks. Sometimes, our system is even able to find sinks which have been missed
by vanilla FlowDroid. In Fig. 3(c), these sinks are shown as new sinks. Note
that if we do not find any new sinks for one app, we do not put 0 in the chart.
In some cases, all of the sinks reported by FlowDroid are false positives while
W2AIScanner finds the true positive ones. In total, we find 82 new true positive
sinks in 69 applications after refining the CFG constructed by FlowDroid. The
new sinks found in 39 applications are due to thread executions. Figure 3(b)
shows the number of missing edges in FlowDroid CFG for each application in
our dataset. In total, we find missing edges in 863 apps which are due to thread
invocations.

The total execution time for static analysis phase can be found in Fig. 3(d).
For most of the applications analysis takes less than 30 s. The execution time
for dynamic analysis phase tends to be higher. We have measured the execution
time per flow for 8 applications each representative for each attack category. The
average execution time per flow is around 48 s. A large portion of the cost for
the dynamic phase is due to operations such as networking.

In Fig. 3(a), it can be observed that for the first 200 apps, the number of paths
reported by vanilla FlowDroid is much higher than W2AIScanner (the ratio is
less than 0.2). Figure 3(c) also shows that FlowDroid has many false positive
sinks for the same apps. This shows that our system can successfully reduce the
number of generated paths for these apps by rejecting the false positive sinks.
The high number of initial flows for these apps also results in more runtime
execution in Fig. 3(d).

We successfully generate accurate intent hyperlinks that allow us to find 0-
day vulnerabilities. The intent hyperlink parameters generated for many appli-
cations in our dataset follow complex patterns. For example, Letv is an Android
app which only processes an intent hyperlink if it has a query parameter with
from as the key and baidu as value. Another example is Kobobooks which requires
that action parameter of the intent hyperlink that invokes the app be not equal
to android.intent.action.VIEW. Thus, symbolic execution and validation is the
key for finding confirmed paths. An alternative approach to symbolic execution
is fuzzing but we believe that any fuzzing without some symbolic reasoning is
unlikely to give good results.

5 Related Work

We discuss Android related work from two angles, attacks on apps and analysis
of apps. Privilege escalation attacks have been shown in Android [8,10,13,24,31,
32,36,39,40]. These works all assume that the malicious apps are present on the
victim’s Android device, while our W2AI attacks work without any installation
of malware.

Recently, WebView and hybrid apps have been shown to be vulnerable to new
classes of attacks [9,14,17,26]. Luo et al. observe that malicious JavaScript code
can access sensitive resources [26]. Georgiev et al. carry out an analysis on hybrid
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Fig. 3. (a) Ratio of number of paths generated by W2AIScanner and vanilla Flow-
Droid; (b) Number of missing edges in the initial CFG which were found and added by
W2AIScanner; (c) FD sinks are number of FlowDroid false positive sinks and new sinks
are number of new true positive sinks found by W2AIScanner; (d) Total execution time
for static analysis in seconds. Apps are sorted based on the ratio in figure (a). All apps
have at least one potential vulnerable sink.

apps, and demonstrate vulnerabilities that affect bridge mechanisms [14]. Jin
et al. introduce code injection attacks on HTML5-based mobile apps via internal
and external channels [17]. These attacks require the user to visit the malicious
page directly in the WebView of the hybrid apps. In contrast, our W2AI attacks
utilize intent hyperlinks to convey the payload simply by clicking a link in the
default browser, which is more probable.

Attacks have also been found through scheme mechanisms [18,33,34]. Wang
et al. [34] reveal confused deputy attacks on Android and iOS applications which
abuse channels provided by the OS. One of these channels is the scheme mech-
anism through which an attacker can invoke apps on the phone by crafting
intent hyperlinks and publishing on web. They study the problem where the
user surfs through the web in customized WebViews of benign applications
and launch confused deputy attacks abusing the benign app’s “origin”. They
present a CSRF attack on the Dropbox SDK in iPhone [34] launched through
an intent hyperlink. However, our attacks differ because our attack model is more
general – the user clicks on an intent hyperlink in the default browser which does
not need to be started from the benign app and can leverage safer channels like
default browsers. More importantly, we investigate which vulnerabilities can be
exploited once the attacker can manage to start an application via an intent
hyperlink. We present a detection and validation method which we show is able
to scale for automatically detecting and generate exploits for vulnerabilities in
real apps.
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Another approach is static analysis of Android apps [5,25,35,41]. CHEX
[25] finds component hijacking vulnerabilities in Android by approximating app
execution as a sequential permutation of “splits”. We try to reduce the over-
approximation and show that precise detection is feasible. Additionally, our han-
dling of threads is more precise than CHEX as our analysis is object-sensitive.
FlowDroid [5] is a state-of-the-art information flow analyser tailored for Android
applications which we leverage upon and improve in the context of W2AI.
AppSealer can automatically generate patches for Android apps with component
hijacking vulnerabilities [38]. This work can potentially be used as a solution for
injection attacks like W2AI attacks.

There are also dynamic analysis approaches [11,27,37]. TaintDroid uses taint
analysis to track the flow of privacy sensitive data through third-party apps [11].
However, it requires a proper set of inputs to begin with. Our analysis gener-
ates the requisite inputs for W2AI attacks. Symbolic execution has been used to
generate test inputs for Android apps. Cadar et al. [7] generate event sequences
based on concolic testing but does not address data inputs. Mirzaei et al. [28]
perform symbolic execution for event sequences and data inputs by making an
abstraction for modelling framework. However, their approach may not scale.
Our refinement based approach is designed to reduce the state explosion prob-
lems inherent in symbolic execution.

6 Conclusion

We present a comprehensive study on an underexplored class of W2AI attacks
in Android. These attacks can be significant threats as they open a web-to-app
attack channel without needing malware and can perform privileged operations.
Our work is also novel in that unlike most analysis papers which are about
finding potential vulnerabilities, we show that it is possible to automatically
both detect and confirm vulnerabilities with an attack intent hyperlink (0-day
web input) at scale on real apps.

A Appendix

Case Studies from Table 2

For each representative app in Table 2, we detail the exploitable sinks and the
vulnerabilities with the attack settings in Table 3.
Abusing JavaScript-to-Native Bridge. WorkNet provides job information
in Korea. This app enables settings for JavaScript and JavaScript-to-native inter-
faces in its configuration file (config.xml). We found vulnerabilities which exploit
the WebView.loadUrl sink. This app enables the following settings:

setJavaScriptEnabled, setGeolocationEnabled, setAllowFileAccess,
setAllowFileAccessFromFileURLs

Hence, the web attacker can mount all the attacks in the WebView interfaces
abuse category on WorkNet. As explained in Sect. 2, its WebView loads arbitrary
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Table 2. Representative vulnerable apps for each W2AI vulnerability category

ID App Version Downloads

1 WorkNet (kr.go.keis.worknet) 3.1.0 1 - 5 M

2 Wikipedia (org.wikipedia) 1.3.4 10 - 50 M

3 WeCal Calendar (im.ecloud.ecalendar) 3.0.8 1 - 5 M

4 IPharmacy (com.sigmaphone.topmedfree) 1.0.92 1 - 5 M

5 i2X RDP (com.tux.client) 11.0.1899 1 - 5 M

6 Moneycontrol (com.divum.MoneyControl) 2.0 1 - 5 M

7 Caller ID (com.callapp.contacts) 1.56 1 - 5 M

8 Sina Weibo (com.sina.weibo) 4.3.0 5 - 10 M

ID: Category ID
App: Representative App (Package Name)
Version: App’s Version
Download: # of Downloads (Million)

URLs which exposes the Java native methods to the Javascript code. Once the
user clicks the malicious link, WorkNet loads the URL from the intent hyper-
link’s parameters in the WebView. Therefore, the malicious page running in the
WebView can invoke 21 JavaScript-to-native interfaces to access private user
data (e.g., contacts) and perform privileged operations (e.g., modifying local
files).

Abusing HTML5 APIs. Wikipedia is the free encyclopedia containing more
than 32 M articles in 280 languages. It contains 2 paths that reaches the WebView.

loadUrl sink and enables JavaScript and geolocation settings. The combination
of this sink and setting enables the malicious site running in the WebView to
access the GPS sensors and send out the user’s current location to the attacker
to track the user at any time.

Local File Inclusion. WeCal Calendar is a calendar assistant, which synchro-
nizes with the Google calendar, takes notes, sets alarm and so on. W2AIScanner
detects that the app has flows that reach the WebView.loadUrl sink and enables
settings for JavaScript and the file’s access. The settings are: setAllowFileAccess,
setAllowFileAccessFromFileURLs. After validation, we find that when loading the local
HTML file (whose URL comes from the URI intent) in the WebView, the file
can utilize XMLHttpRequest to read the local files (e.g., /etc/hosts) and leak the
content to the attacker.

Phishing. IPharmacy provides medical products. W2AIScanner detects that
the Webview.loadUrl sink in this app is reachable and exploitable. Therefore,
this app can be exploited to load a phishing page whose URL is derived from
the intent hyperlink from the web attacker in the customized WebView.

App Database Pollution. 2X RDP Client is a popular remote desktop app.
The exploitable sink reported by W2AIScanner is SQLiteDatabase.insert, which
adds items to farms table. The web attacker can set sensitive attributes, e.g.,
credentials, in the URI intent to pollute the app’s database.
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Table 3. Sinks and policies/settings for representative apps from Table 2

Category Sub-category Representative Sinks Policies/Settings ID

Abusing
WebView
Interfaces

Abusing
Javascript-to-
Native
Bridge

WebView.loadUrl JavaScript-to-
native
interfaces,
setJavaScript

Enabled

1

Abusing HTML5
APIs

WebView.loadUrl setGeolocation

Enabled,set
JavaScript

Enabled

2

Local File
Inclusion

WebView.loadUrl setAllowFile

Access,setJava
ScriptEnabled,
setAllowFile

AccessFrom-

FileURLs

3

Phishing WebView.loadUrl setJavaScript

Enabled

4

Abusing
Native
App
Interfaces

App database
pollution

SQLiteDatabase.

insert

- 5

Persistent
Storage
Pollution

SharedPreferences.

Editor.putString

- 6

Open
Re-elegation

Class.forName - 7

App-Specific
Logic Flaws

TextView.setText - 8

Persistent Storage Pollution. MoneyControl is a popular business and mar-
keting app. W2AIScanner detects paths that inject data to the SharedPreferences.

Editor.putString sink. Exploiting this vulnerability, the web attacker can make per-
manent changes to the storage.

Open Re-delegation. Caller ID - Call Blocker is a caller-ID app in Google Play
that identifies unknown callers. The reached sink for this app is Class.forName.
The attacker can set a private activity’s name in the URI intent’s parameters,
this app will be launched and invoke the designated activity when the user clicks
the malicious link.

App-Specific Logic Flaws. Sina Weibo is a microblogging client for Android
phones. A W2AI vulnerability in this application allows the attacker to show
arbitrary title messages to the victim user. The vulnerable sink in this application
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is TextView.setText. The attacker can launch an injection attack by putting an
arbitrary title as query paramater in the malicious intent hyperlink.
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