Skip to main content

Rethinking the Fusion of Technology and Clinical Practices in Functional Behavior Analysis for the Elderly

  • Conference paper
  • First Online:
Human Behavior Understanding

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9277))

Abstract

Functional assessment is the test of the ability of a person to perform basic self-care activities that are instrumental for living safely and independently in a home. Gerontology classifies these self-care activities as Activities of Daily Living (ADL). There exist many clinical and systems measures for performing functional assessment. This paper critically reviews the state of art in these assessments. This paper also talks about the disconnect between the clinical and the technological measures. It also discusses future directions to establish a practical and objective method of conducting functional assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. http://www.who.int/ageing/en/

  2. US Labor Employment Projections. http://www.bls.gov/news.release/pdf/ecopro.pdf

  3. Program of All-inclusive Care for the Elderly. http://www.medicare.gov/your-medicare-costs/help-paying-costs/pace/pace.html

  4. World Health Organization. The uses of epidemiology in the study of the elderly: report of a WHO Scientific Group on the Epidemiology of Aging [meeting held in Geneva from 11 to 17 January 1983] (1984)

    Google Scholar 

  5. Lee, M.L.: Task-based embedded assessment of functional abilities for aging in place. Diss, Georgia Institute of Technology (2012)

    Google Scholar 

  6. Uniform Assessment Instrument. http://www.vda.virginia.gov/pdfdocs/uai.pdf

  7. Hospital and Community- Patient Review Instrument. https://www.health.ny.gov/forms/doh-694.pdf

  8. Brorsson, B.E.N.G.T., Asberg, K.H.: Katz index of independence in ADL. Reliability and validity in short-term care. Scand. J. Rehabil. Med. 16(3), 125–132 (1983)

    Google Scholar 

  9. Graf, C.: The Lawton instrumental activities of daily living scale. AJN Am. J. Nurs. 108(4), 52–62 (2008)

    Article  Google Scholar 

  10. Collin, C., Wade, D.T., Davies, S., Horne, V.: The barthel ADL index: a reliability study. Disabil. Rehabil. 10(2), 61–63 (1988)

    Google Scholar 

  11. Fish, J.: Bristol activities of daily living scale. Encycl. Clin. Neuropsychol. 452–453, 13 (2011)

    Google Scholar 

  12. Hindmarch, I., Lehfeld, H., de Jongh, P., Erzigkeit, H.: The bayer activities of daily living scale (B-ADL). Dement. Geriatr. Cogn. Disord. 9(Suppl. 2), 20–26 (1998)

    Article  Google Scholar 

  13. Schuling, J., De Haan, R., Limburg, M.T., Groenier, K.H.: The frenchay activities index. assessment of functional status in stroke patients. Stroke 24(8), 1173–1177 (1993)

    Article  Google Scholar 

  14. Harwood, R.H., Ebrahim, S.: A comparison of the responsiveness of the Nottingham extended activities of daily living scale, london handicap scale and SF-36. Disabil. Rehabil. 22(17), 786–793 (2000)

    Article  Google Scholar 

  15. Koyano, W., Shibata, H., Nakazato, K., Haga, H., Suyama, Y.: Measurement of competence: reliability and validity of the TMIG index of competence. Arch. Gerontol. Geriatr. 13(2), 103–116 (1991)

    Article  Google Scholar 

  16. Klein, R.M., Bell, B.: Self-care skills: behavioral measurement with Klein-Bell ADL scale. Arch. Phys. Med. Rehabil. 63(7), 335–338 (1982)

    Google Scholar 

  17. Wolfe, G.I., Herbelin, L., Nations, S.P., Foster, B., Bryan, W.W., Barohn, R.J.: Myasthenia gravis activities of daily living profile. Neurology 52(7), 1487–1487 (1999)

    Article  Google Scholar 

  18. Rosow, I., Breslau, N.: A Guttman health scale for the aged. J. Gerontol. 21, 556–559 (1966)

    Article  Google Scholar 

  19. Doble, S.E., Fisher, A.G.: The dimensionality and validity of the older americans resources and services (OARS) activities of daily living (ADL) scale. J. Outcome Meas. 2(1), 4–24 (1997)

    Google Scholar 

  20. Melville, L.L.: The Melville-Nelson Occupational Therapy Evaluation System for Skilled Nursing Facilities and Subacute Rehabilitation, Toledo. University of Toledo, Toledo (2001)

    Google Scholar 

  21. Holm, M.B., Rogers, J.C., Hemphill-Pearson, B.: The performance assessment of self-care skills (PASS). In: Hemphill-Pearson, B., et al. (eds.) Assessments in Occupational Therapy Mental Health, 2nd edn, pp. 101–110. SLACK, NJ (2008)

    Google Scholar 

  22. Internet-Connected Tea Kettle. http://www.mimamori.net/index.html

  23. Google Scholar. http://scholar.google.com

  24. Lester, J., Choudhury, T., Borriello, G.: A practical approach to recognizing physical activities. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 1–16. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  26. Tapia, E.M., Intille, S.S., Larson, K.: Activity Recognition in the Home using Simple and Ubiquitous Sensors. Springer, Berlin Heidelberg (2004)

    Book  Google Scholar 

  27. Ravi, N., Dandekar, N., Mysore, P., Littman, M.L.: Activity recognition from accelerometer data. Proc. AAAI 5, 1541–1546 (2005)

    Google Scholar 

  28. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. ACM SigKDD Explor. Newsl. 12(2), 74–82 (2011)

    Article  Google Scholar 

  29. Maurer, U., Smailagic, A., Siewiorek, D.P., Deisher, M.: Activity recognition and monitoring using multiple sensors on different body positions. In: International Workshop on Wearable and Implantable Body Sensor Networks (2006)

    Google Scholar 

  30. Van Kasteren, T., Noulas, A., Englebienne, G., Kröse, B.: Accurate activity recognition in a home setting. In: Proceedings of the 10th International Conference on Ubiquitous computing, pp. 1–9. ACM (2008)

    Google Scholar 

  31. Duong, T.V., Bui, H., Phung, D.Q., Venkatesh, S.: Activity recognition and abnormality detection with the switching hidden semi-markov model. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1, pp. 838–845. IEEE (2005)

    Google Scholar 

  32. Messing, R., Pal, C., Kautz, H.: Activity recognition using the velocity histories of tracked keypoints. In: IEEE 12th International Conference on Computer Vision, pp. 104–111. IEEE (2009)

    Google Scholar 

  33. Huynh, T., Schiele, B.: Analyzing features for activity recognition. In: Proceedings of the 2005 Joint Conference on Smart Objects and Ambient Intelligence: Innovative Context-aware Services: Usages and Technologies, pp. 159–163, ACM (2005)

    Google Scholar 

  34. Ben-Arie, J., Wang, Z., Pandit, P., Rajaram, S.: Human activity recognition using multidimensional indexing. IEEE Trans. Pattern Anal. Mach. Intell. 24(8), 1091–1104 (2002)

    Article  Google Scholar 

  35. Wilson, D.H., Atkeson, C.G.: Simultaneous tracking and activity recognition (STAR) using many anonymous, binary sensors. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 62–79. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  36. Khan, A.M., Lee, Y.-K., Lee, S.Y., Kim, T.-S.: A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer. IEEE Trans. Inf Technol. Biomed. 14(5), 1166–1172 (2010)

    Article  Google Scholar 

  37. Yang, J.-Y., Wang, J.-S., Chen, Y.-P.: Using acceleration measurements for activity recognition: an effective learning algorithm for constructing neural classifiers. Pattern Recogn. Lett. 29(16), 2213–2220 (2008)

    Article  Google Scholar 

  38. Wyatt, D., Philipose, D., Choudhury, T.: Unsupervised activity recognition using automatically mined common sense. Proc. AAAI 5, 21–27 (2005)

    Google Scholar 

  39. Bodor, R., Jackson, B., Papanikolopoulos, N.: Vision-based human tracking and activity recognition. In: Proceedings of the 11th Mediterranean Conference on Control and Automation, 1(2003)

    Google Scholar 

  40. Gu, T., Wu, Z., Tao, X., Pung, H.K., Lu, J.: Epsicar: An emerging patterns based approach to sequential, interleaved and concurrent activity recognition. In: IEEE International Conference on Pervasive Computing and Communications, pp. 1–9. IEEE (2009)

    Google Scholar 

  41. Ribeiro, P.C., Santos-Victor, J.: Human activity recognition from video: modeling, feature selection and classification architecture. In: Proceedings of International Workshop on Human Activity Recognition and Modelling (2005)

    Google Scholar 

  42. Hong, X., Nugent, C., Mulvenna, M., McClean, S., Scotney, B., Devlin, S.: Evidential fusion of sensor data for activity recognition in smart homes. Pervasive Mobile Comput. 5(3), 236–252 (2009)

    Article  Google Scholar 

  43. Fleury, A., Vacher, M., Noury, N.: SVM-based multimodal classification of activities of daily living in health smart homes: sensors, algorithms, and first experimental results. IEEE Trans. Inf Technol. Biomed. 14(2), 274–283 (2010)

    Article  Google Scholar 

  44. Patel, S.N., Robertson, T., Kientz, J.A., Reynolds, M.S., Abowd, G.D.: At the flick of a switch: detecting and classifying unique electrical events on the residential power line. Lect. Notes Comput. Sci. 4717, 271–288 (2007)

    Article  Google Scholar 

  45. Patterson, D. J., Fox, D., Kautz, H., Philipose, M.: Fine-grained activity recognition by aggregating abstract object usage. In: Proceedings Ninth IEEE International Symposium on Wearable Computers, pp. 44–51. IEEE, October 2005

    Google Scholar 

  46. Wu, J., Osuntogun, A., Choudhury, T., Philipose, M., Rehg, J.M.: A scalable approach to activity recognition based on object use. In: IEEE 11th International Conference on Computer Vision, IEEE, October 2007

    Google Scholar 

  47. Hong, Y. J., Kim, I.J., Ahn, S.C., Kim, H.G.: Activity recognition using wearable sensors for elder care. In: Proceedings of the Second International Conference on Future Generation Communication and Networking, 2, pp. 302–305. IEEE (2008)

    Google Scholar 

  48. Apple Research Kit. https://www.apple.com/researchkit/

Download references

Acknowledgement

We would like to thank our reviewers for providing many helpful critiques and suggestions. This work is supported by the National Science Foundation under Grants 1038271 and 0845761, and the NSF Graduate Research Fellowship Program under Grant 0809128.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juhi Ranjan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ranjan, J., Whitehouse, K. (2015). Rethinking the Fusion of Technology and Clinical Practices in Functional Behavior Analysis for the Elderly. In: Salah, A., Kröse, B., Cook, D. (eds) Human Behavior Understanding. Lecture Notes in Computer Science(), vol 9277. Springer, Cham. https://doi.org/10.1007/978-3-319-24195-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24195-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24194-4

  • Online ISBN: 978-3-319-24195-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics