Batch Verifiable Computation of Polynomials
on Outsourced Data

Liang Feng Zhang!®™) and Reihaneh Safavi-Naini?

! ShanghaiTech University, Shanghai, China
zhanglf@shanghaitech.edu.cn
2 University of Calgary, Calgary, Canada

Abstract. Secure outsourcing of computation to cloud servers has
attracted much attention in recent years. In a typical outsourcing sce-
nario, the client stores its data on a cloud server and later asks the server
to perform computations on the stored data. The verifiable computation
(VC) of Gennaro, Gentry, Parno (Crypto 2010) and the homomorphic
MAC (HomMAC) of Backes, Fiore, Reischuk (CCS 2013) allow the client
to verify the server’s computation with substantially less computational
cost than performing the outsourced computation. The existing VC and
HomMAC schemes that can be considered practical (do not required
heavy computations such as computing fully homomorphic encryptions),
are limited to compute linear and quadratic polynomials on the out-
sourced data. In this paper, we introduce a batch verifiable computation
(BVC) model that can be used when the computation of the same func-
tion on multiple datasets is required, and construct two schemes for com-
puting polynomials of high degree on the outsourced data. Our schemes
allow efficient client verification, efficient server computation, and com-
position of computation results. Both schemes allow new elements to be
added to each outsourced dataset. The second scheme also allows new
datasets to be added. A unique feature of our schemes is that the storage
required at the server for storing the authentication information, stays
the same as the number of outsourced datasets is increased, and so the
server storage overhead (the ratio of the server storage to the total size
of the datasets) approaches 1. In all existing schemes this ratio is > 2.
Hence, our BVC can effectively halve the required server storage.

1 Introduction

Cloud computing provides an attractive solution for computationally weak
clients that need to outsource data and perform large-scale computations on
the outsourced data. This however raises the important security requirement of
enabling the client to verify the correctness of the outsourced computation. A
cloud server may return an incorrect result, accidentally or intentionally, and
the ability to verify the result is a basic requirement. This requirement has
motivated the research on the verifiability of outsourced computation in two
directions: exploring the theoretical foundation of what computations can be

© Springer International Publishing Switzerland 2015
G. Pernul et al. (Eds.): ESORICS 2015, Part II, LNCS 9327, pp. 167-185, 2015.
DOI: 10.1007/978-3-319-24177-7_9

168 L.F. Zhang and R. Safavi-Naini

securely outsourced, and proposing secure solutions for specific problems with
emphasis on practicality. Our work follows the latter direction.

Verifiable Computation. Several models have been proposed for secure out-
sourcing of computation. In the verifiable computation (VC) model of Gennaro,
Gentry and Parno [14], the client’s data defines a function and a computation
is equivalent to evaluating this function that is computationally expensive. To
outsource this computation, the client computes a one-time encoding of the
function and stores it at the server. This enables the server to not only evalu-
ate the function on any input, but also provide a proof that the evaluation has
been done correctly. The client’s verification must be substantially less time-
consuming than evaluating the original function. The effort of generating the
one-time encoding will be amortized over multiple evaluations of the function
and so is considered acceptable.

Following [14] a number of VC schemes [2,10,11,14,21] to delegate generic
functions have been proposed. These schemes are based on fully homomorphic
encryption (FHE) and so with today’s constructions of FHE, cannot be con-
sidered practical. Benabbas et al. [5] initiated a line of research [5,9,13,20] on
practical VO for specific functions such as polynomials, which do not require
heavy cryptographic computations such as FHE. In a VC for polynomials, the
client’s data consists of the coefficients of a polynomial. The client stores an
encoding of the coefficients on a cloud server; this encoding allows the server to
evaluates the polynomial on any requested point; the client can efficiently verify
the server’s computation. These schemes are secure against a malicious server
which is allowed to make a polynomial (in the security parameter) number of
attempts to deceive the client into accepting a wrong computation result, with
each attempt being told successful or not.

Practical VC schemes however are limited to the computation of linear func-
tions on the outsourced data (e.g., evaluating a polynomial at a point z is equiv-
alent to computing the inner product of a vector defined by the coefficients with
a vector defined by x and linear in the coefficients). This means that even simple
statistical functions such as variance, cannot be computed. Also, the encoding
of the function doubles the cloud storage needed by the function itself. Evaluat-
ing polynomials arise in applications such as proof of retrievability and verifiable
keyword search [13], where the number of polynomial coefficients is roughly equal
to the number of data elements in a file or database. In those scenarios doubling
the cloud storage will result in a substantial increase of the client’s expense and
will become increasingly problematic as more and more data is outsourced.

Homomorphic MAC. Homomorphic MAC (HomMAC) [16] allows a client to
store a dataset (a set of data elements) on a cloud server, and later request the
computation of some specified functions, referred to as the admissible function
family, on the dataset. The dataset may consist of employee records of an insti-
tution and a possible computation could be evaluating a function of the records.
One can add elements to, or remove elements from, the dataset as needed. The
encoding of the dataset consists of all data elements and a special MAC tag

Batch Verifiable Computation of Polynomials on Outsourced Data 169

for each data element. The tags allow the server to produce a MAC tag for the
computation of any admissible function.

HomMAGCs for admissible linear functions [1] and admissible nonlinear func-
tions [4,8,16] have been proposed. Some of these schemes require heavy cryp-
tographic computations, such as FHE [16]. Catalano and Fiore [8] proposed an
elegant HomMAC for high degree polynomials with efficient server computations
(including PRF computations and polynomial evaluations over relatively small
finite fields). The client verification cost however is effectively the same as per-
forming the outsourced computation. Backes, Fiore and Reischuk [4] removed
this drawback by restricting the class of admissible functions to polynomials of
degree 2. They considered the computations of the same function on multiple
datasets. The verification of the computations requires an expensive preprocess-
ing which is done only once and amortized over all verifications. Restriction on
the degree of the polynomials however limits their applicability. For example an
important task in data analysis is to determine if a dataset is normally distrib-
uted. Two commonly used statistical measures for symmetry and flatness of a
distribution relative to normal distribution, are skewness and kurtosis, which
require computation of degree 3 and 4 polynomials of the data elements, respec-
tively.

Compared to the VC model of [5,14], the security model of HomMAC is more
demanding. Here the server is allowed to learn the MAC tags of arbitrary data
elements of its choice and also make a polynomial (in the security parameter)
number of attempts to deceive the client into accepting a wrong computation
result, with each attempt being told successful or not. This stronger security
property means that the HomMACs can be straightforwardly translated into
VC schemes but the converse may not be true in general. In a HomMAC based
VC scheme the server has to store both the data elements and the MAC tags.
This usually doubles the cloud storage consumed by the data elements.

An additional desirable property of HomMACs is that they allow composi-
tion. That is, given multiple computation results and their MAC tags, one can
perform a high level computation on these results and also generate a corre-
sponding MAC tag for this high level computation.

Motivation. The existing VC schemes satisfy a subset of the following desirable
properties: (pl) Large admissible function family: enabling the computation of
high degree polynomials (not limited to the linear and quadratic ones) on the
outsourced data; (p2) Efficient client verification: the client’s verification is sub-
stantially less expensive than computing the delegated computation; (p3) Effi-
cient server computation: the server does not need to do heavy cryptographic
computations (such as FHE); (p4) Efficient server storage: the server stores an
encoding of the client’s data and the encoding consumes almost no extra stor-
age than the data itself. (p5) Unbounded data: the client can freely update the
outsourced data by adding new elements to every dataset and also adding new
datasets. Our goal is to construct schemes that provide all the above properties.

170 L.F. Zhang and R. Safavi-Naini

1.1 Owur Contributions

We introduce batch verifiable computation (BVC), and construct two BVC
schemes that satisfy properties (pl)—(p5). Similar to Backes et al. [4], we also
consider outsourcing of multiple datasets with two labels. The outsourced data
m defines an N x s matrix (m; ;)N s, where each column is called a dataset, and
each entry m; ; is labeled by a pair (4, j) € [N] x [s]. However, the similarity ends
here: Backes et al. allow computation of different functions on each dataset with
the restriction that the polynomials are of degree at most two. Our main obser-
vation is that by batching computation of the same function on all datasets, an
impressive set of properties can be achieved. In particular one can save storage
at the server, and this saving will be significant when the computation on more
datasets are outsourced. In BVC the client computes a tag t; for the ith row of
m for every i € [N], and stores t = (t1,...,tn) as an extra column at the cloud
server. A computation is specified by a program P = (f, I), where f(z1,...,z,)
is a function and I = {i1,...,i,} C [IN] specifies the subset of elements of each
dataset which will be used in the computation of f. Given the program P, the
server returns s results p1 = f(Mi, 15, My 1), -5Ps = f(Miysy-eosMi, 5)
and a single batch proof w; the client accepts the s results only if they success-
fully pass the client’s verification. A BVC scheme is secure if no malicious cloud
server can deceive the client into accepting wrong results. We consider the com-
putation of any polynomial function (i.e., arithmetic circuit) on the outsourced
data, and construct two BVC schemes with the following properties.

Large Admissible Function Family. The first scheme admits polynomials of
degree as high as any polynomial in the security parameter. The second scheme
admits any constant degree polynomials. The only other known practical schemes
that can compute the same class of functions is from [8] in which the client’s
verification is effectively as heavy as the outsourced computation.

Efficient Client Verification. In our BVC schemes the client can verify the
computation results on the s datasets using a single batch proof that is computed
from the tag column. In both schemes verifying the computation result of each
dataset is by evaluating the batch proof (which is a polynomial) at a specific
point. The batch proof in the first scheme is a univariate polynomial of bounded
degree, and in the second scheme is a multivariate polynomial of bounded degree.
Compared with the naive construction where the scheme in [8] is used on each
dataset, the client’s average verification cost in our schemes is substantially less
than what is required by the original computation as long as s is large enough.

Efficient Server Computation. The server computation in our schemes con-
sists of PRF computations and polynomial evaluations over relatively small finite
fields (such as Z, for p ~ 2'?® when the security parameter A\ = 128). This is
similar to [8] and more efficient than [4] where the server must compute a large
number of exponentiations and pairings over significantly larger groups.

Efficient Server Storage. In a VC (or BVC) scheme the client stores an encod-
ing of its data on the cloud server. We define the storage overhead of a VC

Batch Verifiable Computation of Polynomials on Outsourced Data 171

(or BVC) scheme as the ratio of the size of the encoding to the size of data. It
is easy to see that the storage overhead is lower bounded by 1. In both schemes
a tag has size equal to an element of m, resulting in a storage overhead of
1+ 1/s which approaches 1 as s increases. In all existing practical VC schemes
[4,5,8,9,13] the storage overhead is > 2.

Unbounded Data. In our BVC schemes the outsourced data m consists of s
datasets, each consisting of N elements. Our schemes allow the client to add an
arbitrary number of new rows and/or columns to m, and efficiently update the
tag column without downloading m. While adding new rows to m is straightfor-
ward, adding new datasets to m without performing the tag computation from
scratch (and so downloading the already outsourced data) is highly non-trivial.
This is because in our schemes each row of m is authenticated using a single tag,
and so adding a new dataset (a new data element to each row) could destroy the
well-formed tag of the row, requiring the tag of the updated row to be computed
from scratch. We show that our second scheme allows the client to add new
datasets and efficiently update the tag column, without downloading m.

In summary our BVC schemes provide all the desirable properties of a VC
scheme in practice, together with the unique property that the storage overhead
reduces with the number of datasets. The storage efficiency however comes at a
somewhat higher cost of computing the proofs by the server. In Sect.4 we give
comparisons of our schemes with [8] that supports the same functionality, when
applied to the s datasets individually.

Composition. Our BVC schemes support composition. Let m = (m; ;) nxs be
the client’s outsourced data, and Py = (f1,11),...,Pn = (fn, In) be n programs,
where f; is a function and I; C [N] for every ¢ € [n]. Computing the n programs
on the datasets gives a matrix p = (p;, j)nXS of computation results and n proofs
Ti,...,Tn, Where p; ; is the result of computing f; on the jth dataset and ;
is a proof of the correctness of the ith row of p. Our schemes allow compo-
sition in the sense that there is a polynomial time algorithm Comb that takes
(p, (w1, ...,m,)) and any program P = (f(z1,...,2,),I = [n]) as input, and out-
puts &1 = f(p11s--»Pn1)s---r & = f(P1,s,-- -, pn,s) along with a batch proof 7.
Moreover, the client’s cost to verify &7, ..., & is substantially less than what is
required by computing &5, ..., &s.

1.2 Overview of the Constructions

We use a novel interpretation of the technique in [8] when applied to multiple
datasets to design schemes that satisfy properties (p1)—(p5). Let m = (m; ;) nxs
be a collection of s datasets that are to be outsourced. We shall authenticate
the s elements in each row of m using a single authentication tag that has
size equal to an entry of m. This immediately results in a storage overhead
of 14+ 1/s. The N tags are generated such that the cloud server can compute
any program P = (f,I) on the s datasets, and also produce a single proof
that verifies the correctness of all s computation results. The main idea is a
generalization of the technique of [8] to s elements. We pick a curve (or a plane)

172 L.F. Zhang and R. Safavi-Naini

o; that passes through the s points determined by the s elements in the ith row
of m and also a point determined by a pseudorandom value Fj (i), where F is a
pseudorandom function; the stored tag is a single field element that can be used
by the server to determine o;; the computations of any program P = (f,) on all
the s outsourced datasets can be efficiently verified using the once computation
of f on the pseudorandom values {Fj (i) : i € I}.

In the first scheme, the client picks a secret key sk = (k,a) «— K x (Z, \
{0,1,...,s}) and determines a univariate polynomial o;(z) of degree < s that
passes through the s + 1 points (1,m;1),...,(s,m;) and (a, Fj(7)), for every
i € [N]. The client takes the coefficient of z* in o;(z) as the tag t; that

authenticates all data elements in the ith row of m, ie., m;1,...,m; . The
client stores pk = (m,t = (t1,...,tx)) on the cloud server. Let P = (f,I)
be a program where f(xi,...,x,) is a polynomial, and I = {iy,...,i,} C

[N] specifies the elements of each dataset that are used in the computa-
tion of f. Given the program P, the server returns both the s computation
results p1 = f(Mmiy 15, My 1),---5ps = f(Miy,s,-.., My,) and a proof m =
floi (x),...,04,(x)). The client accepts all s results only if 7(j) = p; for every
j €[s]and w(a) = f(Fr(i1),. .., Fr(in)). In the second scheme, the client picks a
secret key sk = (k,a = (ag,ay,...,as)) — Kx(Z3)**! and determines an (s+1)-
variate polynomial o;(y) = (Yo, 1, - - -, ¥s) = ti-yo+mg1-y1+- - -+m; s ys that
passes through the s+1 points (e2,m; 1), ..., (€541, m;) and (a, Fy(i)) for every
i € [N], where e; € Z5*" is a 0-1 vector whose jth entry is equal to 1 and all other
entries are equal to 0. The client stores pk = (m,t = (¢1,...,tx)) on the cloud
server. Given the program P = (f, I), the server returns both the s computation
results p1,...,ps and a proof m = f(o;,(y),...,04,(y)). The client accepts all s
results only if m(e;41) = p; for every j € [s] and 7w(a) = f(Fi(i1),..., Fr(in)).

In both schemes the server’s computation consists of PRF computations and
polynomial evaluations over a relatively small finite field Z,. In Sect.4 we will
show that the first scheme admits computation of polynomials of degree as high
as any polynomial in the security parameter A, and the second scheme admits
computation of any constant-degree polynomials where the constant however can
be much larger than two. In both schemes, the client’s complexity of verifying
all s computation results is dominated by the once computation of f on the n
pseudorandom values Fy(41),. .., Fi(i,). In particular, this complexity becomes
substantially less than the complexity incurred by the s outsourced computations
on datasets when the number s is large enough. In both of our schemes the s
datasets of size N contained in m are authenticated using a single vector t of
N tags, where each tag is a single field element. As a consequence, the storage
overheads of our schemes are both equal to (|m|+|t|)/|m| = (Ns+ N)/(Ns) =
14 1/s, which can be arbitrarily close to the lower bound 1 as long as s is large
enough. Hence, our schemes achieve the properties (pl)—(p4).

In our schemes, a malicious cloud server may want to deceive the client into
accepting some wrong results (p1,...,ps) # (p1,-..,ps) with a forged proof 7.
In the first scheme, the forged proof 7, as the correct proof m, is a univariate
polynomial of degree < d; = s - deg(f). The malicious server succeeds only

Batch Verifiable Computation of Polynomials on Outsourced Data 173

if (7(1),...,7(s)) = (p1,---,ps) # (p1,---,ps) = (7(1),...,7(s)) and 7(a) =
f(Fr(i1), ..., Fr(in)) = m(a). Let # — 7 = ug + vz + - + ug, 24 and a =
(1,a,...,a™). Then breaking the security of our first scheme is equivalent to
finding a non-zero vector u = (ug, . .., uq,) such that the inner product u-a = 0.
In the second scheme, the forged proof 7, as the correct proof 7, is an (s + 1)-
variate polynomial of degree < dy = deg(f). The malicious server succeeds only
if (7(ea),...,m(esx1)) = (P1y---5P0s) # (p1,---,ps) = (7(e2),...,m(es11)) and
m(a) = f(Fr(i1),...,Fr(in)) = m(a), where a = (ag,...,as). Let T — 7 have
coefficient vector u € ZZ and let o = (al : wt(i) < do) € Z’;, where h = (S+;:d2)
and al = aff’aﬁ1 ---a’s for every i = (ig,i1,...,is). Then breaking the security
of our second scheme is equivalent to finding a non-zero vector u such that
u-a = 0. In Sect. 2, we provide a technical lemma that shows the probability
that any adversary finds such a vector u in both schemes is negligible in A and
thus the security proofs follow.

In both schemes, client can easily authenticate an arbitrary number of new
rows using the same secret key and thus extend the size of all datasets. The
second scheme also allows the number of datasets to be increased. To add a new
dataset (m1,s41,...,MN,s11), the client picks (A, as41) < K x Zj, and sends
both (m1,s41,...,mns+1) and (Aq,..., Ay) to the cloud server, where A; =
ag H(Fy (i) — Fi (i) +asy1-mi s11) for every i € [N]. The cloud server will update
m to (M j) Nx(s+1) and update t to t’ = (t1,...,t}y), where t; = t; — A; for every
i € [N]. Intuitively, doing so reveals no information about a’ = (ay, . ..,as,asi1)
to the cloud server. The ¢} is computed such that o}(yo, ..., Ys+1) = t;-Yo+m1-
Y1+ -+ My sy1 - Ys+1 passes through (a’, Fi (7)), (€2, mi1), - -, (€542, Mi s41)-
Thus, all the algorithms of the second scheme will work well with the new secret
key sk’ = (k’,a’). We show that breaking the security of this extended scheme
is equivalent to finding a non-zero vector u such that u- o’ = 0, where o’ =
(@) : wt(i) < dy). We show that this cannot be done except with negligible
probability. Thus the second scheme also satisfies (pJ).

In both schemes, the composition property follows from the intrinsic structure
of the constructions. Let P = (f1,11),--.,Pn = (fn, In) be n programs. In the
first scheme the cloud server would compute these programs on pk = (m,t) and
then obtain a matrix (p; ;j)nxs of results and n proofs (my,...,m,). Given any
high level program P = (f(z1,...,2,),I = [n]), the cloud server would be able
to compute P on (p; j)nxs to obtain s results &1, ...,&s and also compute P on
(m1,...,m) to obtain a proof m = f(my,..., 7).

1.3 Related Work

The problem of securely outsourcing computation has a long history. We refer the
readers to [5,14] for the solutions that require strong assumptions on adversaries,
and the theoretical solutions [19] that require interaction. We are only interested
in the non-interactive solutions in the standard model.

Verifiable Computation. The verifiable computation of Gennaro et al. [14]
gave a non-interactive solution for securely outsourcing computation in the stan-

174 L.F. Zhang and R. Safavi-Naini

dard model. The VC schemes of [2,11,14] can delegate any generic functions but
have limited practical relevance due to their use of fully homomorphic encryption
(FHE). The memory delegation [10] can delegate computations on an arbitrary
portion of the outsourced data. However, the client must be stateful and suf-
fer from the impracticality of PCP techniques. Benabbas et al. [5] initiated the
study of practical (private) VC schemes for delegating specific functions such as
polynomials. Parno et al. [21] initiated the study of public VC schemes. Fiore
et al. [13] generalized the constructions of [5] and obtained public VC schemes
for delegating polynomials and matrices. Papamanthou et al. [20] constructed a
public VC scheme for delegating polynomials that allows efficient update. The
storage overhead of all these schemes is > 2. Furthermore, they only admit linear
computations on the outsourced data. In particular, the multi-function VC [13]
has similar setting as ours but only admits linear computations and has storage
overhead > 2.

Homomorphic MACs and Signatures. A homomorphic MAC or signature
scheme [7,16] allows one to freely authenticate data and then verify computa-
tions on the authenticated data. Such schemes give VC: the client can store
data elements and their MAC tags (or signatures) with a server such that the
server can compute some admissible functions on an arbitrary subset of the data
elements; the server provides both the answer and a MAC tag (or signature)
vouching for the correctness of its answer. The storage overhead of the resulting
VC scheme is > 2. Catalano and Fiore [8] proposed a practical HomMAC that
admits polynomials of degree as high as a polynomial in the security parameter.
However, the client’s verification requires as much time as the delegated compu-
tation. Backes, Fiore and Reischuk [4] proposed a HomMAC that has amortized
efficient verification but only admits polynomials of degree < 2.

Non-interactive Proofs. Goldwasser et al. [18] gave a non-interactive scheme
for delegating NC computations. However, for any circuit of size n, the server’s
running time may be a high degree polynomial of n and thus not practical.
The SNARGs/SNARKSs of [3,6,15] give non-interactive schemes for delegating
computations. However, they must rely on the non-falsifiable assumptions [17]
which are not standard and much stronger than the common assumptions such
as the existence of secure PRFs we use in this paper.

1.4 Organization

In Sect. 2 we provide a formal definition of batch verifiable computation and its
security; we also develop a lemma which will be used in our security proofs; In
Sect. 3 we present our BVC schemes; In Sect. 4, we give a detailed analysis of
the proposed schemes and compare them with the solutions based on [4,8]; we
also discuss extra properties of our schemes such as composition; Sect. 5 contains
some concluding remarks.

Batch Verifiable Computation of Polynomials on Outsourced Data 175

2 Preliminaries

Let A be a security parameter. We say that a function ¢(A) is a polynomial
function of A, denoted as g(A) = poly(}), if there is a real number ¢ > 0 such
that g(A) = O(X°); we say that a function e()) is a negligible function of A,
denoted as €(A) = neg()), if €(A) = o(A™¢) for any real number ¢ > 0. Let A(-)
be a probabilistic polynomial time (PPT) algorithm. The symbol “y «— A(x)”
means that y is the output distribution of running algorithm A on the input z.
We denote by u = (u, : ¢ € X) any vector whose entries are labeled by elements
of the finite set X.

2.1 Batch Verifiable Computation on Outsourced Data

In this section we formally define the notion of batch verifiable computation on
outsourced data. In our model, the client has a set of data elements and stores
them on the cloud server. The set is organized as a matrix m = (m; ;) Nxs,
where each element m; ; is labeled with a pair (¢,j) € [N] x [s]. Each column
of m is called a dataset. Let F be any admissible function family. The client
is interested in delegating the computation of some function f(z1,...,z,) €
F on the n elements labeled by I = {i,...,i,} C [N], of every dataset. In
other words, the client is interested in learning p1 = f(mi; 1,-.., M4, 1), p2 =
flmigo, .. ,mi, 2)y...,ps = f(Miy s,..., M4, s). We say that such a batch of
computations is defined by a program P = (f,I) € F x 2[NV],

Definition 1 (Batch Verifiable Computation). A BVC scheme for F is a tuple
IT = (KeyGen, ProbGen, Compute, Verify) of four polynomial-time algorithms,
where

~ (sk, pk) « KeyGen(1*,m) is a key generation algorithm that takes as input the
security parameter A and a set m = (m; ;j)nxs of data elements and outputs
a secret key sk and a public key pk;

— vk «— ProbGen(sk, P) is a problem generation algorithm that takes as input
sk, a program P = (f,I) € F x 2Nl and outputs a verification key vk;

— (p,m) <« Compute(pk, P) is a computation algorithm that takes as input pk
and a program P = (f,I) € F x 2Nl and outputs an answer p = (p1, ..., ps)
and a proof w; and

- {0,1} « Verify(sk, vk, (p, 7)) is a verification algorithm that verifies p with
(sk,vk,m); it outputs 1 (to indicate acceptance) or 0 (to indicate rejection).

In our BVC model, the client generates (sk,pk) < KeyGen(1*,m) and gives pk
to the server. To compute some program P = (f, I) on the outsourced data, the
client generates vk < ProbGen(sk,P) and gives P to the server. Given (pk,P),
the server computes and replies with (p, 7) < Compute(pk, P). At last, the client
accepts p only if Verify(sk, vk, (p, 7)) = 1.

Correctness. This property requires that the client always accepts the results
computed by an honest server (using the algorithm Compute). Formally, the

176 L.F. Zhang and R. Safavi-Naini

— SeTUP. Given m, the challenger computes (sk, pk) < KeyGen(1*,m) and
gives pk to A;

— QUERIES. The adversary A adaptively makes a polynomial number of
queries:

For every £ =1 to g = poly()),
e The adversary A picks a program P, and gives it to the challenger;
e The challenger computes vk, < ProbGen(sk, Py);
e The adversary A constructs a response (pg, T¢) to the challenger;
e The challenger gives the output by = Verify(sk, vk, (pe, T¢)) to A.

— FORGERY. The adversary A picks a program P* and gives it to the chal-
lenger. The challenger computes vk* < ProbGen(sk, P*). At last, A con-
structs a response (p*, 7*) to the challenger.

— OuTPUT. The challenger computes (p*, 7*) « Compute(pk, P*). The ad-
versary wins the security game if Verify(sk, vk, (p*,7*)) = 1 but p* # p*.

Fig. 1. Security game

scheme IT is correct if for any data m = (m;, ;), any (sk, pk) < KeyGen(1*,m),
any program P, any vk < ProbGen(sk, P) and any (p,) < Compute(pk, P), it
holds that Verify(sk, vk, (p, 7)) = 1.

Security. This property requires that no malicious server can deceive the client
into accepting any incorrect results. Formally, the scheme I7 is said to be secure
if any PPT adversary A wins with probability < neg(\) in the security game of
Fig. 1.

REMARKS: (1) In the FORGERY phase the adversary A behaves just like it has
done in any one of the ¢ queries. Without loss of generality, we can suppose
(P*, p*, @) = (Pyx, per, e~) for some £* € [q], i.e., A picks one of its ¢ queries as
the final forgery. (2) In the literature, many VC schemes such as [2,11,14] are not
immune to the “rejection problem”: if the malicious server knows whether the
client has accepted or rejected its answer, then the algorithm KeyGen (requir-
ing heavy computation effort) must be run again to refresh both sk and pk;
otherwise, the VC scheme becomes no longer secure. In our security definition,
the adversary A is allowed to make a polynomial number of queries and learns
whether some adaptively chosen answers in each query will be accepted by the
client. Therefore, the BVC schemes secure under our definition will be immune to
the “rejection problem”. (3) Our definition of BVC is different from the VC [5] in
the sense that we neither consider the outsourced data as a function nor consider
the client’s input to ProbGen as an input from that function’s domain. In our
definition, the client’s input to ProbGen is a program P = (f,I) € F x 2!V that
specifies the computations of an admissible function f on the portion labeled by
I of every dataset. Clearly our definition captures more general scenarios than
[5]. In particular, the VC model of [5] can be captured by our BVC as below. Let
m(x) be the client’s function which will be delegated to the cloud server (e.g.,

Batch Verifiable Computation of Polynomials on Outsourced Data 177

m(z) may be a polynomial m; +max + - - - +mya¥ "1 in [5]); from our point of
view, the coefficients (my, ..., my) of the polynomial m(z) is a dataset; and fur-
thermore, any input « to the polynomial m(z) specifies a program P = (f,, [N]),
where f,(m1,...,my) = m(«). Therefore, the polynomial evaluations consid-
ered in [5] can be captured by some specific linear computations in our BVC
model. (4) In our BVC, the client’s verification requires the secret key sk. Thus,
our BVC schemes are privately verifiable. (5) A critical efficiency measure of the
BVC scheme in Definition 1 is to what extent the client’s verification requires less
computing time (resources) than the delegated computations. The client’s veri-
fication in [5,9,13,14,20,21] is efficient in the sense that it requires substantially
less time than performing the delegated computation. In our BVC, the client
performs verification by generating a verification key vk < ProbGen(sk, P) and
then running the verification algorithm Verify(sk, vk, (p,7)). The client’s veri-
fication time is equal to the total time required for running both algorithms.
Let tp be the time required for computing the program P on the outsourced
data. We say that a BVC scheme is outsourceable if the client’s verification time
is of the order o(tp). In this paper, we shall construct BVC schemes that are
outsourceable.

2.2 A Lemma

In this section we present a lemma (Lemma 1) that underlies the security proofs
of our BVC schemes. Let A be a security parameter. Let p be a A-bit prime and
let Z, be the finite field of p elements. Let A > 0 be an integer. We define an
equivalence relation ~ over Z*1\ {0} as below: two vectors u,v € ZI'*!\ {0}
are said to be equivalent if there exists £ € Z, \ {0} such that u = £ - v. Let
ph = (ZZH \ {0})/ ~ be the set of all equivalence classes. We represent each
equivalence class with a vector in that class. Without loss of generality, we agree
that the representative of each class in {2, j, is chosen such that its first non-zero
element is 1. For any u,v € (2,5, we define u ® v = 0 if the inner product of
u and v is equal to 0 modulo p and define u ® v = 1 otherwise. The following
game models the malicious server’s attack in our BVC schemes.

Gamey. Let A be any algorithm. Let V C 2, and let ¢ = poly(\). In this
problem, a vector v* « V is chosen and hidden from A; for ¢ = 1 to ¢, A
adaptively picks a query u; € (2, 5, and learns b, = u; © v* € {0,1}; A wins the
game if there exists an index i* € [¢] such that b« = 0.

In Appendix A, we show the following technical lemma:

Lemma 1. Let p be a prime and let d,h,s > 0 be integers.

(1) Let A C Z, be a non-empty subset of Z,,. Let Vu, = {(1,a,...,a") :a € A}.
Then any adversary A wins in Gamey, with probability < hq/|A.

(2) Let Vip = {{al : wt(i) < d) : a € A*TL}, where h = (S+(1i+d) — 1. Then any
adversary A wins in Gamey, = with probability < dq/|A.

178 L.F. Zhang and R. Safavi-Naini

3 Constructions

In this section we propose two BVC schemes for delegating polynomial compu-
tations on outsourced data. Our schemes use curves and planes to authenticate
the outsourced data, respectively.

3.1 The First Construction

Let p be a A-bit prime and let ' : K x {0,1}* — Z, be a PRF with key space I,
domain {0,1}* and range Z,. Let s > 0 be an integer. Let m = (m; ;) € Z)**
be a matrix that models the client’s data. We consider 1,2,..., s as elements of
Z,. Below is our first construction I7;.

— (sk, pk) «— KeyGen(1*,m): Pick k + K and a < Z,\{0,1,2,...,s}. For every
i € [N], compute the coefficients of a polynomial o;(z) = 0,1+ 052 - +---+
ois - ¥ +t; - 2% such that o;(j) = m; ; for every j € [s] and o;(a) = Fj(4).
This can be done by solving the following equation system

1171 ---1 04,1 mi
12 22 e 28 04,2 mi2
Dl = (1)
1ss?---s° Ois My s
laa®---a* t; Fy (i)

for every ¢ € [N]. The algorithm outputs pk = (m,t) and sk = (k,a), where
t=(t1,...,tN).

— vk < ProbGen(sk,P): Let P = (f,I) be a program, where f(x1,...,2,) is
a polynomial of degree d over Z, and I = {i1,...,i,} C [N] specifies the
data elements on which f should be computed. This algorithm computes and
outputs a verification key vk = f(Fy(i1),. .., Fi(in))-

— (p,m) « Compute(pk,P): Let P = (f,I) be a program, where f(z1,...,z,)
is a polynomial of degree d over Z, and I = {i1,...,i,} C [IN] specifies
the data elements on which f should be computed. This algorithm computes

p; = f(mi, j,...,m;, ;) for every j € [s]. It solves the following equation
system

1171 --- 1 0i,1 mi,l—ti

1222...25°1 03,2 m; 2 — 2%t;

-1 2)

2 s—1 s
lss®---s Cis m; s — 8°t;

)

to determine s coefficients oy 1,...,0; 5 for every i € I. Let oy(x) = 0,1 +
Oio-x+--+0,- 21 4+ ¢; - 2°. This algorithm outputs p = (p1,...,ps) and
7w = f(oi,(x),...,04 ().

— {0, 1} « Verify(sk, vk, (p,7)): This algorithm accepts p and outputs 1 only if
7(a) = vk and 7 (j) = p; for every j € [s].

Batch Verifiable Computation of Polynomials on Outsourced Data 179

It is easy to see II; is correct. In the full version we show that no PPT
adversary can win in the standard security game (Fig.1) for II; except with
negligible probability. So we have

Theorem 1. If F' is a secure PRF, then Il is a secure BVC scheme.

3.2 The Second Construction

Let p be a A-bit prime and let F : K x {0,1}* — Z, be a PRF with key space K,
domain {0,1}* and range Z,. Let s > 0 be an integer. Let m = (m; ;) € Z)'**
be a matrix that models the client’s data. We consider 1,2, ..., s as elements of
Z,,. Below is our second construction I1s.

— (sk,pk) < KeyGen(1*,m): Pick k « K and ag,a1,...,as «— Zy; for every
i € [N], compute

ti:agl(Fk(i)—al-mi71—---—as~mi,s). (3)

This algorithm outputs pk = (m,t) and sk = (k,a), where t = (¢1,...,tn)
and a = (ag, a1, ...,as).

— vk « ProbGen(sk,P): Let P = (f,I) be a program, where f(z1,...,x,) is
a polynomial of degree d over Z, and I = {i1,...,i,} C [N] specifies the
data elements on which f should be computed. This algorithm computes and
outputs a verification key vk = f(Fy(i1),. .., Fx(in))-

— (p,m) < Compute(pk,P): Let P = (f,I) be a program, where f(x1,...,2,)
is a polynomial of degree d over Z, and I = {i1,...,4,} C [N] specifies the
data elements on which f should be computed. This algorithm computes p; =
flmiy g, ... ymy, ;) for every j € [s]. Let 0i(y) = ti-yo+mi1-yi+- - +mis-ys
for every i € I, where y = (yo,¥1,-..,Ys). This algorithm outputs s results
p=(p1,-..,ps) and a proof 7 = f(0;,(y), ..., 0, (¥))-

— Verify(sk, vk, (p, 7)): This algorithm accepts p and outputs 1 only if 7(a) = vk
and 7(ejy1) = p; for every j € [s], where e;;1 € Z5t! is a 0-1 vector whose
7 + 1st component is 1 and all other components are 0.

It is easy to see Il is correct. In the full version we show that no PPT adver-
sary can win the standard security game (Fig. 1) for Il except with negligible
probability. So we have

Theorem 2. If F' is a secure PRF, then Il is a secure BVC scheme.

4 Analysis
In this section we analyze our BVC schemes and compare them with several
(naive) solutions based on the existing works [4,8].

Admissible Function Family. In both of our schemes the integer s is allowed
to be O(X) to capture the scenario that a large enough number of datasets are

180 L.F. Zhang and R. Safavi-Naini

outsourced. In I3 the cloud server’s computation consists of computing f on s
points, solving n equation systems of the form (2) and also computing a proof
m = f(04,(x),...,0i,(x)). On one hand, the first two computations are light for
the powerful server. On the other hand, computing the proof 7 involves some
symbolic computation and seems heavy. However, 7 is a univariate polynomial
of degree < sd. So 7 can be interpolated given D = sd+1 evaluations of 7, which
requires the computations of f on O(D) = O(ds) points. This work is acceptable
for the cloud server even if d = poly(\). Therefore, IT; allows the computation
of polynomials of degree d as high as a polynomial in the security parameter. In
11, the cloud server’s computation consists of computing f on s points and also
computing a proof 7 = f(oi, (y),...,0i,(y)). On one hand, the first computation
is light for the powerful cloud server. On the other hand, computing the proof
7 involves some symbolic computation. Note that f(z1,...,z,) is of degree d
and each of the (s+ 1)-variate polynomials o;,(y),...,0:, (¥) is of degree 1. The
cost required by computing 7 is roughly equal to that required by computing f
on (s + 1)? points. Furthermore, the server needs to send a representation of 7
that consists of (SJF;H) field elements. If we allow s = O()\), then degree d must
be restricted to O(1) such that the server’s computation and communication are
not too costly. So II5 allows the computation of any O(1)-degree polynomials.
This admissible function family of O(1)-degree polynomials can be significantly
larger than the admissible function family of quadratic polynomials in [4].

Efficient Client Verification. Let P = (f,I) be a program, where
f(z1,...,2,) is a polynomial function and I = {i,...,i,} C [N]. Let (p,7)
be the results and proof generated by Compute. The verification complexity is
measured by the time complexity of running two algorithms: ProbGen(sk,P)
and Verify(sk, vk, (p,7)). In our schemes, the time complexity of running Verify
is independent of n. As we always consider large enough n, the verification com-
plexity in both of our schemes will be dominated by the time complexity of
running ProbGen(sk, P). This is the complexity of computing f on n pseudoran-
dom values Fi/(i1), ..., Fi(i,) once. Note that this computation requires roughly
1/s times as much time as that required by the s delegated computations of f
on the outsourced data. Whenever s is large enough, the client’s verification
per each dataset uses substantially less time than computing f on each dataset.
Hence, our schemes are outsourceable.

Efficient Server Computation. In our schemes, the cloud server’s computa-
tion only involves PRF computations and polynomial evaluations over the finite
field Z,. Note that we never need any number-theoretic assumptions. As a result,
the size of the finite field Z, can be chosen as small as p &~ 2'?® when the secu-
rity parameter A = 128. In particular, the PRF F' in our both constructions can
be chosen as some heuristic PRF's such as AES block ciphers in practical imple-
mentations. In Sect. 4.3 we shall see that our server’s computation is significantly
more efficient than [4].

Efficient Server Storage. The storage overheads of our schemes are equal
to |pk|/|m|, where |pk| and |m| denote the numbers of field elements contained

Batch Verifiable Computation of Polynomials on Outsourced Data 181

in pk and m respectively. Recall that the number [pk|/|m| is always > 1 and
our objective is making it as close to 1 as possible. It is trivial to see that
Ipk|/|m| = (Jm| +|t])/|m| = (Ns+ N)/Ns =1+ 1/s in our schemes. Therefore,
the storage overheads of our schemes can be made arbitrarily close to 1 as long
as s is large enough.

Extending the Size of Datasets. In our schemes the client’s outsourced data
is a collection m = (m; ;)nxs of s datasets, each containing N elements. In
practice, the client may add new data elements to the outsourced datasets. Let
IT = II; or II;. Let (pk,sk) be any public key and secret key generated by
I1.KeyGen(1*,m). Note that pk takes the form (m,t = (t1,...,ty)), where t; is
a tag authenticating the elements (m; 1, ..., m;) for every ¢ € [N]. In particular,
the tag t; is computed using (1) when IT = IT; and using (3) when IT = Iy,
respectively. Let N’ = N + 1. To add s new elements (mn/1,...,mn7s) tO
the s datasets, the client can simply compute a tag ty: authenticating these
elements and instruct the cloud server to change pk = (m,t) to pk/ = (m/,t'),
where m' = (m; ;)n'xs and t' = (¢1,...,¢n/). In particular, when IT = IIy,
the tag tn/ will computed by solving the equation system (1) for ¢ = N’; and
when IT = I, the tag ¢ty will be computed using the equation (3) for i = N’.
Extending the size of all datasets in this way will never compromise the security
of the underlying schemes.

Extending the Number of Datasets in I]5. In practice, the client may also
want to extend the number of datasets. Let s’ = s+ 1. We consider the scenario
of the client updating m to m’ = (m; ;) nxs', where (mi o,...,mn,s) is a new
dataset. The general case for adding more than one new datasets can be done by
adding one after the other. In a naive way of updating m to m/, the client may
simply download pk = (m, t), verify the integrity of m and then run our schemes
on m'. However, this method will be quite inefficient when the size of m is large.
Here we show how the client in IT, can authenticate m’ without downloading m.

Let F : Kx{0,1}* — Zj, be the PRF and let sk = (k,a) — Kx (Z3)**! be the
secret key used to outsource m = (m; ;) nxs in ITo. Let pk = (m,t), where t; =
aal(Fk(i) —a1-mi1—---—as-my) for every i € [N]. Let (mq 41, .., MN,s41)
be a new dataset. To authenticate m’ = (m; ;) nxs’, the client picks (K, asy1) <
K x Zy, updates sk to sk’ = (k',a’ = (ao, . . ., as, as41)) and instructs the server
to change pk to pk’ = (m/,t' = (t,,...,ty)), where t, = ag* (Fy (i) — a1 - mi 1 —
Ce = Qg1 s My et1) = b — agl (Fr(i) — Fir(3) + as41 - mi s+1). To do so, the
client only needs to send the new dataset (M1 s41,..., MmN s+1) together with
A; = ag ' (Fi(i) — Fro (i) + asy1 - mise1),1 <4 < N, to the cloud server such
that the server can update t; to t; by computing ¢, = t; — A, for every i € [N].
All the other algorithms will be changed as below to work with (sk’, pk'):

— vk < ProbGen(sk’,P): Let P = (f,I) be a program, where f(x1,...,z,) is a
polynomial of degree d over Z, and I = {i1,...,i,} C [N] specifies on which
elements of each dataset f should be computed. This algorithm computes and
outputs a verification key vk = f(Fyr(i1),..., Fr (in)).

182 L.F. Zhang and R. Safavi-Naini

— (p,) « Compute(pk’, P): Let P = (f,I) be a program, where f(z1,...,z,) is
a polynomial of degree d over Z,, and I = {i1,...,i,} C [N] specifies on which
elements of each dataset f should be computed. This algorithm computes
p; = f(Miyj,-..,ms, ;) for every j € [s + 1]. Let oi(y) =1t} - yo + mi,1 - y1 +
oMy s Ys My s 41 Ysy1 for every i € I, wherey = (Yo, Y1, - - -, Ys, Ys+1)- This
algorithm outputs p = (p1,...,ps+1) and a proof © = f(o4, (¥), ..., 0, (¥))-

— Verify(sk’, vk, (p,m)): This algorithm accepts p and outputs 1 only if 7(a’) =
vk and 7(ej41) = p; for every j € [s + 1].

We say that these modifications resulting in an extended scheme IT}. Tt is trivial
to verify the correctness of IT). In the full version we show that no PPT adversary
can win a slight modification of the standard security game (Fig. 1) for IT} except
with negligible probability, where the modification means that the adversary is
allowed to know two tag vectors t and t’ instead of one.

Theorem 3. If F is a secure PRF, then II} is a secure BVC scheme.

Composition. We now show that our BVC schemes allow composition and
the composed computations can be efficiently verified as well. Let IT = I
or IT,. Let m = (m;)nxs € ZIJ)VXS be a collection of s datasets. Let pk
and sk be any public key and secret key generated by IT.KeyGen(1*,m). Let
Py = (fi, 1)y, Pn = (fn,In) be n programs, where f; € F and I; C [N].
Let vk; = fi({Fx(j) : j € I;)) be generated by II.ProbGen(sk,P;) for every
i € [n]. Let ((pi1,.-.,pis),m) < II.Compute(pk, P;) be the results and proof
generated by the computing algorithm. We can consider p = (p;¢)nxs as a col-
lection of s new datasets and consider (p,{m;}{~,) as an encoding of p. Let
P =(f(z1,...,2,),I =[n]) be a program that defines a computation on p.

If IT = IIy, we have that sk = (k,a) € Kx(Z,\{0,1,...,s}) and pk = (m, t).
Due to the correctness of I1, we have that Verify(sk,vk;, {pie}ee[s), mi) = 1 for
every i € [n], that is, m;(1) = pi1,mi(2) = pi2,...,m(s) = pis and m;(a) = vk;.
Below is the combing algorithm:

- ((fla e 758)771—) — Comb(f7 (pi,f)nxm {Wl}le[n]) ComPUteS f@ = f(pl,@ ey
pn,¢) for every ¢ € [s] and m = f(m(x),...,mp(x)). Outputs &1, ...,&s and .

If IT = II5, we have that sk = (k,a) € K x (Z3)**! and pk = (m, t). Due to
the correctness of I1,, we have Verify(sk, vk, {pi ¢} ocis), mi) = 1 for every i € [n],
that iS, 71'7;(82) = p,-71,7ri(e3) = Pi,2y--- ,m(es_H) = Pi,s and m(a) = ’Uk?i. Below
is the combing algorithm:

= ((&1,..+,&),m) « Comb(f, (pie)nxs, {Titie[n)): computes & = f(p1e,--.,
pne) for every £ € [s] and m = f(m1(y),...,mn(y)). Outputs &1,...,&s and 7.

5 Concluding Remarks

We introduced a model for batch verifiable computation and constructed two
BVC schemes with attractive properties. Extending the first scheme to support

Batch Verifiable Computation of Polynomials on Outsourced Data 183

efficient outsourcing of new datasets, expanding the admissible function family
of the second scheme, and constructing publicly verifiable batch computation
schemes are interesting open problems that follow from this work.

Acknowledgement. Liang Feng Zhang’s research is currently supported by Shang-
haiTech University’s start-up funding (No. F-0203-15-001). This work was done when
the author was a postdoctoral fellow at the University of Calgary. Reihaneh Safavi-
Naini’s research is supported in part by Alberta Innovates Technology Futures, in the
Province of Alberta, Canada.

A Proof of Lemma 1

Our proof of Lemma 1 begins with the following lemma from [22].

Lemma 2 (Zhang and Safavi-Naini [22]). If there is a number 0 < € < 1 such
that [{v € V:uov =0} < e-|V| for every u € (2, then A wins in the
Gamey with probability < eq.

Example 1. Let A C Z, be a non-empty subset of Z,. Let V,, =
{(1,a,...,a") : a € A} C 2, . For any u = (ug,u1,...,up) € £, and
v = (1,a,...,a") € Vup, u ® v = 0 if and only if a is a root of the poly-
nomial uy + w1z + --- + upz’™. Note that any non-zero univariate polynomial
of degree < h has < h roots in Z, (and thus has < h roots in A). For any
u € (2,1, there are < h elements v € Vy, such that u© v = 0. It follows that
€ £ max, —\{vev\ﬁ;u(i)v:()ﬂ < |L

up [

Let s > 0 be an integer. Let Z,[y] be the ring of polynomials in y =
(Y0, Y1, ---,Ys) with coefficients from Z,. For any vector i = (io,1,...,1s) of
non-negative integers, we denote y' = y’y;" - - - yis. We define the weight of i to
be wt(i) = ig + iy + - -+ +is. Then y' is a monomial of total degree wt(i).

Definition 2 (Hasse Derivative). For any polynomial P(y) € Z,ly] and any
vector i = (ig,11,...,1s) of non-negative integers, the i-th Hasse Derivative of
P(y), denoted as P (y), is the coefficient of w' in the polynomial P(y + w) €
Zply, W], where w = (wg, w1, . .., Ws).

Definition 3 (Multiplicity). For any polynomial P(y) € Zyly] and any point
ac Z;*l, the multiplicity of P at a, denoted as mult(P,a), is the largest inte-
ger M such that for any non-negative integer vector i = (ig,i1,...,1s) with
wt(i) < M, we have PY(a) = 0 (if M may be taken arbitrarily large, then we
set mult(P,a) = o).

It is trivial to see that mult(P,a) > 0 for any polynomial P(y) and any point
a. Furthermore, P(a) = 0 if and only if mult(P,a) > 1. The following lemma is
from [12] and shows an interesting property of multiplicity.

Lemma 3. Let P(y) € Z,[y] be any non-zero polynomial of total degree at most
d. Then for any finite set A C Zy,, it holds that), 4.+» mult(P,a) < d-[A[*.

184 L.F. Zhang and R. Safavi-Naini

Let NA(P) be the number of roots of P(y) in the set A*T!. Recall that any
root a € Z5*! of P(y) must satisfies the property that mult(P,a) > 1. Then
Na(P) < 3 aca-+1 mult(P,a). Lemma 3 in particular implies that Na(P) <
d-|A|®* whenever P(y) has total degree at most d. As a generalization of Example
1, we have the following Example related to multivariate polynomials.

Example 2. Let Vy,, = {(al : wt(i) < d) : a € A**} C 2, ,, where h =
S+(1i+d) — 1. For any two vectors u = (u; : wt(i) < d) € £, and v = (al :
wt(i) < d) € Vimp, u©v = 0 if and only if a is a root of the s-variate polynomial
P(y) = > iiy<a Wi yi. Note that [{v € Vinp : uG© v =0} = Na(P) <d-|A]*

mp =0
and [Vimp| = |A[|**1. Thus, € £ max, % < %.

Lemma 2 together with Examples 1 and 2 gives us the technical Lemma 1.

References

1. Agrawal, S., Boneh, D.: Homomorphic MACs: MAC-based integrity for network
coding. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS
2009. LNCS, vol. 5536, pp. 292-305. Springer, Heidelberg (2009)

2. Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: efficient
verification via secure computation. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp.
152-163. Springer, Heidelberg (2010)

3. Backes, M., Barbosa, M., Fiore, D., Reischuk, R.M.: ADSNARK: nearly practical
and privacy-preserving proofs on authenticated data. In: 2015 IEEE Symposium
on Security and Privacy (2012)

4. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on
outsourced data. In: 2013 ACM Conference on Computer and Communication
Security. ACM Press, November 2013

5. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111-131.
Springer, Heidelberg (2011)

6. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In: ITCS
2012: Proceedings of the 3rd Symposium on Innovations in Theoretical Computer
Science (2012)

7. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149-168. Springer,
Heidelberg (2011)

8. Catalano, D., Fiore, D.: Practical homomorphic MACs for arithmetic circuits. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
336-352. Springer, Heidelberg (2013)

9. Catalano, D., Fiore, D., Gennaro, R., Vamvourellis, K.: Algebraic (trapdoor) one-
way functions and their applications. In: Sahai, A. (ed.) TCC 2013. LNCS, vol.
7785, pp. 680-699. Springer, Heidelberg (2013)

10. Chung, K.-M., Kalai, Y.T., Liu, F.-H., Raz, R.: Memory delegation. In: Rogaway,
P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 151-168. Springer, Heidelberg (2011)

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Batch Verifiable Computation of Polynomials on Outsourced Data 185

Chung, K.-M., Kalai, Y., Vadhan, S.: Improved delegation of computation using
fully homomorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 483-501. Springer, Heidelberg (2010)

Dvir, Z., Kopparty, S., Saraf, S., Sudan, M.: Extensions to the method of multi-
plicities, with applications to kakeya sets and mergers. In: FOCS 2009, pp. 181-190
(2009)

Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and
matrix computations, with applications. In: 2012 ACM Conference on Computer
and Communication Security. ACM Press, October 2012

Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465-482. Springer, Heidelberg (2010)

Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinet NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626—645. Springer, Heidelberg (2013)
Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In: Sako,
K., Sarkar, P. (eds.) ASTACRYPT 2013, Part II. LNCS, vol. 8270, pp. 301-320.
Springer, Heidelberg (2013)

Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp.
99-108. ACM Press, June 2011

Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 113—
122. ACM Press, May 2008

Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. STAM J. Comput. 18(1), 186-208 (1989)

Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222-242. Springer, Heidelberg
(2013)

Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public:
verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 422-439. Springer, Heidelberg (2012)

Zhang, L.F., Safavi-Naini, R.: Verifiable delegation of computations with storage-
verification trade-off. In: Kutylowski, M., Vaidya, J. (eds.) ESORICS 2014, Part I.
LNCS, vol. 8712, pp. 112-129. Springer, Heidelberg (2014)

	Batch Verifiable Computation of Polynomials on Outsourced Data
	1 Introduction
	1.1 Our Contributions
	1.2 Overview of the Constructions
	1.3 Related Work
	1.4 Organization

	2 Preliminaries
	2.1 Batch Verifiable Computation on Outsourced Data
	2.2 A Lemma

	3 Constructions
	3.1 The First Construction
	3.2 The Second Construction

	4 Analysis
	5 Concluding Remarks
	A Proof of Lemma 1
	References

