
Decidability of Verification of Safety
Properties of Spatial Families of Linear

Hybrid Automata

Werner Damm1, Matthias Horbach2,3 and Viorica Sofronie-Stokkermans2,3

1 Carl von Ossietzky University, Oldenburg, Germany and
2 University Koblenz-Landau, Koblenz, Germany and

2 Max-Planck-Institut für Informatik, Saarbrücken, Germany

We consider systems composed of an unbounded number of uniformly designed
linear hybrid automata, whose dynamic behavior is determined by their relation to
neighboring systems. We present a class of such systems and a class of safety proper-
ties whose verification can be reduced to the verification of (small) families of “neigh-
boring” systems of bounded size, and identify situations in which such verification
problems are decidable, resp. fixed parameter tractable. We illustrate the approach
with an example from coordinated vehicle guidance, and describe an implementation
which allows us to perform such verification tasks automatically.

1 Introduction

Verification of families of interacting systems is very important nowadays. Next generations
cars will perform cooperative maneuvers for collision avoidance, lane changing, overtaking, and
passing intersections. They will rely on an internal digital representation of the environment –
capturing relative distance and speed of surrounding vehicles through on board sensors, sensor
fusion, and vehicle2vehicle communication in determining which coalition of vehicles will follow
what dynamics to achieve e.g. collision freedom. While prototype realizations of such highly au-
tomated driving functions have been demonstrated (cf. e.g. HAVEit project [Hoeger et al., 2008]),
the challenge in deploying such solutions rests in proving their safety.

In this paper, we propose a general mathematical model capturing the essence of such inter-
acting systems as spatial families of hybrid automata and provide efficient verification methods
for proving safety when abstracting the dynamics to linear hybrid automata. It thus provides ef-
ficient verification methods for systems composed of an unbounded dynamically communicating
parallel composition of uniformly defined linear hybrid automata.

The main contributions can be summarized as follows:

• We identify a class of systems composed of dynamically communicating uniformly defined
linear hybrid automata and a class of safety properties (with exhaustive entry conditions)
for which the verification of the whole system can be reduced to the verification of subsys-
tems of bounded size of “neighboring” components.

• We identify situations when verification is decidable and fixed parameter tractable.

1

ar
X

iv
:1

60
1.

01
64

8v
1

 [
cs

.L
O

]
 7

 J
an

 2
01

6

• We identify situations when checking whether the safety property has “exhaustive entry
conditions” is decidable resp. fixed parameter tractable.

• We analyze the complexity of parametric verification resp. synthesis.

• We illustrate all concepts we introduce and all steps of our method on a running example
from coordinated vehicle guidance.

• We implemented these ideas in the tool HAHA (Hierarchical Analysis of Hybrid Automata),
which employs H-PILoT for the reasoning tests. We present several tests and comparisons.

1.1 Related work

A considerable amount of work has been dedicated to identifying classes of hybrid automata for
which checking safety is decidable. Reachability and safety in linear hybrid automata are in gen-
eral undecidable, while invariant checking and bounded reachability are decidable. There are var-
ious approaches to the parametric verification of individual hybrid automata [Alur et al., 1996],
the development of a dynamic hybrid logic [Platzer, 2008], and of tools (cf. e.g. [Frehse et al., 2008,
Fribourg and Kühne, 2013]). A survey of existing decidability and undecidability results for indi-
vidual hybrid automata can be found in [Sofronie-Stokkermans, 2010, Damm et al., 2011], which
gives an overview of papers in which classes of hybrid automata resp. classes of verification prob-
lems for which decidability results can be established.

In this paper we analyze systems of hybrid automata. In recent years, systems of systems have
been studied in various papers.

Small model or cutoff properties for the verification of families of systems have been studied,
but only for systems of discrete (or even finite state) systems. In [Emerson and Srinivasan, 1990]
an indexed temporal logic is introduced that can be used to specify programs with arbitrarily
many similar processes. It is shown that the problems of checking “almost always satisfiabil-
ity” and “almost always unsatisfiability” are decidable, and a small model property is given. In
[Abdulla et al., 2013], a framework for the automatic verification of systems with a parametric
number of communicating processes (organized in various topologies such as words, multisets,
rings, or trees) is proposed; a method for the verification of such systems is given which needs
to inspect only a small number of processes in order to show correctness of the whole system
(the method relies on an abstraction function that views the system from the perspective of
a fixed number of processes). In [Kaiser et al., 2010], the class of finite-state programs exe-
cuted by an unbounded number of replicated threads communicating via shared variables is
studied. The thread-state reachability problem for this class is decidable via Petri net coverabil-
ity analysis, but as techniques solely based on coverability are inefficient, [Kaiser et al., 2010]
presents an alternative method based on a thread-state cutoff. Modularity results (and sim-
ilar cutoff results) are presented for the special case of systems of trains on a complex track
topology in [Sofronie-Stokkermans, 2009] and [Faber et al., 2010]. In [Jacobs and Bloem, 2014]
a cutoff property is used for parameterized synthesis in token ring networks (the synthesis
problem is reduced to distributed synthesis in a network consisting of a few copies of a sin-
gle process). Our work generalizes previous results on verification of classes of systems such
as [Emerson and Srinivasan, 1990, Abdulla et al., 2013, Kaiser et al., 2010, Faber et al., 2010,
Damm et al., 2013, Jacobs and Bloem, 2014] in supporting the much richer system model of lin-
ear hybrid automata. The temporal logic we use for specifying the safety properties we consider
is similar to that introduced in [Emerson and Srinivasan, 1990].

Among the existing work in which the safety of cooperative driver assistance systems (modeling
autonomous cars on highways performing lane-change maneuvers) we mention the results in
[Frese and Beyerer, 2010], [Hilscher et al., 2011] and [Damm et al., 2013].

2

[Damm et al., 2013] proposes a design and verification methodology for cooperative driver as-
sistance systems (with focus on applications where drivers are supported in complex driving
tasks by safe strategies involving the coordinated movements of multiple vehicles to complete
the driving task successfully). A “divide and conquer” approach for formally verifying timed
probabilistic requirements on successful completion of the driving task and collision freedom is
proposed. Our method is different, mainly because it relies on locality properties of the logical
theories used for modeling the problems. In [Hilscher et al., 2011], an alternative approach to
prove safety (collision freedom) of multi-lane motorway traffic with lane-change maneuvers is
proposed, based on a new spatial interval logic based on the view of each car. The compositional
approach [Hilscher et al., 2011] addresses an application class that is related to our running ex-
ample, but does not use hybrid automata to model the systems and does not provide decidability
or complexity results. [Frese and Beyerer, 2010] searches for strategies controlling all vehicles,
and employs heuristic methods to determine strategies for coordinated vehicle movements. An
excellent survey of alternative methods for controlling all vehicles to perform collision-free driv-
ing tasks is given in [Frese, 2010]. Both methods share the restriction of the analysis to a small
number of vehicles, whereas we consider an unbounded number of systems.

[Henzinger et al., 2001] analyzes the interplay of fixed combinations of hybrid systems using
assume-guarantee reasoning. In [Johnson and Mitra, 2012a, Johnson and Mitra, 2012b] a small
model theorem for finite families of automata with constant derivatives, with a parametric bound
on the number of components, is established; the discrete transitions describe changes in exactly
one system (thus no global updates of sensors can be modeled). Our approach allows us to
consider families with an unbounded or infinite number of components which are parametric
linear hybrid automata. We moreover allow for parallel mode switches and global topology
updates. In [Mickelin et al., 2014], robust finite abstractions with bounded estimation errors
are provided for reducing the synthesis of winning strategies for LTL objectives to finite state
synthesis; the approach is used for an aerospace control application. [Platzer, 2010] proposes a
quantified differential dynamic logic for specifying and verifying distributed hybrid systems but
the focus is not on providing decidability results or small model property results.

Our current work stands in the tradition of [Sofronie-Stokkermans, 2010, Damm et al., 2011,
Sofronie-Stokkermans, 2013], where we studied linear hybrid systems in which both mode changes
and the dynamics can be parametrized. We presented first results on the verification of fam-
ilies of LHA in [Damm et al., 2015]. This paper considerably extends the results presented in
[Damm et al., 2015]. In particular, compared to [Damm et al., 2015], the theoretical results are
extended and the experimental results reported in Section 7 are an order of magnitude faster
than the ones reported in [Damm et al., 2015]; we also explain how to use our system and our
theory prover H-PILoT for generating (and visualizing) counterexamples to safety.

1.2 Paper Structure

In Section 2 we present our model of spatial families of hybrid automata with its semantics. In
Section 3 we introduce the verification properties we consider. The notions are illustrated on a
running example of cars on a highway. In Section 4 we present classes of decidable and tractable
logical theories, which we use in Section 5 for solving the verification tasks and proving modularity
and complexity results. In Section 6 we summarize the main results in the form of a small model
property, as well as a discussion of the decidability and complexity of the verification problems
we consider. We identify situations in which the problems are fixed parameter tractable; and
give decidability and complexity results also for parametric verification and parameter synthesis.
In Section 7 we discuss our tests with our systems H-PILoT and HAHA. In Section 8 we present
a summary of the results we obtained, followed by plans for future work.

3

Contents

1 Introduction 1
1.1 Related work . 2
1.2 Paper Structure . 3

2 Spatial Families of Hybrid Automata 5
2.1 The language. 6
2.2 Component systems. 6
2.3 Topology . 8

2.3.1 Topology automata . 8
2.3.2 Timed topology automata . 10

2.4 Spatial family of hybrid automata . 10

3 Verification Tasks 12
3.1 Safety properties . 12

3.1.1 Safety properties with exhaustive entry conditions 13
3.1.2 Reduction to GMR invariant checking . 14
3.1.3 Safety properties with GMR-exhaustive entry conditions 15

3.2 Reducing verification tasks to satisfiability checking . 16
3.2.1 Sequentializing parallel jumps . 16
3.2.2 Verification of safety properties and satisfiability checking 17
3.2.3 Checking exhaustive entry conditions . 18

4 Automated Reasoning 20
4.1 Local theory extensions . 20
4.2 Hierarchical reasoning in local theory extensions . 20
4.3 Examples of local theories and theory extensions . 21

4.3.1 Update rules . 21
4.3.2 A theory of pointers . 21

4.4 Chains of local theory extensions . 22

5 Verification: Decidability and Complexity 23
5.1 Verification tasks: Chains of local theory extensions . 25
5.2 Verification of safety properties. 26

5.2.1 Entry conditions . 26
5.2.2 Flows . 29
5.2.3 Jumps . 33
5.2.4 Topology updates . 36

5.3 Checking exhaustive entry conditions . 38

6 Consequences of Locality 40
6.1 A small model property . 40
6.2 Decidability, Complexity . 41

7 Tool Support 42
7.1 Input syntax . 42
7.2 System architecture . 43
7.3 Experiments . 44

7.3.1 Decision Problems . 44
7.3.2 Model generation . 45
7.3.3 Complexity . 45

8 Conclusions 46
8.1 Summary of results . 46
8.2 Plans for further work . 47

4

Figure 1: Traffic situation on a highway

2 Spatial Families of Hybrid Automata

We study families {S(i) | i ∈ I} consisting of an unbounded number of similar systems. To
describe them, we have to specify the properties of the component systems and the way they
obtain information about neighboring systems:

• We model the systems S(i) using hybrid automata.

• For describing the information about neighboring or other observed systems we use struc-
tures (I, {p : I → I}p∈P), where I is a countably infinite set and P = PS ∪ PN is a finite
set of unary function symbols which model the way the systems perceive other systems
using sensors in PS , or by neighborhood connections (e.g. established by communication
channels) in PN .

We use highway control as a running example.

Example 1 Let I be a set of car identities, including the special constant nil.

(1) A car can observe other cars through sensors; these are modeled by a finite application-
dependent set PS of functions p : I → I, where p(i) = j represents the fact that i’s p-sensor
observes car j. We choose PS to include back, front, sidefront, sideback, which indicate the
closest car in the respective directions: In Figure 1, we have sidefront(7) = 5, back(7) = 18,
front(7) = 8. If sensor p ∈ P of car i sees no car then p(i) = nil. We will make these notions
more precise in Examples 3 and 4.

(2) Car platoons of length at most n can be modeled e.g. by choosing a set of neighborhood con-
nections PN including leader, follower1, . . . followern, next, prev. Car i is leader if leader(i) = i;
if leader(j) = i 6= j, then j = followerk(i) for some k ≤ n.

Definition 2 (Hybrid automata, linear hybrid automata [Alur et al., 1996]) A hybrid
automaton (HA) is a tuple

S = (X,Q, Init, flow, Inv, E, guard, jump)

consisting of:

(1) finite sets X = {x1, . . . , xn} (real-valued variables) and Q (control modes); a finite multiset
E with elements in Q×Q (control switches);

(2) families Init = {Initq | q ∈ Q} and Inv = {Invq | q ∈ Q} of predicates over X, defining the
initial states and invariant conditions for each control mode, and flow = {flowq | q ∈ Q} of

predicates over X∪Ẋ specifying the dynamics in each control mode, where Ẋ = {ẋ1, . . . , ẋn}
(ẋi is the derivative of xi);

(3) families {guarde | e ∈ E} of predicates over X (guards) and {jumpe | e ∈ E} of predicates
over X ∪X ′ (jump conditions) for the control switches, where X ′ = {x′1, . . . , x′n} is a copy
of X.

5

A linear hybrid automaton (LHA) is a HA in which for every q ∈ Q, e ∈ E:

(i) Invq, Initq, jumpe and guarde are convex linear predicates1 and

(ii) flowq is a convex linear predicate (with only non-strict inequalities) over Ẋ.

A state of S is a pair (q, a), where q ∈ Q and a=(a1, . . . , an), where ai∈R is a value for xi∈X.
A state s = (q, a) is admissible (resp. initial) if Invq (resp. Initq) is true when each xi is replaced
by ai. A state can change by a jump (instantaneous transition that changes the control mode
and the values of the variables according to the jump conditions), or by a flow (evolution in a
mode q where the values of the variables change according to the flowq).

2.1 The language.

To describe the families {S(i) | i ∈ I}, the topology (I, {p : I → I}p∈P) and its updates, and
the safety properties we are interested in, we use a two-sorted first-order language Lindex,num of a
theory of pointers with two sorts, index and num. Sort index is used for representing the indices
and sort num is used for numerical values. The signature of the theory contains a constant nil
of sort index, unary function symbols in P (sort index → index) for modeling pointer fields, and
a set X (sort index → num) for modeling the scalar (numeric) information associated with the
indices (values of the continuous variables of the systems). A theory Tnum (sort num) is used for
describing properties of the values of the continuous variables of the systems (e.g. the theory R of
real numbers, or linear real arithmetic LI(R)). We consider first-order formulae in the language
Lindex,num. Variables of sort index are denoted with indexed versions of i, j, k; variables of sort
num are denoted x1, . . . , xn.

2.2 Component systems.

The component systems are similar2 hybrid automata {S(i) | i ∈ I}, with:

• the same set of control modes Q and the same mode switches E ⊆ Q×Q,

• real valued variables XS(i), partitioned into a set X(i) = {x(i) | x ∈ X} of variables
describing the states of the system S(i) and a set XP (i) = {xp(i) | x ∈ X, p ∈ P}
describing the state of the neighbors {p(i) | p ∈ P} of i, where X = {x1, . . . , xn}.

We consider two possibilities for xp(i):

(a) Continuous sensors: xp(i) is at any moment the value of x(p(i)), the value of variable x for
the system S(p(i)) and is controlled by suitable flow/jump conditions of S(p(i));

(b) Intermittent sensors: xp(i) is the value of x(p(i)) which was sensed by the sensor in the last
measurement, and does not change between measurements.

We assume that all sets X(i), i ∈ I are disjoint. Every component system S(i) has the form:

S(i) = (X(i) ∪XP (i), Q, flow(i), Inv(i), Init(i), E, guard(i), jump(i))

where – with the notations in Definition 2:

1A convex linear predicate is a finite conjunction of linear inequalities over R.
2The results can be adapted to the situation when a finite number of types of systems are given and the

description of each S(i) is of one of these types.

6

Appr

InvAppr:

flowAppr:

1 ≤ lane(i) ≤ 2
front(i) = nil ∨ posfront(i)− pos(i) ≥ d

˙lane(i) = 0
front(i) = nil ∨ ˙posfront(i) ≤ ˙pos(i) ≤ 100

Rec

InvRec:

flowRec:

1 ≤ lane(i) ≤ 2
front(i) = nil ∨ posfront(i)− pos(i) ≤ D

˙lane(i) = 0
0 ≤ ˙posfront(i)
front(i) = nil ∨ ˙posfront(i) ≤ ˙pos(front(i))

guard:

jump:

front(i) 6= nil
posfront(i)− pos(i) ≤ D′

back(i) = nil ∨ pos(i)− posback(i) ≥ d′

sideback(i) = nil ∨ pos(i)− possideback(i) ≥ d′

sidefront(i) = nil ∨ possidefront(i)− pos(i) ≥ d′

lane′(i) = 3− lane(i)

guard:

jump:

front(i) 6= nil
posfront(i)− pos(i) ≤ D′

back(i) = nil ∨ pos(i)− posback(i) ≥ d′

sideback(i) = nil ∨ pos(i)− possideback(i) ≥ d′

sidefront(i) = nil ∨ possidefront(i)− pos(i) ≥ d′

lane′(i) = 3− lane(i)

g
u

ard
:

fro
n

t(i)
6=

n
il

p
o

s
fro

n
t (i)
−

p
o

s(i)
≤

D
′g

u
ar

d
:

fr
o

n
t(
i)
6=

n
il

p
o

s f
ro

n
t(
i)
−

p
o

s(
i)
≥

d
′

Figure 2: Hybrid automaton modeling the behavior of a car on a two-lane highway

• for every q ∈ Q Invq(i), Initq(i) is a conjunction of formulae of the form E ∨ C, where C is
a predicate over XS(i) and E is a disjunction of equalities of the form i = nil and p(i) = nil
if xp(i) occurs in C. We will in general assume that Initq includes Invq as a conjunct.

• for every q ∈ Q, flowq(i) is a conjunction of formulae of the form E ∨ C, where C is a

predicate over XS(i) ∪ ẊS(i) and E is a disjunction of equalities of the form i = nil and
p(i) = nil if xp(i) occurs in C.

• for every e ∈ E, guarde(i) is a conjunction of formulae of the form ¬(E ∨ C), where C is a
predicate over XS(i) and E is a disjunction of equalities of the form i = nil and p(i) = nil if
xp(i) occurs in C.

• for every e ∈ E, jumpe(i) is a conjunction of formulae of the form E ∨ C, where C is a
predicate over XS(i) ∪ X ′(i) and E is a disjunction of equalities of the form i = nil and
p(i) = nil if xp(i) occurs in C.

All these formulae can also be regarded as Lindex,num-formulae; for all i ∈ I they differ only in
the variable index.

The component S(i) is linear if

(i) for every q ∈ Q, flowq(i) contains only variables in ẊS(i) and

(ii) for every q ∈ Q and e ∈ E, flowq(i), Invq(i), Initq(i), guarde(i), jumpe(i) are conjunctions of
formulae E ∨ C, as above, where C is a linear inequality (non-strict for flows).

We also consider systems of parametric LHA, in which some coefficients in the linear inequalities
(and also bounds for invariants, guards or jumps) are parameters in a set Par.

Example 3 Consider the following model of a system of cars, which is also depicted in Figure 2:
The controlled variables are the position and the lane of the car, so X = {pos, lane}. The car can
drive on either lane 1 or lane 2. Its sensors provide information about the car in front and back
on the same lane (front, back) and about the closest cars on the other lane (sidefront, sideback).
Thus the set of sensors is

P = {back, front, sideback, sidefront} .

7

Each car is modeled by a hybrid automaton with set of continuous variables

X = {pos(i), lane(i)} ∪ {posp(i), lanep(i) | p ∈ P}

and modes
Q = {Appr,Rec} .

We assume that xp(i) = x(p(i)) (continuous sensors, variant (a) above) and use parameters
Par = {d, d′, D,D′}.

Initial states: As initial states, we allow all states where posfront(i)− pos(i) ≥ d′ if front(i) 6= nil,
and where the respective mode invariant is satisfied:

• InitAppr and InitRec are (i = nil ∨ front(i) = nil ∨ posfront(i)− pos(i) ≥ d′).

Invariants; flow conditions:
Mode Appr: car i keeps its velocity high enough to approach the car ahead.

• InvAppr is (i = nil ∨ 1≤lane(i) ≤ 2) ∧ (i = nil ∨ front(i) = nil ∨ posfront(i)− pos(i) ≥ d);

• flowAppr is (i = nil ∨ laṅe(i) = 0) ∧ (i = nil ∨ front(i) = nil ∨ ˙posfront(i) ≤ ˙pos(i))
∧ (i = nil ∨ 0≤ ˙pos(i)≤100).

Mode Rec: car i maintains a lower velocity to fall back.

• InvRec is (i = nil ∨ 1≤lane(i) ≤ 2) ∧ (i = nil ∨ front(i)=nil ∨ posfront(i)−pos(i)≤D);

• flowRec is ((i = nil ∨ laṅe(i) = 0) ∧ (i = nil ∨ 0 ≤ ˙pos(i))
∧ (i = nil ∨ front(i) = nil ∨ ˙pos(i) ≤ ˙posfront(i))).

Mode switches:
A mode switch (without resets) can happen if i 6= nil, front(i) 6= nil (there is a car ahead)
and the distance to that car leaves a predefined range, i.e.

• posfront(i)− pos(i) ≤ D′ (switch from Appr to Rec) or

• posfront(i)− pos(i) ≥ d′ (switch from Rec to Appr).

Another mode switch to mode Appr, which changes between lanes 1 and 2 with reset
lane′(i)=3−lane(i), can happen when i 6= nil and:

• the car in front is too close (front(i) 6= nil ∧ posfront(i)−pos(i) ≤ D′) and

• there is space to start the maneuver: back(i)=nil∨pos(i)−posback(i)≥d′. Similarly for
sideback(i) and sidefront(i).

2.3 Topology

We now present a possibility of modeling the topology of the family of systems using a one-state
automaton, where the transitions are labeled with updates of the values of the pointers (Sec-
tion 2.3.1), and a refinement of this model in which clocks are additionally used (Section 2.3.2).

2.3.1 Topology automata

We model the topology of the family of systems and its updates using an automaton Top with one
mode, having as read-only-variables all variables in {x(i) | x ∈ X, i ∈ I} and as write variables
{xp(i) | p ∈ P, i ∈ I}, where P = PS ∪ PN . In addition, Top updates the functions p : I → I,
where P = PS ∪ PN .

The initial states Init are described using Lindex,num-formulae. The jumps can represent updates
of the sensor values p(i), p ∈ PS , for a single system S(i), but also synchronized global updates

8

of the sensors p ∈ PS or neighborhood connections p ∈ PN for subsets of systems with a certain
property (described by a formula). This can be useful when modeling systems of systems with
an external controller (e.g. systems of car platoons) and entails a simultaneous update of an
unbounded set of variables.3 Therefore, the description of the mode switches (topology updates)
in Top is of a global nature and is done using Lindex,num-formulae.

The update rules for p ∈ P , which we denote as Update(p, p′), are conjunctions of implications
of the form

∀i(i 6= nil ∧ φpk(i)→ F p
k (p′(i), i)), k ∈ {1, . . . ,m}, (1)

which describe how the values of the pointer p change depending on a set of mutually exclusive
conditions {φp1(i), . . . , φpm(i)} such that:

• φpk(i) and F p
k (j, i) are formulae over the 2-sorted language Lindex,num without any occurrence

of unary functions in P ′;

• if p ∈ PS (p represents a sensor), the formulae φpk(i) and F p
k (j, i) also do not contain

functions in P ;

• under the condition φpk(i), the existence of a value for p′(i) such that F p
k (p′(i), i) holds must

be guaranteed, i.e.
|= φpk(i)→ ∃j F p

k (j, i);

• The variables {x(i) | x∈X, i∈I} can be used in the guards of Update(p, p′), but cannot be
updated by Top.

• If xp(i) stores the value of x(p(i)) at the update of p (variant (b) on page 6), then the
update rules also change xp(i), so F p

k (p′(i), i) must contain x′p(i) = x(p′(i)) as a conjunct.

Example 4 We present possible update rules for the topology and initial states for the model
of cars in Example 3. Consider the following formulae:

• ASL(j, i): j 6= nil ∧ lane(j) = lane(i) ∧ pos(j) > pos(i), which expresses the fact that j is
ahead of i on the same lane, and

• Closestf(j, i): ASL(j, i) ∧ ∀k(ASL(k, i)→pos(k) ≥ pos(j)), which expresses the fact that j is
ahead of i on the same lane and there is no car between them.

Update rules. The rule for updating the front sensor of all cars with a given property expressed
by a formula Prop and of no other car is described by Update(front, front′):

∀i
(
i 6= nil ∧ Prop(i) ∧ ¬∃j(ASL(j, i))→ front′(i) = nil

)
∀i
(
i 6= nil ∧ Prop(i) ∧ ∃j(ASL(j, i))→ Closestf(front′(i), i)

)
∀i
(
i 6= nil ∧ ¬Prop(i)→ front′(i) = front(i)

)
Below are three examples of formulae which can describe a property Prop:

(1) If Prop(i) = (i = i0), only the front sensor of car i0 is updated.

(2) For car platoons, Prop(i) can be leader(i) = i0; we then obtain a coordinated update for
all platoon members.

3 Our choice allows us to uniformly represent various types of topology updates, from purely local ones to global
updates, without loss of generality.

9

(3) If Prop(i) = true, Update(front, front′) describes a global update.

Initial states. The initial states can e.g. be the states in which all sensor pointers have the correct
value, as if they had just been updated. For front this can be expressed by the following set of
formulae:

∀i(i 6= nil ∧ front(i) = nil → ∀k(k 6= nil ∧ k 6= i ∧ pos(k) ≥ pos(i)→ lane(k) 6= lane(i)))
∀i(i 6= nil ∧ front(i) 6= nil → posfront(i) > pos(i) ∧ lanefront(i) = lane(i)∧

∀k(k 6= nil ∧ k 6= i ∧ pos(k) ≥ pos(i) ∧ lane(k) = lane(i)
→ pos(k) ≥ posfront(i))∧

pos(front(i)) = posfront(i) ∧ lane(front(i)) = lanefront(i)).

Alternatively, we can express this using formulae similar to the update rules:

∀i
(
i 6= nil ∧ Prop(i) ∧ ¬∃j(ASL(j, i))→ front(i) = nil

)
∀i
(
i 6= nil ∧ Prop(i) ∧ ∃j(ASL(j, i))→ Closestf(front(i), i)

)
Example 5 Consider a car platoon as in Example 1 (2). The situation when a car i0 (who is
not a leader) leaves the platoon can e.g. be described by:

leader′(i0) = i0 next′(i0) = nil prev′(i0) = nil

prev(i0) 6= nil→ next′(prev(i0)) = next(i0)

next(i0) 6= nil→ prev′(next(i0)) = prev(i0)

∀i(i 6= i0 ∧ i 6= prev(i0)→ next′(i) = next(i))

∀i(i 6= i0 ∧ i 6= next(i0)→ prev′(i) = prev(i))

2.3.2 Timed topology automata

If we want to ensure that the component systems update the information about their neighbors
sufficiently often, we can use additional clock variables {cp(i) | i ∈ I, p ∈ P}, satisfying flow
conditions of the form ċp(i) = 1. Every topology update involving a set of systems and pointer
field p has the effect that the clocks cp(i) for all systems i in that set are set to 0 (added to the
conclusion of the topology updates).

Example 6 In Example 4 the consequence of the update rules Update(front, front′) for front
would contain as a conjunct the formula c′front(i) = 0.

In addition, we can require that for every system i the interval between two updates of p ∈ P
is at most ∆t(i). Then InitTop contains ∀i cp(i) = 0 as a conjunct; the invariant of the mode of
Top contains ∀i 0 ≤ cp(i) ≤ ∆t(i); and if cp(i) = ∆t(i) a topology update for system i must take
place.

2.4 Spatial family of hybrid automata

Definition 7 (Spatial Family of Hybrid Automata) A spatial family of hybrid automata
(SFHA) is a family of the form

S = (Top, {S(i) | i ∈ I}),

where {S(i) | i ∈ I} is a system of similar hybrid automata and Top is a topology automaton. If
for every i ∈ I, S(i) is a linear hybrid automaton, we talk about a spatial family of linear hybrid
automata (SFLHA). If the topology automaton is timed, we speak of a spatial family of timed
(linear) hybrid automata (SFT(L)HA).

10

S(1)

S(2)

S(3)

...

S(n)

s1s2 s3s4 s5s6 s7s8s9 s10s11 s12s13 s14s0

Figure 3: Visualization of a run of an SFLHA with components S(1), . . . , S(n). Time passes
towards the right. Jumps in a system S(i) are marked by a short vertical line, and
local or global updates by a dashed line. The curve corresponding to S(i) between
such lines represents a flow in system S(i).

Definition 8 (Decoupling) An SFLHA S is decoupled if the real-valued variables in the guard
of a mode switch of S(i) can only be reset in a jump by S(i) or by Top.

Remark: In the variant with continuous sensors (variant (a) on page 6), we have xp(i) = x(p(i))
for every i ∈ I. If xp(i) is used in the guard of a mode switch of S(i), then in order to ensure
that S is decoupled, no jump of S(p(i)) should reset x(p(i)).

In the variant with intermittent sensors (variant (b)), xp(i) is the value sensed by the sensor
p in the last measurement and so S is always decoupled.

Example 9 In our running highway example (Example 3, 4) only the variables pos(i), posfront(i),
posback(i), possidefront(i), and posback(i) are used in jump guards. Since no jump of a car resets
its position, the system is decoupled. Note that if lanefront(i) were used in any jump guard, the
system would not be decoupled in variant (a), because front(i) can reset its lane during a jump.

Definition 10 (States and Runs) Let S = (Top, {S(i) | i ∈ I}) be a spatial family of hybrid
automata.

• A state s = (q, a) of S consists of a tuple q = (qi)i∈I ∈ QI of modes of the component
automata and a tuple a of values of the variables of all components. A state (q, a) is
admissible if the values in a satisfy the invariants of Top and the restriction to the variables
of S(i) satisfies Invqi(i), for all i ∈ I.

• Initial states of S are the initial states of Top whose restriction to the variables of S(i) are
initial states of S(i), for all i ∈ I.

• A state change (s, s′) is a flow of length t if its restriction to the variables of S(i) is a flow
of length t, for all i ∈ I.

• A state change (s, s′) is a jump if its restriction to the variables of S(i) is a jump or else
a flow of length 0, for all i ∈ I.

• A run of S is a sequence s0, s1, . . . of admissible states where:

(i) s0 is an initial state of S,

(ii) each pair (sj , sj+1) is a jump, a flow or a topology update, and

(iii) each flow is followed by a jump or a topology update.

A visualization of a run of an SFLHA is depicted in Figure 3. (Note that property (iii) of runs
does not restrict the set of states that are reachable in a run.)

11

3 Verification Tasks

The properties of SFLHA we consider are specified in a logic which combines first-order logic
over the language Lindex,num and temporal logic: Formulae are constructed inductively from atoms
using temporal operators and quantification over variables of sort index. Since runs of the system
define valuations of variables for each point in time, the semantics of such formulae is defined
canonically, see e.g. [Hungar et al., 1995]. We consider safety properties of the form:

Φentry → �Φsafe,

which state that for every run of the composed system, if Φentry holds at the beginning of the
run then Φsafe always holds during the run.

Example 11 Collision freedom can be expressed using the formula

Φg
safe : ∀i, j(i6=nil ∧ j 6=nil ∧ lane(i)=lane(j) ∧ pos(i)>pos(j)→ pos(i)− pos(j)≥ds)

for a suitably chosen constant ds > 0 (global safety distance) or by referring only to the “neigh-
bors”, using Φl

safe =
∧

index∈P Φindex
safe , where e.g. Φfront

safe is:

∀i(i 6= nil ∧ front(i) 6= nil→pos(front(i))− pos(i) ≥ ds).

In Section 3.1 we identify a class of general safety properties with what we call exhaustive
entry conditions (Definition 12) which can be reduced to invariant checking for certain mode
reachable states (Definition 15). In Section 3.2 we then show that for decoupled SFLHA we
can reduce checking invariance for mode reachable states of Φsafe to satisfiability checking in
suitable logical theories, which are combinations of LI(R) possibly extended with functions xi
satisfying additional properties (boundedness, continuity, boundedness conditions for the slope),
and theories of pointers for modeling the information provided by the sensors.

Using decidability results presented in Section 4, in Section 5 we identify situations in which
the analysis of safety properties Φentry → �Φsafe can be precisely reduced to a neighborhood of
bounded size of the systems for which Φsafe could fail. This allows us to prove a small model
property and to identify safety properties which are decidable resp. fixed parameter tractable.

Notation. In what follows, sequences i1, . . . , ik of variables of sort index are denoted with i,
sequences x1, . . . , xn (resp. ẋ1, . . . , ẋn) with x (resp. ẋ). The sequence x1(i), . . . , xn(i) of all
variables of S(i) is denoted with x(i), and ẋ1(i), . . . , ẋn(i) with ẋ(i). To refer to the value of x(i)
at time t, we write x(i, t). The sequence x1(i, t), . . . , xn(i, t) of values of variables of system Si

at a time t is denoted x(i, t).

3.1 Safety properties

Safety of LHA is in general undecidable; classes of LHA and safety properties which are decidable
have been identified in several papers. In [Damm et al., 2011] we discuss such approaches and
propose weaker conditions guaranteeing decidability. The approach described here continues
this line of research. The choice of the class of safety properties we consider is based on the
observation that industrial style guides for designing hybrid automata make sure that modes are
entered in an “inner envelope”, chosen such that modes cannot be left before a fixed minimal
dwelling time; this avoids immediate context switching. In [Damm et al., 2011] we showed that
using inner envelopes for individual LHA allows us to reduce safety checking to invariant checking
and the proof of bounded liveness properties to checking bounded unfoldings.

12

3.1.1 Safety properties with exhaustive entry conditions

In this paper we study possibilities of automatically verifying a certain class of safety properties,
namely safety properties with exhaustive entry conditions.

Definition 12 (Exhaustive Entry Conditions) A safety property with exhaustive entry con-
ditions has the form

Φentry → �Φsafe

where Φentry = ∀i1, . . . , imφentry(x(i1), . . . , x(im)) is a formula in the language Lindex,num such that:

(i) If Φentry holds in a state s, s is an initial state of S;

(ii) For every jump or topology update (s, s′), Φentry holds in s′.

Condition (i) guarantees that we make minimal restrictions on initial states: runs can start
in any state satisfying Φentry. The formula Φentry can be seen as a description of certain “inner
envelopes” of the modes. Condition (ii) expresses the fact that a jump leads into a state satisfying
Φentry (in the inner envelope of the target mode).

For instance, if Inittop describes the fact that the information about all variables detected by
sensors in PS is precise, then condition (ii) imposes the restriction that sensors have to be globally
updated after any jump or local topology update, which is clearly too restrictive. We can instead
require that the initial states contain all states in which the positions indicated by sensors are
within a given margin ε of error (the entry condition Φentry could describe such states).

Remark 13 Conditions (i) and (ii) ensure that if we start from a state in which Φentry holds
for a given combination a of the values of the variables, then there exists at least one tuple
q=(qi)i∈I∈QI of modes of the component automata such that (q, a) is an admissible state (i.e.
the combination a of the values satisfies the invariants in mode q), and that any jump or topology
update starting in a state satisfying Φentry leads again to an admissible state.

Example 14 Assume that Φentry describes such a small margin of error between the information
given by sensors and the real positions in the running example, e.g.

Φentry = ∀i (i 6= nil ∧ front(i) 6= nil→ |lanefront(i)− lane(front(i))| < ε).

Since lane can be modified by a mode change (from value 1 to 2 or vice versa), condition (ii)
is not guaranteed to hold. For example, directly after a lane change, front may point to a car
which is now on a different lane, thus violating Φentry.

In order to guarantee (ii), we need to ensure that

• Top is a timed topology automaton where the interval ∆t between sensor updates is small
enough and

• after lane changes the sensors of all systems affected by the change are simultaneously
updated.

In what follows we show that checking safety properties with exhaustive entry conditions can
be reduced to checking invariance of Φsafe under all flows, and under jumps and topology updates
in states which are reachable through a flow from a state satisfying Φentry (we call such state
changes GMR jumps and topology updates, cf. Definition 15).

13

•
•

s0

s

ΦEntry ∩ Invq Invq

Figure 4: Global mode reachability

3.1.2 Reduction to GMR invariant checking

We prove that checking safety properties with exhaustive entry conditions for decoupled SFHA
can be reduced to checking whether the safety property Φsafe is invariant under certain jumps,
flows, and topology updates.

Definition 15 (Globally Mode Reachable) Let S be an SFHA. A state s = (q, a) of S is
globally mode reachable (GMR, for short) if there exists a state s0 = (q, a0) of S such that a0

satisfies Φentry and there is a flow in S from (q, a0) to (q, a).
A state change (s, s′) of S (which can be a flow, a jump, or a topology update) is globally

mode reachable if s is globally mode reachable.

Figure 4 visualizes the concept of global mode reachability of a state.

Theorem 16 An SFHA S = (Top, {S(i) | i ∈ I}) satisfies a safety property with exhaustive
entry conditions Φentry → �Φsafe if and only if the following hold:

(1) All states satisfying Φentry satisfy Φsafe.

(2) Φsafe is preserved under all flows starting from a state satisfying Φentry.

(3) Φsafe is preserved under all GMR jumps.

(4) Φsafe is preserved under all GMR topology updates.

Proof: Assume S satisfies the safety property Φentry → �Φsafe. We prove that (1)–(4) hold.
(1) Consider a state s satisfying condition Φentry. By condition (i) from Definition 12, all states

satisfying Φentry are initial. Since S satisfies the condition Φentry → �Φsafe, all runs consisting of
only one state s (satisfying Φentry) have the property that Φsafe holds during the run. Hence Φsafe

holds at state s.
(2) Consider now a flow (s, s′) starting from a state satisfying condition Φentry. Then s is initial

by condition (i) from Definition 12, i.e. s, s′ is a run of S. The assumption that S satisfies the
safety property implies that this flow is safe as well (so all states during this flow are safe).

(3) Consider a jump (s, s′), where s is globally mode reachable. Then s is reachable using a
flow in S from a state s0 satisfying condition Φentry (by condition (i) from Definition 12, s0 is an
initial state). Because s0, s, s

′ is a run of S and S satisfies the safety property Φentry → �Φsafe,
it follows that Φsafe holds at s′.

(4) The proof for topology updates is similar to the one for jumps. The fact that every topology
update leads to an admissible state is a consequence of condition (ii) from Definition 12.

Assume now that (1)–(4) hold. We prove that S satisfies the safety property Φentry → �φsafe.
Let s0, s1, . . . be a run in the composed system S, starting in an initial state satisfying condition
Φentry. We prove by induction on n that for every state sn in the run:

(a) all states in the run up to state sn are GMR.

14

(b) Φsafe holds during the run up to state sn.

Φentry holds in state s0, hence by (1), s0 is both safe and GMR.
Assume that we have proved that for all 1 ≤ i ≤ n− 1, si has properties (a) and (b) above. If

the change of state (sn−1, sn) is due to a flow, then sn−1 must be reached by a jump or topology
update; so Φentry holds at sn−1, hence (a) sn is GMR and (b) by (2) all the states in which the
system is during the flow from sn−1 to sn are also safe.

Assume that the change of state (sn−1, sn) is due to a jump or a topology update. By the
induction hypothesis, sn−1 is GMR and safe. Then (a) sn satisfies Φentry by property (ii) of
exhaustive entry conditions, hence is GMR and (b) the jump or topology update (sn−1, sn) is
mode reachable, so sn is safe by (3) if (sn−1, sn) is a jump, and by (4) if it is a topology update.
�

3.1.3 Safety properties with GMR-exhaustive entry conditions

Systems tend to be specified in such a way that their behavior is also defined for situations
that cannot occur in practice. E.g. a car in our running example could – looking only at our
specification – be in mode Rec while posfront(i) = pos(i). Jumps and updates in such a practically
impossible situation may lead to more and more meaningless states and are nothing that we want
to worry about when designing entry conditions. In this sense, condition (ii) in Definition 12
is too strong. One way of avoiding such situations is to adapt Definition 12 by requiring that
condition (ii) is relative to GMR jumps or topology updates.

Definition 17 (GMR-Exhaustive Entry Conditions) Safety properties with GMR-exhaus-
tive entry conditions have the form

Φentry → �Φsafe

where Φentry = ∀i1, . . . , imφentry(x(i1), . . . , x(im)) is a formula in the language Lindex,num such that:

(i) If Φentry holds in a state s, s is an initial state of S;

(ii) For every GMR jump or GMR topology update (s, s′), Φentry holds in s′.

The proof of Theorem 16 can easily be adapted to the case of safety properties with GMR-
exhaustive entry conditions.

Theorem 18 An SFHA S = (Top, {S(i) | i ∈ I}) satisfies a safety property with GMR-
exhaustive entry conditions Φentry → �Φsafe if and only if the following hold:

(1) All states satisfying Φentry satisfy Φsafe.

(2) Φsafe is preserved under all flows starting from a state satisfying Φentry.

(3) Φsafe is preserved under all GMR jumps.

(4) Φsafe is preserved under all GMR topology updates.

Remark 19 In fact, often safety cannot be guaranteed for all runs but only for runs with a
certain structure: In the running example, we might be interested only in runs in which lane
changes are preceded and followed by local or global updates of the sensors. The definitions and
results presented before can be adapted without problems such that they are relative to classes of
runs. The tests in Section 7 show that in many cases it is not possible to guarantee safety for all
runs, but safety can be guaranteed for runs in which jumps (corresponding e.g. to lane changes)
are preceded by local or global updates of the sensors.

15

Example 20 Consider the running example and the safety property

Φg
safe : ∀i, j(i6=nil ∧ j 6=nil ∧ lane(i)=lane(j) ∧ pos(i)>pos(j)→ pos(i)− pos(j)≥ds)

We showed (using the method described in this paper) that this formula is invariant under
globally mode reachable flows and topology updates, but not under globally mode reachable
jumps (see also the remarks in Section 7.3); the problems with the jumps can occur because the
information provided by sensors at the moment of a line change is outdated. In order to prevent
this, it is necessary to ensure that a topology update takes place immediately before any lane
change. We proved that for all runs in which topology updates take place before lane changes,
formula Φg

safe is invariant under all jumps.

3.2 Reducing verification tasks to satisfiability checking

We consider safety properties Φentry→�Φsafe with exhaustive entry conditions, where Φentry and
Φsafe are of the form

Φentry = ∀i1 . . . imφentry(x(i1), . . . , x(im))

Φsafe = ∀i1 . . . inφsafe(x(i1), . . . , x(in))

with quantifier-free φentry and φsafe. We show that for decoupled SFLHA S we can reduce checking
whether such a property holds, to checking whether certain formulae F init

q , F flow
q , F jump

q , F top
q are

unsatisfiable for all combinations of modes q = (qi)i∈I ∈ QI .

3.2.1 Sequentializing parallel jumps

We first show that for decoupled SFLHA we do not need to consider parallel jumps.

Lemma 21 Let S = (Top, {S(i) | i ∈ I}) be a decoupled SFHA.

(1) Φsafe is invariant under all (GMR) jumps in S iff it is invariant under all (GMR) jumps
which reset the variables of a finite family of systems in S.

(2) Φsafe is invariant under all (GMR) jumps involving a finite family of systems in S iff it is
invariant under all (GMR) jumps in any component of S.

Proof: (1) The direct implication is obviously true. Assume that Φsafe is invariant under all
(GMR) jumps which reset the variables of a finite family of systems in S. Consider a jump in S
which resets the variables of an infinite family of systems in S. Assume that Φsafe is not invariant
under this jump, i.e. Φsafe holds before the jump but there exist systems S(i1), . . . , S(in) such
that after the jump φsafe(x(i1), . . . , x(in)) is not true. Since S is decoupled, the value of the
variables x(i1), . . . , x(in) cannot be reset by systems not in S(i1), . . . , S(in). This shows that
already the combination of mode switches in the finite family S(i1), . . . , S(in) would lead from
a safe to an unsafe state. Contradiction.

(2) The direct implication is obviously true. We prove the converse implication. Let C =
{c1, . . . , ck} ⊆ {S(i) | i ∈ I}, let guardC and jumpC be the formulae describing the guards resp.
updates of a simultaneous (GMR) mode switch for all systems in C (the other variables do not
change). Assume that Φsafe is not invariant under this jump. Then the formula

Φsafe(x0) ∧ guardC(x0) ∧ jumpC(x0, xk) ∧ ¬Φsafe(xk)

is satisfied by some variable assignment β. Because of the assumptions on resets in a decoupled
SFHA, a jump in some S(i) cannot invalidate the guard of a simultaneous transition in another

16

S(j). In particular, none of c1, . . . , ck can invalidate the guard of a later element of this sequence.
In other words, if guardC(x0) is true for a variable assignment, then – if we sequentialize C as
the succession of jumps c1, c2, . . . , ck, sequentially changing the values of the variables from x0

to x1, x2, . . . , xk, guardci(xi−1) is also true.4 Therefore,

Φsafe(x0) ∧
∧

i∈{1,...,k}

(
guardci(xi−1) ∧ jump{ci}(xi−1, xi)

)
∧ ¬Φsafe(xk)

is satisfiable for some extension β′ of β to the fresh variables x1, x2, . . . , xk−1. Since for each
i obviously either Φsafe(xi) or ¬Φsafe(xi) is satisfied by β′, there must be at least one index
i0 ∈ {1, . . . , k} for which Φsafe(xi0−1) and ¬Φsafe(xi0), and thus all of

Φsafe(xi0−1) ∧ guard{ci0}(xi0−1) ∧ jump{ci0}(xi0−1, xi0) ∧ ¬φsafe(xi0)

is satisfied by β′. So Φsafe is not invariant under jumps of a single component. �

3.2.2 Verification of safety properties and satisfiability checking

We show that for decoupled SFLHA we can express the verification tasks (1)–(4) in Theorem 16
as satisfiability problems.

Theorem 22 Let S be a decoupled SFLHA. Let c1, . . . , cn be the Skolem constants obtained from
the negation of Φsafe.

(1) The entry states of S satisfy Φsafe iff the following formula F entry is unsatisfiable:

F entry : Φentry ∧ ¬φsafe(x(c1), . . . , x(cn))

(2) Φsafe is invariant under flows starting in a state satisfying Φentry iff for all q=(qi)i∈I∈QI the
following formula F flow

q is unsatisfiable:

F flow
q : t0 < t1 ∧ Φentry(x(t0)) ∧ ∀i1, . . . , inφsafe(x(i1, t0), . . . , x(in, t0))

∧ ∀iFlowqi(x(i, t0), x(i, t1)) ∧ ¬φsafe(x(c1, t1), . . . , x(cn, t1))

where if flowq(i) =
∧(
Ef ∨

∑n
k=1 a

q
k(i)ẋk(i) ≤ aq(i)

)
then

Flowqi(x(i, t0), x(i, t1)) :
∧(
Ef ∨

n∑
k=1

aqik (i)(xk(i, t1)−xk(i, t0))≤aqi(i)(t1−t0)
)

∧ Invqi(x(i, t0)) ∧ Invqi(x(i, t1)) .

(3) Φsafe is invariant under GMR jumps in S iff for all q=(qi)i∈I∈QI the following formula
F jumpq

e(i0) is unsatisfiable for every i0 ∈ I and e = (qi0 , q
′
i0

) ∈ E, s.t. if p(i0) occurs in
guarde it is not nil:

F jumpq

e(i0) : Φentry(x(t0)) ∧

((
t0 < t1 ∧ ∀iFlowqi(x(i, t0), x(i, t1))

)
∨ t0 = t1

)
∧ ∀i1, . . . , inφsafe(x(i1, t1), . . . , x(in, t1))

∧ guarde(x(i0, t1)) ∧ jumpe(x(i0, t1), x′(i0)) ∧ Invq′i0
(x′(i0))

∧ ∀j(j 6= i0 → x′(j) = x(j)) ∧ ¬φsafe(x
′(c1), . . . , x′(cn)) .

4In general, if ci is a jump in a system S(j), guardci
is expressed using only the variables of the system S(j),

since the values of those variables are not changed by previous jumps, guardci
(xi−1) is in fact identical with

guardci
(x0).

17

(4) Φsafe is invariant under GMR topology updates for pointers in a set P1 iff for all q =
(qi)i∈I ∈ QI the following formula F top

q is unsatisfiable:

F top
q : Φentry(x(t0)) ∧

((
t0 < t1 ∧ ∀iFlowqi(x(i, t0), x(i, t1))

)
∨ t0 = t1

)
∧ ∀i1, . . . , inφsafe(x(i1, t1), . . . , x(in, t1))

∧
∧

p∈P1

Update(p, p′) ∧ ¬φ′safe(x(c1), . . . , x(cn)) ,

where φ′safe is obtained from φsafe by replacing every p ∈ P1 with p′.

Proof: (1) is immediate.
(2) Assume that Φsafe is not invariant under flows in some state q. Then there are functions

x(i) : R → R satisfying all flow conditions and such that Φsafe holds at the beginning of the
flow and does not hold at the end of the flow. Then (using the mean value theorem) one can
show that these functions can be used for constructing a model for the formula F flow

q . See
[Damm et al., 2011] for more details.

Conversely, assume that formula F flow
q is satisfiable. We can define the functions x(i) by taking

the linear interpolation of the functions defined at t0 and t1. Then flowqi(x(i, t0, t1)) holds; it
follows that the functions x(i) : R→ R satisfy the flow condition. So Φsafe is not invariant under
flows.

In particular, the results presented in [Damm et al., 2011] ensure that if the numerical con-
straints in the mode invariants are conjunctions of linear inequalities (and hence convex) we
do not need to express explicitly that the invariant needs to hold at all points between t0 and
t1. (If we can construct a model of the formula in which the invariant holds at t0 and t1 we
can construct a model in which the invariant holds at all points between t0 and t1 using linear
interpolation of the functions xi.)

(3) is a consequence of Lemma 21 using arguments from (2).
(4) is immediate (again, using arguments from (2)). �

3.2.3 Checking exhaustive entry conditions

We now show that for decoupled SFLHA S we can reduce checking conditions (i) and (ii) in
Definition 12 to satisfiability tests.

Theorem 23 Let S be a decoupled SFHA S, and Φentry → �Φsafe be a safety condition as above.
Then conditions (i) and (ii) in Definition 12 hold iff:

(i) Initial states:

Φentry(x) ∧
(
¬(
∨
q∈Q

Initq(x(i0))) ∨ ¬Inittop(x)
)

is unsatisfiable

(ii) For all q = (qi)i∈I ∈ QI :

(a) Topology updates:

(∀i Invqi(xi)) ∧ Update(p, p′) ∧ ¬Φ′entry(x) is unsatisfiable,

where Φ′entry arises from Φentry by replacing p with p′, and

18

(b) Jumps: For all e = (qi0 , q
′
i0

) ∈ E, i0 ∈ I:

(∀i Invqi(xi)) ∧ guarde(xi0) ∧ jumpe(xi0 , x
′
i0) ∧

∀j(j 6= i0 → x′(j) = x(j)) ∧ ¬Φentry(x′) is unsatisfiable.

Proof: (i) Condition (i) in Definition 12 states that if Φentry holds in a state s then s is initial.
This is the case if and only if whenever Φentry holds for given values of the variables, then for
these values:

• for all i ∈ I there exists a mode q ∈ Q such that the initial condition of mode q is satisfied
in system S(i), and

• Inittop holds.

It can be easily checked that this is the case if and only if it cannot happen that Φentry holds for
given values of the variables and for these values Inittop does not hold, or there exists a system
i0 such that for these values none of the initial conditions in {Invq(i0) | q ∈ Q} holds, i.e. if and
only if the following formula is unsatisfiable:

Φentry(x) ∧
(
¬(
∨
q∈Q

Initq(x(i0))) ∨ ¬Inittop(x)
)
.

(ii) Condition (ii) in Definition 12 states that for every state change (s, s′) due to (a) a topology
update or (b) a jump, Φentry holds in s′. This happens if and only if the formulae in (a) and (b)
are unsatisfiable (i.e. if and only if it cannot happen that S is in a mode q = (qi)i∈I (i.e. the
invariants of the systems S(i) in these modes hold), and (a) there is an update after which Φentry

does not hold or (b) there is a jump after which Φentry does not hold). �

For spatial families of linear hybrid automata, a similar result can be used for recognizing safety
conditions with GMR-exhaustive entry conditions.

Theorem 24 For a decoupled SFLHA S, conditions (i) and (ii’) in Definition 17 hold iff:

(i)

Φentry(x) ∧
(
¬(
∨
q∈Q

Initq(x(i0))) ∨ ¬Inittop(x)
)

is unsatisfiable

(ii’) For all (qi)i∈I ∈ QI , e ∈ E, i0 ∈ I:

– the following conjunction is unsatisfiable:

t0 < t1 ∧ Φentry(x(t0)) ∧ ∀iFlowqi(x(i, t0), x(i, t1)) ∧
Update(p, p′) ∧ ¬Φ′entry(x(t1)),

where Φ′entry arises from Φentry by replacing p with p′; and

– the following conjunction is unsatisfiable:

t0 < t1 ∧ Φentry(x(t0)) ∧ ∀iFlow(x(i, t0), x(i, t1)) ∧
guarde(x(i0, t1)) ∧ jumpe(x(i0, t1), x′i0) ∧
∀j(j 6= i0 → x′(j) = x(j, t1)) ∧ ¬Φentry(x′)

where if flowq(i) =
∧(
Ef ∨

∑n
k=1 a

q
k(i)ẋk(i) ≤ aq(i)

)
then

Flowqi(x(i, t0), x(i, t1)) :
∧(
Ef ∨

n∑
k=1

aqik (i)(xk(i, t1)−xk(i, t0))≤aqi(i)(t1−t0)
)

∧ ∀i Invqi(x(i, t0)) ∧ ∀i Invqi(x(i, t1))

Proof: The proof of (ii’) is similar to the proof of Theorem 23(ii), with the only difference that
we need to additionally take flows into account. �

19

4 Automated Reasoning

We present classes of theories for which decidable fragments relevant for the verification tasks
above exist. We use the following complexity results for fragments of linear arithmetic:

• The satisfiability over R of conjunctions of linear inequalities can be checked in PTIME
[Khachian, 1979].

• The problem of checking the satisfiability of sets of clauses in LI(R) is in NP [Sontag, 1985].

• The satisfiability of any conjunction of Horn disjunctive linear (HDL) constraints5 over R
[Koubarakis, 2001] and the satisfiability of any conjunction of Ord-Horn constraints6 over
R [Nebel and Bürckert, 1995] can be decided in PTIME.

4.1 Local theory extensions

Let T0 be a base theory with signature Σ0. We consider extensions T1 := T0 ∪ K of T0

with new function symbols in a set Σ1 of extension functions whose properties are axioma-
tized with a set K of augmented clauses, i.e. of axioms of the form ∀x1 . . . xn(Φ(x1, . . . , xn) ∨
C(x1, . . . , xn)), where Φ(x1, . . . , xn) is a first-order formula in signature Σ0 and C(x1, . . . , xn)
is a clause containing extension functions. In this case we refer to the (theory) extension
T0 ⊆ T0∪K. In [Sofronie-Stokkermans, 2005] we introduced and studied local theory extensions.
In [Ihlemann and Sofronie-Stokkermans, 2010], various notions of locality of theory extensions
were introduced and studied.

Definition 25 (Local theory extension) An extension T0 ⊆ T0 ∪ K is a local extension if
for every set G of ground Σ0 ∪ Σ1 ∪ Σc-clauses (where Σc is a set of additional constants), if
G is unsatisfiable w.r.t. T0∪K then unsatisfiability can be detected using the set K[G] consisting
of those instances of K in which the terms starting with extension functions are ground terms
occurring in K or G.

Stably local extensions are defined similarly, with the difference that K[G] is replaced with K[G],
the set of instances of K in which the variables are instantiated with ground terms which occur
in K or G.

4.2 Hierarchical reasoning in local theory extensions

For local theory extensions (or stably local theory extensions) hierarchical reasoning is possible.
If T0∪K is a (stably) local extension of T0 and G is a set of ground Σ0∪Σ1∪Σc-clauses then, by
Definition 25, T0∪K∪G is unsatisfiable iff T0∪K[G]∪G (or resp. T0∪K[G] ∪G) is unsatisfiable.
We can reduce this last satisfiability test to a satisfiability test w.r.t. T0. The idea is to purify
K[G] ∪G (resp. K[G] ∪G) by

• introducing (bottom-up) new constants ct for subterms t = f(g1, . . . , gn) with f ∈ Σ, gi
ground Σ0 ∪ Σc-terms,

• replacing the terms t with the constants ct, and

• adding the definitions ct = t to a set D.

5A Horn-disjunctive linear constraint is a disjunction d1 ∨ · · · ∨ dn where each di is a linear inequality or
disequation, and the number of inequalities does not exceed one.

6Ord-Horn constraints are implications
∧n

i=1 xi≤yi→x0≤y0, (xi, yi are variables).

20

We denote by K0 ∪ G0 ∪ D the set of formulae obtained this way. Then G is satisfiable w.r.t.
T0 ∪ K iff K0 ∪G0 ∪ Con0 is satisfiable w.r.t. T0, where

Con0 = {(
n∧

i=1

ci=di)→ c=d | f(c1, . . . , cn)=c, f(d1, . . . , dn)=d ∈ D}.

Theorem 26 ([Sofronie-Stokkermans, 2005]) If T0 ⊆ T0∪K is a (stably) local extension and
G is a set of (augmented) ground clauses then we can reduce the problem of checking whether G
is satisfiable w.r.t. T0 ∪ K to checking the satisfiability w.r.t. T0 of the formula K0 ∪ G0 ∪ Con0

constructed as explained above.
If K0 ∪G0 ∪ Con0 belongs to a decidable fragment of T0 we can use the decision procedure for

this fragment to decide whether T0 ∪ K ∪G is unsatisfiable.

As the size of K0∪G0∪Con0 is polynomial in the size of G (for a given K), locality allows us
to express the complexity of the ground satisfiability problem w.r.t. T1 as a function of the
complexity of the satisfiability of F-formulae w.r.t. T0.

4.3 Examples of local theories and theory extensions

In establishing the decidability results for the verification of safety properties of SFLHA we will
use locality results for updates and for theories of pointers.

4.3.1 Update rules

We first consider update rules, in which some of the function symbols change the way they are
defined, depending on a partition of their domain of definition. Many update rules define local
theory extensions.

Theorem 27 ([Jacobs and Kuncak, 2011, Ihlemann et al., 2008]) Let T0 be a base the-
ory with signature Σ0 and Σ ⊆ Σ0. Consider a family Update(Σ,Σ′) of update axioms of the
form:

∀x(φfi (x)→ F f
i (f ′(x), x)) i = 1, . . . ,m, f ∈ Σ (2)

which describe how the values of the Σ-functions change, depending on a partition of the state
space, described by a finite set {φfi | i ∈ I} of Σ0-formulae and using Σ0-formulae F f

i such that

(i) φi(x) ∧ φj(x) |=T0⊥ for i 6=j and

(ii) T0 |= ∀x(φi(x)→ ∃y(Fi(y, x))) for all i ∈ I.

Then the extension of T0 with axioms Update(Σ,Σ′) is local.

4.3.2 A theory of pointers

We present a fragment of the theory of pointers studied in [McPeak and Necula, 2005] and later
analyzed in [Ihlemann et al., 2008]. Consider the language Lindex,num with sorts index and num
introduced before, with sets of unary pointer (numeric) fields P (X), and with a constant nil of
sort index. The only predicate of sort index is equality; the signature Σnum of sort num depends
on the theory Tnum modeling the scalar domain. A guarded index-positive extended clause is a
clause of the form:

C := ∀i1 . . . in E(i1, . . . , in) ∨ C(xi(i1), . . . , xi(in)) (3)

21

where C is a Tnum-formula over terms of sort num, xi ∈ X, and E is a disjunction of equalities be-
tween terms of sort index, containing all atoms of the form i = nil, fn(i) = nil, . . . , f2(. . . fn(i)) =
nil for all terms f1(f2(. . . fn(i))) occurring in E ∨ C, where f1 ∈ P ∪X, f2, . . . , fn ∈ P .

Theorem 28 ([Ihlemann et al., 2008]) Every set K of guarded index-positive extended clauses
defines a stably local extension of Tnum ∪ Eqindex, where Eqindex is the pure theory of equality of
sort index.

4.4 Chains of local theory extensions

The results we obtain in this paper will be justified by locality properties for certain theory
extensions. In many cases we need to perform reasoning tasks in an extension T0 ⊆ T0 ∪ K in
which the set K of axioms of the extension can be written as a union K = K1 ∪ K2 such that
both

(1) T0 ⊆ T0 ∪ K1 and

(2) T0 ∪ K1 ⊆ T0 ∪ K1 ∪ K2

are (stably) local theory extensions. In this case we say that we have a chain of (stably) local
theory extensions; the reasoning task can be hierarchically reduced to reasoning in T0 in two
steps:

Step 1: In a first step, we reduce checking whether T0 ∪ K1 ∪ K2 ∪ G is satisfiable to checking
whether T0 ∪ K1 ∪ K2 ∗ [G] ∪ G is satisfiable (where K2 ∗ [G] is K2[G] if the extension is

local and K[G]
2 if the extension is stably local).

We can further reduce this task to checking the satisfiability of T0∪K1∪ (K2)0∪G0∪Con0

as explained in Theorem 26.

Step 2: if G1 = (K2)0∪G0∪Con0 is a set of ground clauses, and the theory extension T0 ⊆ T0∪K1

is (stably) local, we can use again Theorem 26 to reduce the problem of checking the
satisfiability of T0 ∪ K1 ∪G1 to a satisfiability test w.r.t. T0.

The idea can be used also for longer chains of (stably) local theory extensions:

T0 ⊆ T0 ∪ K1 ⊆ T0 ∪ K1 ∪ K2 ⊆ · · · ⊆ T0 ∪ K1 ∪ K2 ∪ · · · ∪ Tn.

A similar reduction can be used for chains of extensions

T0 ⊆ T0 ∪ K1 ⊆ T0 ∪ K1 ∪ K2

in which the second extension is (stably) local, if after using Step 1 above (i) the set of clauses
obtained by instantiation T0 ∪ K1 ∪ K2 ∗ [G] or (ii) the set of clauses T0 ∪ K1 ∪ (K2)0 obtained
after the hierarchical reduction described in Theorem 26, define a (stably) local extension of T0.

Example 29 We can for instance consider a set K = Update(Σ,Σ′) of update rules of the form
in Theorem 27, which, by Theorem 27, defines a local extension of a base theory T0.

Then, for every set G of ground clauses, T0 ∪K∪G is satisfiable iff T0 ∪K[G]∪G is satisfiable.
It can happen that K[G] (hence also the purified set of clauses K0) is not ground, and that the
purified set of clauses K0 ∪G0 contains additional function symbols in a set P ∪X.

If, for instance, K0 is a set of guarded index-positive extended clauses then, by Theorem 28,
K0 defines a stably local extension of Tnum ∪ Eqindex, where Eqindex is the pure theory of equality
of sort index.

In order to check the satisfiability of G w.r.t. T0∪K we need to consider the following instances
of K: (K[G])[TG] where TG is the set of ground terms occurring in G ∪ K[G].

22

5 Verification: Decidability and Complexity

As mentioned in Section 3, we consider safety properties with exhaustive entry conditions
Φentry → �Φsafe. We make the following assumptions:

Assumption 1: S = (Top, {S(i) | i ∈ I}) is a decoupled SFLHA.

Assumption 2: Φsafe is a set (conjunction) of guarded index-positive extended clauses of the
form ∀i1, . . . , inE ∨ C, such that C is a conjunction of linear inequalities, and Φentry is a set
(conjunction) containing either

(1) only guarded index-positive extended clauses of the form ∀i1, . . . , inE ∨ C, such that C
is a conjunction of linear inequalities;

(2) or only Lindex,num-formulae of the form ∀i
(
i 6= nil ∧ φk → F (f(i), i)

)
, k ∈ {1, . . . ,m}

where f ∈ Σ1 ⊆ P ∪ X, the φk and F are formulae satisfying the conditions in
Theorem 27 which do not contain any symbol in Σ1, such that all φk are quantifier-
free;

(3) or only formulae of the form ∀i
(
i 6= nil ∧ φ → F1(f ′(i), i)

)
∧ ∀i

(
i 6= nil ∧ ¬φ →

F2(f ′(i), i)
)
, where f ∈ Σ1 ⊆ P∪X, the φ and F1, F2 are formulae which do not contain

any symbol in Σ1, and such that after the instantiation of the variable i, and computing
the prenex normal form and Skolemization, the remaining formulae are either ground
or guarded index-positive extended clauses of the form E ∨ C, where C is a conjunction
of linear inequalities.

Assumption 3: The formulas Update(p, p′) either

(1) are of the form described in Theorem 27, with φk quantifier-free; or

(2) contain only formulae of the form ∀i
(
i 6= nil ∧ φ → F1(p′(i), i)

)
∧ ∀i

(
i 6= nil ∧ ¬φ →

F2(p′(i), i)
)

where for every p ∈ P ∪ X, p′ is a new function symbol denoting the
updated value of p, the formulae φ and F do not contain primed function symbols and:

(i) φ = ∀j1, . . . , jmψ(i, j1, . . . , jm) with m ≥ 0 and all free variables in F (p′(i), i) occur
below p′, or

(ii) φ = ∃jψ(i, j) and i 6= nil ∧ ψ(i, j) → F (i′, i) is a guarded index-positive extended
clause E ∨ C, where C is a conjunction of linear inequalities.

Assumption 4: The numeric constraints in the description of the SFLHA S (including the con-
ditions φpk→F

p
k (j, i) obtained from φpk→F

p
k (p′(i), i) in Update(p, p′) by replacing all oc-

currences of p′(i) with j) and the numerical constraints in Φsafe and Φentry are all HDL
constraints or all Ord-Horn constraints.

Example 30 We illustrate the restrictions imposed by Assumptions 1-4 by examples:

• Assumption 1: The formulae used in the description of our running example (e.g. in Ex-
ample 3) satisfy Assumption 1.

• Assumption 2: The safety conditions in Example 11, namely:

– Φg
safe : ∀i, j(i6=nil ∧ j 6=nil ∧ lane(i)=lane(j) ∧ pos(i)>pos(j)→ pos(i)− pos(j)≥ds),

– Φl
safe =

∧
index∈P Φindex

safe , where e.g. Φfront
safe is:

∀i(i 6= nil ∧ front(i) 6= nil→pos(front(i))− pos(i) ≥ ds)
satisfy the conditions on Φsafe in Assumption 2.

23

• Assumption 2(1): The entry condition in Example 14:

Φentry = ∀i (i 6= nil ∧ front(i) 6= nil→ |lanefront(i)− lane(front(i))| < ε)

satisfies the conditions in Assumption 2(1).

• Assumption 2(2): The entry condition Φentry:

∀i(i 6= nil ∧ front(i) = nil → ∀k(k 6= nil ∧ k 6= i ∧ pos(k) ≥ pos(i)→ lane(k) 6= lane(i)))
∀i(i 6= nil ∧ front(i) 6= nil → posfront(i) > pos(i) + d′ ∧ lanefront(i) = lane(i)∧

∀k(k 6= nil ∧ k 6= i ∧ pos(k) ≥ pos(i) ∧ lane(k) = lane(i)
→ pos(k) ≥ posfront(i))∧

pos(front(i)) = posfront(i) ∧ lane(front(i)) = lanefront(i))

satisfies the conditions in Assumption 2(2).

• Assumption 2(3): The entry condition Φentry:

∀i
(
i 6= nil ∧ Prop(i) ∧ ¬∃j(ASL(j, i))→ front(i) = nil

)
∀i
(
i 6= nil ∧ Prop(i) ∧ ∃j(ASL(j, i))→ Closestf(front(i), i)

)
with the notations in Example 4, namely:

– ASL(j, i): j 6= nil ∧ lane(j) = lane(i) ∧ pos(j) > pos(i), which expresses the fact that j
is ahead of i on the same lane, and

– Closestf(j, i): ASL(j, i)∧∀k(ASL(k, i)→pos(k) ≥ pos(j)), which expresses the fact that
j is ahead of i and there is no car between them

satisfies the conditions in Assumption 2(3).

• Assumption 3: The formula Update(front, front′) used for the update rules in Example 4:

∀i
(
i 6= nil ∧ Prop(i) ∧ ¬∃j(ASL(j, i))→ front′(i) = nil

)
∀i
(
i 6= nil ∧ Prop(i) ∧ ∃j(ASL(j, i))→ Closestf(front′(i), i)

)
∀i
(
i 6= nil ∧ ¬Prop(i)→ front′(i) = front(i)

)
satisfies the conditions in Assumption 3.

• Assumption 4: The numeric constraints in the formulae describing the invariants, the initial
states, the flows, guards and jumps in Example 3 are conjunctions of HDL constraints,
hence satisfy Assumption 4.

In the condition Φl
safe above, the numeric constraint is pos(front(i))− pos(i) ≥ ds, hence is

a HDL constraint.

We prove that under Assumptions 1–3 the verification problems of Theorem 16 are decidable,
and analyze their complexity.

We analyze the complexity of verifying safety properties with exhaustive entry conditions, by
analyzing the complexity of checking the satisfiability of the formulae F entry

q , F jump
q , F flow

q , and
F top
q (cf. Theorem 22). Since the number of systems to be considered is unbounded, a naive

approach to analyzing the satisfiability of these formulae for all tuples q = (qi)i∈I∈QI can be
problematic. We identify situations which allow us to limit the analysis to a “neighborhood” of
the systems for which φsafe fails. For this we use the specific form of the axioms we consider.

24

5.1 Verification tasks: Chains of local theory extensions

We show that under Assumptions 1–4 the theories used for specifying the various verification
tasks in Theorem 16 and the corresponding satisfiability problems in Theorem 22 can be struc-
tured as chains of (stably) local theory extensions.

Theorem 31 For all (qi)i∈I∈QI the following hold:

(1) Safety of entry conditions:

(a) Under Assumption 2 (1):
R ∪ Eqindex ⊆ R ∪ Φentry is a stably local theory extension.

(b) Under Assumption 2 (2) both theory extensions below:
R ∪ Eqindex ⊆ R ∪ UIF(P∪X)\Σ1

⊆ R ∪ Φentry are local theory extensions.7

(c) Under Assumption 2 (3) both extensions below:
R ∪ Eqindex ⊆ R ∪ UIF(P∪X)\Σ1

⊆ R ∪Φentry are local theory extensions. However, there
exist sets G of ground clauses for which Φentry[G] may not be a set of ground clauses.
In this case, the requirements in Assumption 2 (3) ensure that R ∪ UIF(P∪X)\Σ1

⊆
R ∪ Φentry[G] is a stably local theory extension.

(2) Invariance under flows:

Under Assumptions 1 and 2(1):
R ∪ Eqindex ⊆ R ∪ (Φentry(x(t0)) ∪ Φsafe(x(t0)) ∪ {∀i (Flowqi(x(i, t0), x(i, t1)))}) is a stably
local theory extension.

(3) Invariance under GMR jumps:

Under Assumptions 1 and 2(1):
R ∪ Eqindex ⊆ R ∪ (Φentry(x(t0)) ∪ {∀i (Flowqi(x(i, t0), x(i, t1)))} ∪ Φsafe(x(t1))∪

{guarde(x(i0, t1)), jumpe(x(i0, t1), x′(i0)), Invq′i0 (x′(i0, t1))})
is a stably local theory extension for every i0 ∈ I and e ∈ E s.t. if p(i0) occurs in guarde it
is not nil.

(4) Invariance under topology updates:

Under Assumptions 1, 2(1), and 3, the first extension below is stably local:
R ∪ Eqindex⊆ R ∪ (Φentry(x(t0)) ∪ Φsafe(x(t0)) ∪ {∀i (Flowqi(x(i, t0), x(i, t1)))})

⊆ R ∪ (Φentry(x(t0)) ∪ Φsafe(x(t0)) ∪ {∀i (Flowqi(x(i, t0), x(i, t1)))})
∪ Update(index, index′).

and the last extension is local.

Proof: This follows immediately from the form of the formulae and from the locality results in
Theorem 27 and 28. �

Notation. In the following sections let G = ¬φsafe(x(c1), . . . , x(cn)). By Assumption 2, G
consists of a conjunction of ground linear inequalities and a set of disequalities, consisting of unit
clauses of the form g 6= nil for every ground term g of sort index occurring in G below a pointer
or scalar field. We will denote by st(G) the set of all (ground) subterms of G. The results in the
next subsections follow from Theorem 31.

7If Σ is a set of functions then UIFΣ is the theory of uninterpreted function symbols in Σ axiomatized only by
the congruence axioms for the functions in Σ. Any extension of a theory with uninterpreted function symbols
is local [Sofronie-Stokkermans, 2005].

25

5.2 Verification of safety properties.

We now analyze the decidability and complexity of verifying safety properties with exhaustive
entry conditions, by analyzing the complexity of checking the satisfiability of the formulae F entry

q ,

F jump
q , F flow

q , and F top
q (cf. Theorem 22).

5.2.1 Entry conditions

We first analyze the decidability and complexity of checking whether entry states are safe. By
Theorem 22(1), this is the case iff Φentry ∧G is unsatisfiable, where G = ¬φsafe(x(c1), . . . , x(cn)).
In what follows we identify conditions in which the problem of checking the satisfiability of this
formula is decidable and study its complexity.

Lemma 32 Under Assumption 2 the following hold:

(1) Under Assumption 2 (1), Φentry ∧G is unsatisfiable iff Φentry
[G] ∧G is unsatisfiable.

(2) Under Assumptions 2 (2) or (3), Φentry ∧G is unsatisfiable iff (Φentry[G])[TG] ∧G is unsatis-
fiable, where TG is the set of all ground terms of sort index occurring in Φentry[G].

(3) The size of the set of terms of sort index in st(G) and hence also the number of instances in

Φentry
[G] (in case (1)) resp. (Φentry[G])[TG] (in case (2)) is polynomial in the number of terms

of sort index in Φsafe. Therefore also the cardinality of the set IGentry of ground terms of sort
index contained in these sets of instances is polynomial in the number of terms of sort index
in Φsafe.

Proof: (1) Under Assumption 2 (1), by Theorem 31(1)(a), Φentry defines a stably local theory
extension of R ∪ Eqindex, so in order to check whether Φentry ∧ G is satisfiable it is sufficient to

check whether Φentry
[G] ∧G is satisfiable.

(2) Under Assumption 2 (2) or (3), by Theorem 31(1)(b) or (c), Φentry defines a local theory
extension of R ∪ UIFX . Therefore, in order to check whether there exists a model of R ∪ Φentry

which is a model for G it is sufficient to check whether there is a model of R ∪ Φentry[G] which
is a model for G. Note however that Φentry[G] is in general not a set of ground formulae. The
conditions in Assumption 2 (2) and (3) ensure that this set of instances is a guarded index-positive
extended clause. By Theorem 28, in order to check whether there is a model of R ∪ Φentry[G]

which is a model for G it is sufficient to check whether there is a model of R∪Φentry[G]
TG which

is a model for G, where TG is the set of all ground terms of sort index occurring in Φentry[G]∧G.

(3) We show that the number of instances (and size) of Φentry
[G] (resp. (Φentry[G])TG) – hence

also the size of IGentry – is polynomial in the number of terms of sort index in Φsafe.
Let npG be the number of terms of sort index occurring in G, and npentry the number of terms

of sort index occurring in Φentry, and let:

• nventry be the number of universally quantified variables in Φentry under Assumption 2(1)
or 2(2),

• naentry (neentry) be the maximal number of universally (existentially) quantified variables
in a formula in Φentry under Assumption 2(3).

The number nentry of instances in Φentry
[G] is at most npG

nventry ; the size sentry (number of literals)

in Φentry
[G] is at most np

nventry

G · size(Φentry).

IGentry contains all terms of sort index in Φentry
[G] ∧ G. Under Assumption 2(1) and (2), there

can be at most npentry ·npG such terms in Φentry
[G]. Under Assumption 2(3) we have to addition-

ally take into account the Skolem constants introduced for the existentially quantified variables

26

after instantiation. For each combination of values for the universally quantified variables, we
introduce a tuple of Skolem functions for the existentially quantified variables. We have at most
npG

naentry possible such combinations of values, thus at most npG
naentry tuples of Skolem functions.

Since in Assumption 2(3), naentry = 1, we have at most npG tuples of Skolem functions for every
formula in Φentry containing existential quantifiers. Thus, in this case the number of terms of sort

index in Φentry
[G] ∧G is at most npentry · (npG +npG) (the terms which can be used as arguments

are either the npG subterms of G or the newly introduced Skolem constants).
In all cases, the cardinality nientry of IGentry is at most 2 · npentry · npG, hence is linear in the

number of terms of sort index in Φsafe and in the number of variables occurring in Φentry. �.

Theorem 33 Under Assumption 2 the problem of checking the satisfiability of Fentry : Φentry∧G
is decidable (and in NP).

Proof: The hierarchical method for reasoning in stably local theory extensions allows us to reduce
the task of checking the satisfiability of Fentry to the problem of checking the satisfiability of a
formula which is a conjunction of guarded index-positive extended clauses of the form E∨C, where
E is a disjunction of equalities between terms of sort index and C a constraint over real numbers
w.r.t. the disjoint combination of the theory of real numbers R and the theory of uninterpreted
functions symbols in P ∪ C. The reduction is done in one step if Assumption 2(1) holds, and
in two steps if Assumption 2(2) or (3) holds. The problem of checking the satisfiability of such
formulae is decidable.

In both cases the variant of Assumption 2 we use guarantees that all the clauses we obtain
are ground or index-positive extended clauses of the form E ∨ C, where C is a conjunction of
linear inequalities.8 After the hierarchical reduction we obtain a set of ground clauses in the
combination of LI(R) and Eqindex; the complexity of checking decidability of ground clauses in
such a combination is in NP. �

Corollary 34 Let S = (Top, {S(i) | i ∈ I}) be an SFHA. Under Assumption 2, the following
are equivalent:

(1) There exist indices c1, . . . , cn for which the safety condition Φsafe does not hold although Φentry

holds.

(2) There exists a finite set Ientry ⊆ I of indices, of size polynomial in the number of terms
of sort index in Φsafe (assuming that the lengths of the formulae describing the SFHA S
are considered constants) such that the entry conditions are not safe already in the systems
Sentry = (Top|Ientry

, {S(i) | i ∈ Ientry}).

Ientry and the system Sentry describe a suitable neighborhood of c1, . . . , cn which can effectively
be described (the indices in Ientry correspond to the terms in IGentry in Theorem 33).

Proof: (1)⇒ (2) Assume that (1) holds. Then Φentry∧G is satisfiable. Then Φentry
[G]∧G (or resp.

Φentry[G]
TG ∧G) is satisfiable, i.e. there is a model A for this formula. Let IGentry be as defined in

Theorem 33, and let Ientry be the set of the values in A of the terms in IGentry. The model A can
easily be transformed into a model of Φentry, describing a system referring to the neighborhood
Ientry of the indices c1, . . . , cn at which Φentry holds, but Φsafe does not hold. But then the entry
conditions are not safe already for the system Sentry = (Top|Ientry

, {S(i) | i ∈ Ientry}).
By Lemma 32 (3), the size of IGentry (hence also the size of Ientry) is polynomial in the number

of terms of sort index in Φsafe.

8The latter can happen only under Assumption 3 (2); the remaining free variables occur only as arguments of
the variables x; in this case we instantiate again, the size of the set of clauses grows polynomially.

27

(2) ⇒ (1) Conversely, assume that there exists a finite set Ientry ⊆ I of indices, corresponding
to terms in IGentry, such that in Sentry there are indices c1, . . . , cn at which the safety property does
not hold. Then Φentry ∧ G is satisfiable, if quantification is considered to be made on the finite
set Ientry. The model for this formula is a model of (Φentry)[G] ∧G (or resp. of (Φentry[G])TG ∧G).
By Lemma 32 it follows that Φentry ∧G is satisfiable, i.e. (1) holds. �

Parametric Verification. We can consider parametric systems, in which we assume that
some of the constants used in the specification of the entry conditions and safety properties are
parameters. If we impose constraints on these parameters (in the form of constraints between real
numbers) then the results in Theorem 33 can still be used to prove that the verification problems
remain decidable. The complexity of the problems depends on the form of the constraints (for
linear constraints we still can show that the problem is in NP).

Alternatively, we can use the method for hierarchical reasoning combined with quantifier elimi-
nation for the theory of real numbers for generating constraints on the parameters which guaran-
tee that Φentry ∧G is unsatisfiable, as explained in [Sofronie-Stokkermans, 2013] (the complexity
is then exponential).

Example 35 Consider the running example, with entry states being states in which the infor-
mation provided by the sensors is correct and every car is sufficiently far away from the following
car on the same lane, described by the following formula Φentry:

∀i(i 6= nil ∧ front(i) = nil → ∀k(k 6= nil ∧ k 6= i ∧ pos(k) ≥ pos(i)→ lane(k) 6= lane(i)))
∀i(i 6= nil ∧ front(i) 6= nil → posfront(i) > pos(i) + d′ ∧ lanefront(i) = lane(i)∧

∀k(k 6= nil ∧ k 6= i ∧ pos(k) ≥ pos(i) ∧ lane(k) = lane(i)
→ pos(k) ≥ posfront(i))∧

pos(front(i)) = posfront(i) ∧ lane(front(i)) = lanefront(i)).

This formula clearly satisfies Assumption 2(2), as an extension of the theory of front, lanefront and
posfront with the functions pos and lane, satisfying the formulae above. Consider the following
safety property:

Φg
safe = ∀i, j(i6=nil ∧ j 6=nil ∧ i 6= j ∧ pos(i)>pos(j) ∧ lane(i)=lane(j)→ pos(i)−pos(j)≥ds).

We check the satisfiability of Φentry ∧G, where G = ¬Φg
safe is:

G : i0 6= nil ∧ j0 6= nil ∧ i0 6= j0 ∧ lane(i0) = lane(j0)

∧ pos(i0) > pos(j0) ∧ pos(i0)− pos(j0) < ds

as follows: We compute Φentry[G]. For instance, by instantiating i with j0 and k with i0 in both
formulae, we obtain:

(j0 6= nil ∧ front(j0) = nil ∧ i0 6= nil ∧ i0 6= j0 ∧ pos(i0) ≥ pos(j0)→ lane(i0) 6= lane(j0))
(j0 6= nil ∧ front(j0) 6= nil→ posfront(j0) > pos(j0) + d′ ∧ lanefront(j0) = lane(j0))
(j0 6= nil ∧ front(j0) 6= nil ∧ i0 6= nil ∧ i0 6= j0 ∧ pos(i0) ≥ pos(j0) ∧ lane(i0) = lane(j0)

→ pos(i0) ≥ posfront(j0)).

After the hierarchical reduction, we obtain a set of clauses which is clearly unsatisfiable if d′ ≥ ds.
Below a short intuitive justification: From the literals in G and the first formula above we derive
that front(j0) 6= nil. Together with the second formula we then obtain:

posfront(j0) > pos(j0) + d′ ∧ lanefront(j0) = lane(j0),

28

and together with the third formula we obtain:

pos(i0) ≥ posfront(j0), hence pos(i0) > pos(j0) + d′.

If ds and d′ are numerical values such that d′ ≥ ds, this is unsatisfiable.

Parametric verification. In this problem ds and d′ can also be considered to be parameters. If
we assume that d′ ≥ ds, we can easily see that pos(i0) > pos(j0) + d′ ∧ pos(i0)− pos(j0) < ds is
unsatisfiable. Alternatively, we can use quantifier elimination after the hierarchical reduction to
prove that pos(i0) > pos(j0) + d′ ∧ pos(i0)− pos(j0) < ds is unsatisfiable iff d′ ≥ ds.
Small model property The instantiation we used justifies a small model property as explained
in Corollary 34: In order to check whether the states satisfying the entry condition Φentry also
satisfy the safety property expressed by Φg

safe, we first choose two different cars for which the
safety condition may not hold, corresponding to the indices i0 and j0 in G. The instances of
Φentry[G] contain two additional terms of sort index, namely front(i0) and front(j0). We know
that i0 and j0 are not nil and that they are different. We do not know however whether front(i0)
or front(j0) are nil (neither whether they are equal to each other, or whether front(i0) = j0 or
front(j0) = i0). We need to consider all such combinations, i.e. check whether Φentry entails
Φsafe in all systems SI0 = (Top|I0 , {S(i) | i ∈ I0}), where I0 are indices corresponding to the

set of terms IGentry = {nil, i0, j0, front(i0), front(j0)} (taking into account that one or more of the
elements of I0 might be equal).

We now analyze the complexity of checking whether in SIG Φentry[G] ∪ G is satisfiable for a
given IG. Such systems describe models of Φentry ∪G obtained by using the usual completion –
which sets all undefined functions of sort index to nil – from models of Φentry[G] ∪G. Given one
such system, we know precisely the equality relationships between the terms in IG. Depending
on this, we have the one of the following situations:

• some of the premises of the formulae in Φentry[G] may be false: then the corresponding
instance is true in this model

• all premises of the formulae in Φentry[G] are true: We then only need to check the satisfia-
bility of the conjunctions of linear constraints on the left-hand side, which can be done in
polynomial time.

Note that if the guards of sort index in the formulae in Φsafe and Φentry are terms of the form
t = nil then we do not need to take into account all possible equality relationships between the
terms in IGentry, but only possible equality of such terms with nil. The number of all possible

systems which need to be tested is then 2|I
G
entry\st[G]|, in our example 2|{front(i0),front(j0)}| = 22.

5.2.2 Flows

We now analyze the decidability and complexity of checking whether Φsafe is preserved under all
flows starting from a state satisfying Φentry. According to Theorem 22(2), this can be expressed
as the problem of checking, for all q = (qi)i∈I ∈ QI , the satisfiability of the formula:

F flow
q : t0 < t1 ∧ Φentry(x(t0)) ∧ ∀i1, . . . , inφsafe(x(i1, t0), . . . , x(in, t0))

∧ ∀iFlowqi(x(i, t0), x(i, t1)) ∧G

where if flowq(i) =
∧(
Ef ∨

∑n
k=1 a

q
k(i)ẋk(i) ≤ aq(i)

)
then

Flowqi(x(i, t0), x(i, t1)) :
∧(
Ef ∨

n∑
k=1

aqik (i)(xk(i, t1)−xk(i, t0))≤aqi(i)(t1−t0)
)

∧ Invqi(x(i, t0)) ∧ Invqi(x(i, t1))

29

and G = ¬φsafe(x(c1, t1), . . . , x(cn, t1)).

Lemma 36 (Flows) Under Assumptions 1 and 2(1) the following hold:

(1) For every q = (qi)i∈I ∈ QI , Fflow
q is unsatisfiable iff F flow

q
[G]

is unsatisfiable.

(2) The size of the set of terms of sort index in st(G) and hence also the size of F flow
q

[G
is

polynomial in the number of terms of sort index in Φsafe. Therefore also the size of the set

IGflow of ground terms of sort index in F flow
q

[G]
is polynomial in the number of terms of sort

index in Φsafe.

The set of instances F flow
q

[G]
contain formulae Invqi and Flowqi for indices i corresponding

to terms in IGflow.

Proof: (1) If Φentry satisfies Assumption 2(1) then, by Theorem 31(2), for every q = (qi)i∈I ∈ QI

the set of axioms:

Kflow = Φentry(x0) ∧ Φsafe(x0) ∧ ∀iFlowqi(x0(i), x1(i))

defines a stably local theory extension of R∪Eqindex, so in order to check whether Fflow
q is satisfiable

it is sufficient to check whether Kflow
[G] ∧G is satisfiable.

(2) Clearly, the size of Kflow
[G] (hence also the size of IGflow) is polynomial in the number of

terms of sort index in Φsafe. Because of Assumption 2, this set of instances contains only the
instances of ∀iInvqi in which i is replaced by a term in IGflow. But this means that only the states
qi, where i ∈ IGflow need to be considered. (This also means that in order to check invariance of
the safety condition under all flows, we only need to consider combinations of states of systems
corresponding to the indices in IGflow).

With the notation used in the proof of Lemma 32 (3) we have the following upper bounds for

the size of Kflow
[G] and of IGflow:

• the number nflow of clauses in Kflow
[G] is nflow = nentry +nsafe +nFlow ≤ npGnventry +npG

nvsafe +
c · npG,

where nentry is the number of instances in Φentry
[G] (thus at most npG

nventry); nsafe is the

number of instances in Φsafe
[G] (thus at most npG

nvsafe , proof analogous to the proof of
Lemma 32(3)), and nFlow is the number of instances of ∀iFlowqi(x0(i), x1(i)). Since Flow
is a conjunction of c formulae, each having only one universally quantified variable, the
number of instances is at most c · npG.

• the number niflow of elements in IGflow is niflow = nientry + nisafe + niFlow ≤ (npentry + npsafe +
npFlow) · npG (the justification is the same as that used in the proof of Lemma 32(3)). �

Theorem 37 For every q ∈ QI , the satisfiability of the formulae F flow
q is decidable (and in NP).

Proof: The hierarchical method for reasoning in stably local theory extensions allows us to reduce
the task of checking the satisfiability of Fflow

q to the problem of checking the satisfiability of a
formula which is a conjunction of guarded index-positive extended clauses of the form E ∨ C,
where E is a disjunction of equalities of sort index and C a constraint over real numbers w.r.t. the
disjoint combination of the theory of real numbers R and the theory of uninterpreted function
symbols in P ∪X.

Due to Assumption 1, all the clauses in Fflow
q are ground or index-positive extended clauses of

the form E ∨ C, where C is a conjunction of linear inequalities.We obtain a set of ground clauses
in the combination of LI(R) and Eqindex. �

30

The locality result mentioned above shows that in order to check invariance of the safety con-
dition under all flows, we only need to consider combinations of states of systems corresponding
to the indices in IGflow. Therefore checking invariance under all flows is decidable.

Corollary 38 Under Assumptions 1 and 2(1), there exists a finite set Iflow ⊆ I of indices, such
that the following are equivalent:

(1) F flow
q is satisfiable for some q ∈ QI

(2) F flow
q0 is satisfiable for some q0 ∈ QIflow .

Therefore checking invariance under all flows is decidable (and in NP).

Proof: (1) ⇒ (2) Assume that for some q ∈ QI , Fflow
q is satisfiable. By Theorem 33, F flow

q
[G]

is

satisfiable. Then there is a model A for this formula. Let IGentry be the set of ground terms of sort

index in F flow
q

[G]
, and let Iflow be the set of the values of the terms in the model A. The model

A can easily be transformed into a model of Fflow
q0 , where q0 is the restriction of q to Iflow.

(2) ⇒ (1) Conversely, assume that there exists a finite set Iflow ⊆ I of indices, corresponding
to terms in IGflow (and thus to a neighborhood of the indices of cars that may violate the safety
condition) and a tuple of modes q0 ∈ QIflow such that Fflow

q0 is satisfiable. This model is a model

of Fflow
q

[G]
. By Theorem 33 it follows that Fflow

q is satisfiable. �

The results in Lemma 36, Theorem 37 and Corollary 38 immediately imply the following small
model property.

Corollary 39 Let S = (Top, {S(i) | i ∈ I}) be an SFHA. Under Assumption 1 and 2(1), the
following are equivalent:

(1) There exist indices c1, . . . , cn for which the safety condition Φsafe is not preserved under flows
starting in a state in which Φentry holds.

(2) There exists a finite set Iflow ⊆ I of indices, of size polynomial in the size of n (assuming
that the lengths of the formulae describing the SFHA S are considered constants) describing
a suitable neighborhood of c1, . . . , cn which can effectively be described (they correspond to
the terms in IGflow in Theorem 33) such that already in the systems Sflow = (Top|Iflow

, {S(i) |
i ∈ Iflow}) the safety condition Φsafe is not preserved under flows starting in a state in which
Φentry holds.

Proof: (1) ⇒ (2) Assume that (1) holds. Then for some q = (qi)i∈I ∈ QI , Kflow ∧G is satisfiable

(with the notation in the proof of Lemma 36). By Theorem 33, Kflow
[G] ∧G is satisfiable. Then

there is a model A for this formula. Let IGflow be as defined in Theorem 37, and let Iflow be the
set of the values in A of the terms in IGflow. The model A can easily be transformed into a model
of Kflow ∧ G, describing a system referring to the neighborhood Iflow of the indices c1, . . . , cn at
which Φsafe does not hold, although Φsafe and Φentry hold at the beginning of the flow. But then
for q = (qi)i∈I ∈ QIflow , Φsafe is not invariant under flows starting in a state in which Φentry holds
already for the system Sentry = (Top|Iflow

, {S(i) | i ∈ Iflow}).
(2) ⇒ (1) Conversely, assume that there exists a finite set Iflow ⊆ I of indices, corresponding

to terms in IGflow, a tuple q = (qi)i∈I ∈ QIflow , and that in Sflow there are indices c1, . . . , cn at
which the safety property does not hold at the end of a flow starting in a state in which Φsafe

and Φentry hold. Then Kflow ∧ G (with instantiation over Iflow is satisfiable, i.e. it has a model.

As Iflow corresponds to IGflow, we can obtain a model of Kflow
[G] ∧ G. By Theorem 33 it follows

that Kflow
[G] ∧G is satisfiable, i.e. (1) holds. �

31

Parametric Verification. If we consider parametric systems, in which some of the constants
used in the specification of the entry conditions, flows, and safety properties are parameters, we
have again the following options: If we impose constraints on these parameters (in the form of
constraints between real numbers) then the results in Theorem 37 and Corollary 38 can still be
used to prove that the verification problems remain decidable. The complexity of the problems
depends on the form of the constraints (for linear constraints, in particular when Assumptions
1-3 hold and parameters are not allowed as coefficients and do not appear as bounds in the flow
conditions we still can show that the problem is in NP). For systems in which parameters are
allowed as coefficients or appear in the flow conditions, the complexity is exponential.

We can use the method for hierarchical reasoning combined with quantifier elimination for the
theory of real numbers for generating constraints on the parameters which guarantee that F flow

q0

is unsatisfiable for all q0 ∈ QIflow (the complexity is exponential).

Example 40 We consider the following safety property:

Φl
safe : ∀i(i 6= nil ∧ front(i) 6= nil→ pos(front(i))− pos(i) ≥ ds).

Consider the tuple (qi)i∈I consisting of the acceleration modes for all systems

Invqi(i) := i 6= nil ∧ front(i) 6= nil→ pos(front(i), t0)− pos(i, t0) ≥ d.

Φl
safe is invariant under flows in mode (qi)i∈I if and only if the following formula is unsatisfiable:

0 ≤ t0 < t1 ≤ ∆t ∧ ∀i(i 6= nil ∧ front(i) 6= nil→ pos(front(i), t0)− pos(i, t0) > ds) Φl
safe(t0)

∧ ∀i(i 6= nil ∧ front(i) 6= nil→ pos(front(i), t0)− pos(i, t0) ≥ d) ∀i Invqi(t0)
∧ ∀i(i 6= nil ∧ front(i) 6= nil→ pos(front(i), t1)− pos(i, t1) ≥ d) ∀i Invqi(t1)
∧ ∀i(i 6= nil→ pos(i, t1)− pos(i, t0) ≤ vmax(t1 − t0)) Flow(t0, t1)
∧ i0 6= nil ∧ front(i0) 6= nil ∧ pos(front(i0), t1)− pos(i0, t1) ≤ ds G

The universally quantified conjuncts in the formula are guarded index-positive clauses. After
instantiation and purification, we obtain:

D K[G]
flow0
∧G0

f = front(i0) 0 ≤ t0 < t1 ≤ ∆t

f ′ = front(f) Φl
safe

[G]

0 i0 6= nil ∧ f 6= nil→ p10 − p00 > ds
p00 = pos(i0, t0) f 6= nil ∧ f ′ 6= nil→ p20 − p10 > ds
p01 = pos(i0, t1) Inva(t0)[G]

0 i0 6= nil ∧ f 6= nil→ p10 − p00 > d
p10 = pos(f, t0) f 6= nil ∧ f ′ 6= nil→ p20 − p10 > d

p11 = pos(f, t1) Inva(t1)[G]
0 i0 6= nil ∧ f 6= nil→ p11 − p01 > d

p20 = pos(f ′, t0) f 6= nil ∧ f ′ 6= nil→ p21 − p11 > d

p21 = pos(f ′, t1) Flow
[G]
q 0 i0 6= nil ∧ f 6= nil→ p01 − p00 ≤ vmax(t1 − t0)

f 6= nil ∧ f ′ 6= nil→ p11 − p10 ≤ vmax(t1 − t0)
G0 i0 6= nil ∧ f 6= nil ∧ p11 − p01 ≤ ds
N0 (instances of the congruence axioms)

It is easy to check unsatisfiability if d > ds. This proves that if d > ds then Φl
Safe is invariant

under flows.

The modularity/small model property result in Corollary 39 can be used as follows: From the
safety property, we can determine the index set Iflow which we need to consider (which describes

32

the instances of the universally quantified formulae which we need to take into account). For the
example described above, IGflow = {i0, front(i0), front(front(i0))}. Since we know that i0 6= 0 and
front(i0) 6= 0, we have two situations to consider: one in which front(front(i0)) = nil and one in
which front(front(i0)) 6= nil (equalities between i0, front(i0) and front(front(i0)) are ruled out by
the conditions on pos).

By Corollary 39, in order to check whether all initial states are safe, it is sufficient to restrict
to families of systems (TopIflow

, {S(i) | i ∈ Iflow}) for the two situations:

• Iflow = {c0, c2} where front(c0) = c1 and front(c1) = nil, and

• Iflow = {c0, c2, c3}, where front(c0) = c1 and front(c2) = c3, front(c3) = nil.

We will need to consider combinations of modes (Appr/Rec) only for the systems in this family,
thus we need to try only 22 + 23 possible combinations of modes.

The global safety condition: ∀i, j(i 6= nil ∧ j 6= nil ∧ lane(i) = lane(j) ∧ pos(i) > pos(j) →
pos(i) − pos(j) ≥ d) can be checked only together with properties which guarantee that the
imprecise information of the sensors does not impact on safety. For proving such properties, we
use timed topologies and timed topology updates.

5.2.3 Jumps

We now analyze the decidability and complexity of checking whether Φsafe is preserved under
all jumps starting from a state reachable by a flow from a state satisfying Φentry. According to
Theorem 22(3), this can be expressed as the problem of checking whether for all q=(qi)i∈I∈QI

the following formula F jumpq
e(i0) is unsatisfiable for every i0 ∈ I and e = (qi0 , q

′
i0

) ∈ E, s.t. if
p(i0) occurs in guarde it is not nil:

F jumpq

e(i0) : Φentry(x(t0)) ∧

((
t0 < t1 ∧ ∀iFlowqi(x(i, t0), x(i, t1))

)
∨ t0 = t1

)
∧ ∀i1, . . . , inφsafe(x(j1, t1), . . . , x(in, t1))

∧ guarde(x(i0, t1)) ∧ jumpe(x(i0, t1), x′(i0)) ∧ Invq′i0
(x′(i0))

∧ ∀j(j 6= i0 → x′(j) = x(j)) ∧G,

where G = ¬φsafe(x(c1, t1), . . . , x(cn, t1)).

Lemma 41 (Jumps) Under Assumptions 1 and 2(1) the following hold:

(1) For every q =∈ QI , Fjump
q is unsatisfiable iff F jump

q
[G]

is unsatisfiable.

(2) The size of the set of terms of sort index in st(G) and hence also the size of F jump
q

[G]
is

polynomial in the number of terms of sort index in Φsafe. Therefore also the size of the set

IGjump of ground terms of sort index in F jump
q

[G]
is polynomial in the number of terms of sort

index in Φsafe.

The set of instances F jump
q

[G]
contain formulae Invqi and Flowqi corresponding to terms i ∈

IGjump.

Proof: The proof is similar to the one of Lemma 32 and Lemma 36 using Theorem 31(3). The

set of terms IGjump corresponding to i0 is the set of all ground terms of sort index in Kjump
[G].

The estimation of the number njump of instances in Kjump
[G] and on the number of terms nijump

in IGjump is similar to that made in the proofs of Lemma 32(3) and Lemma 36(2). With the
notations used in the proofs of these Lemmata we have:

33

• njump = nentry + nsafe + nFlow + npG ≤ npGnventry + npG
nvsafe + (c+ 1) · npG;

• nijump = nientry + nisafe + niFlow + niJump ≤ (npsfentry + npsafe + npFlow) · npG + niJump,

where niJump is the number of terms of sort index occurring in

guarde(x(i0, t1)) ∧ jumpe(x(i0, t1), x′(i0)) ∧ Invq′i0
(x′(i0)).

�

Theorem 42 (Jumps) For every q ∈ QI , the satisfiability of F jump
q is decidable (and in NP).

Proof: Follows from Lemma 41 and the fact that for every q0 ∈ QIjump , the satisfiability of F jump
q

[G]

is decidable (and it is in NP). �

The following two results can be proved as in the case of flows.

Corollary 43 Let S = (Top, {S(i) | i ∈ I}) be an SFHA. Under Assumptions 1 and 2(1), there
exists a finite set Ijump ⊆ I of indices, such that the following are equivalent:

(1) F jump
q is satisfiable for some q ∈ QI

(2) F jump
q0 is satisfiable for some q0 ∈ QIjump .

Therefore checking invariance under all GMR jumps is decidable (and in NP).

Corollary 44 Under Assumptions 1 and 2(1), the following are equivalent:

(1) There exist indices c1, . . . , cn for which the safety condition Φsafe does not hold after a jump
following a flow starting in a state satisfying Φentry.

(2) There exists a finite set Ijump ⊆ I of indices, of size polynomial in the size of n (assuming
that the length of the formulae describing the SFHA S are considered constants) such that
already in the system Sjump = (Top|Ijump

, {S(i) | i ∈ Ijump}) the safety condition Φsafe does not
hold after a jump following a flow starting in a state satisfying Φentry.

The set of indices Ijump and the system Sjump = (Top|Ijump
, {S(i) | i ∈ Ijump}) describe a

suitable neighborhood of the systems c1, . . . , cn at which the safety property is not preserved
under jumps, which can effectively be described (they correspond to the terms in IGjump in
Lemma 41).

Parametric Verification. If we impose constraints on these parameters (in the form of con-
straints between real numbers) then the results in Theorem 42 and Corollary 43 can be used
to prove that the verification problems remain decidable. For linear constraints, in particular
when Assumptions 1-3 hold and parameters are not allowed as coefficients and do not appear
as bounds in the flow conditions, the problem is in NP. For systems in which parameters are
allowed as coefficients or appear in the flow conditions, the complexity is exponential.

We can use the method for hierarchical reasoning combined with quantifier elimination for
the theory of real numbers for generating constraints on the parameters which guarantee Φsafe is
preserved under GMR jumps (the complexity is exponential).

34

Example 45 We consider the following safety property Φsafe:

Φsafe: ∀i, j(i 6= nil ∧ j 6= nil ∧ lane(i) = lane(j) ∧ pos(i) = pos(j)→ i = j).

Because jumps are instantaneous and pos is a continuous variable, Φsafe is obviously invariant
under jumps where the lane is not changed, i.e. where no variables are updated. To verify a jump
where an update of the lane occurs, we look at a transition from the first to the second lane. We
assume that car i0 is in mode Appr; the modes of other cars will not affect the verification.

Verifying the safety condition in general for such a jump will require the afore-mentioned
interplay with other components of a global safety condition, because front(i) may not actually
be the car in front of i if another car cut in in front of i after the last topology update. To keep
the presentation simple, we instead assume for this example that the lane change follows directly
on an update, so that the sensors show correct information (i.e. the state of Top is an initial
state). This is a special case of global mode reachability that is much easier to follow by hand
than the general case. In particular, we use that there is no car between sidefront and sideback.
Invariance under lane-changing jumps can then be reduced to checking whether the following set
is unsatisfiable:

Φsafe

guard: k0 6= nil ∧ front(k0) 6= nil ∧ lane(k0) = 1 ∧ pos(front(k0))− pos(k0) ≤ D′

back(k0) 6= nil→ pos(k0)− pos(back(k0)) ≥ d′

sideback(k0) 6= nil→ pos(k0)− pos(sideback(k0)) ≥ d′

sidefront(k0) 6= nil→ pos(sidefront(k0))− pos(k0) ≥ d′

Invbefore: ∀i((lane(i) = 1 ∨ lane(i) = 2)∧
i 6= nil ∧ front(i) 6= nil→ pos(front(i))− pos(i) ≥ d)

Invafter: ∀i((lane′(i) = 1 ∨ lane′(i) = 2)∧
front(i) 6= nil→ pos′(front(i))− pos′(i) ≥ d)

jump: lane′(k0) = 2 ∧ ∀i(i 6= k0 → lane′(i) = lane(i))

∀i(pos′(i) = pos(i))

InitTop: ∀i, j(sideback(i), sidefront(i), j 6= nil ∧ lane(j) = 2→ pos(j) ≤ pos(sideback(i)) ∨ pos(j) ≥ pos(sidefront(i))
sideback(i), j 6= nil ∧ sidefront(i) = nil ∧ lane(j) = 2→ pos(j) ≤ pos(sideback(i))
sidefront(i), j 6= nil ∧ sideback(i) = nil ∧ lane(j) = 2→ pos(j) ≥ pos(sidefront(i)))

¬Φ′safe: i0 6= nil ∧ j0 6= nil ∧ i0 6= j0 ∧ lane′(i0) = lane′(j0) ∧ pos′(i0) = pos′(j0)

These axioms define a chain of local theory extensions:

R ∪ Eqindex ⊆ R ∪ Invbefore ∪ Inittop ⊆ R ∪ Invbefore ∪ Inittop ∪ jump ∪ Invafter

After instantiation and purification the problem is reduced to a satisfiability test in the combi-
nation of linear arithmetic with pure equality (for the index sort). Below, we explain intuitively
why the set of clauses above is unsatisfiable.

Due to the implication in the jump condition, the verification will be a case distinction on
whether or not i0 or j0 equals k0. Since the case k0 6∈ {i0, j0} is trivial, we concentrate the
manual analysis on k0 = i0 6= j0. From the jump condition, we obtain:

lane′(j0) = lane(j0) pos′(k0) = pos(k0) pos′(i0) = pos(i0) pos′(j0) = pos(j0)

From the information from Top, we obtain:

sideback(k0), sidefront(k0), j0 6= nil ∧ lane(j0) = 2→ pos(j0) ≤ pos(sideback(k0)) ∨ pos(j0) ≥ pos(sidefront(k0))

sideback(k0), j0 6= nil ∧ sidefront(k0) = nil ∧ lane(j0) = 2→ pos(j0) ≤ pos(sideback(k0))

sidefront(k0), j0 6= nil ∧ sideback(k0) = nil ∧ lane(j0) = 2→ pos(j0) ≥ pos(sidefront(k0))

35

We know that j0 6= nil and lane(j0) = 2 (because lane(j0) = lane′(j0) = lane′(i0) = lane′(k0)).
If either of sideback(k0) or sidefront(k0) is defined, then the guard condition states that they are
at least d′ away from k0, and the instances that we just derived state that then the same must
hold for j0. In particular, j0 6= k0 if d′ > 0. This means that the derived set of ground instances
is unsatisfiable if d′ > 0.

5.2.4 Topology updates

We now analyze the decidability and complexity of checking whether Φsafe is preserved under
all GMR topology updates. By Theorem 22, this can be reduced to checking whether for all
q = (qi)i∈I ∈ QI the following formula F top

q is unsatisfiable:

F top
q : Φentry(x(t0)) ∧

((
t0 < t1 ∧ ∀iFlowqi(x(i, t0), x(i, t1))

)
∨ t0 = t1

)
∧ ∀i1, . . . , inφsafe(x(j1, t1), . . . , x(in, t1)) ∧

∧
p∈P1

Update(p, p′) ∧G,

where G = ¬φ′safe(x(c1), . . . , x(cn)) and φ′safe is obtained from φsafe by replacing every p ∈ P1

with p′.

Lemma 46 (Topology updates) Under Assumptions 1, 2(1) and 3 the following hold:

(1) For every q = (qi)i∈I ∈ QI , Ftop
q is unsatisfiable iff F top

q
[TG]

is unsatisfiable for a suitable set
of ground terms TG.

(2) The size of the set of terms of sort index in st(G) and hence also the size of F top
q

[TG]
is

polynomial in the number of terms of sort index in Φsafe. Therefore also the size of the set

IGtop of ground terms of sort index in F top
q

[TG]
is polynomial in the number of terms of sort

index in Φsafe.

The set of instances F top
q

[TG]
contains only formulae corresponding states qi where i are

indices corresponding to terms in IGtop.

Proof: The proof is similar to the one of Lemma 36, using Theorem 31(4) and is only sketched
here. Let Ktop = K1 ∪

∧
p∈P1

Update(p, p′), where K1 is the following formula:

K1 = Φentry(x(t0)) ∧

((
t0 < t1 ∧ ∀iFlowqi(x(i, t0), x(i, t1))

)
∨ t0 = t1

)
∧ Φsafe(x(t1))

By Theorem 31(4), the extension of the theory R ∪ K1 with the additional function symbols
{p′ | p ∈ P1} axiomatzed by

∧
p∈P1

Update(p, p′) is local. Thus, R∪K1 ∪
∧

p∈P1
Update(p, p′)∪G

is satisfiable iff R ∪ K1 ∪
∧

p∈P1
Update(p, p′)[G] ∪G is satisfiable.

We can distinguish two cases:

Case 1:
∧

p∈P1

Update(p, p′)[G] ∪G is a ground formula G′. Then we can proceed as in the

proof of Lemma 36, with the difference that G is replaced by G′. R ∪ K1 ∪ G′ is satisfiable iff

R ∪ K[G′]
1 is satisfiable. The set TG consists of all the ground terms of sort index in st(G′), and

depends not only of G but also on the form of the update rules.

Case 2:
∧

p∈P1

Update(p, p′)[G] ∪G contains free variables. Then the proof proceeds as the

proof of Lemma 32. The conditions in Assumption 2(1) and 3 ensure also in this case that after

36

at most two instantiation steps we can reduce the satisfiability test to testing the satisfiability of
ground clauses. Under Assumption 3(1), the set TG contains the ground terms of sort index in∧
p∈P1

Update(p, p′)[G] ∪G. Under Assumption 3(2) it contains additional Skolem constants which

need to be introduced because of the existential quantifiers in some of the updates.

IGtop consists of the set of all ground terms of sort index in Ktop
[T top

G] together with all terms obtained
by replacing the variables with Skolem constants cp, p ∈ P which occur from Skolemization in
the instances of Update(p, p′).

The estimation of the number nupdate of instances in F top
q

[T top
G]

and on the number of terms

niupdate in IGtop is similar to that made in the proofs of Lemma 32(3), Lemma 36(2) and Lemma 41(2).
With the notations used in the proofs of these Lemmata we have:

• nupdate = nentry + nsafe + nFlow + nUpdate ≤ npGnventry + npG
nvsafe + npG

nvupdate + c · npG;

• niupdate = nientry + nisafe + niFlow + niupdate ≤ (npentry + npsafe + npFlow + 2npupdate) · npG,

where niupdate is the number of terms of sort index occurring in
∧

p∈P1
Update(p, p′). �

Theorem 47 For every q ∈ QI , the satisfiability of the formulae F top
q is decidable (and in NP).

Corollary 48 Under Assumptions 1, 2(1) and 3 there exists a finite set Itop ⊆ I of indices,
such that the following are equivalent:

(1) F top
q is satisfiable for some q ∈ QI

(2) F top
q0 is satisfiable for some q0 ∈ QIflow .

Therefore checking invariance under all topology updates is decidable (and in NP).

Corollary 49 Let S = (Top, {S(i) | i ∈ I}) be an SFHA. Under Assumption 1, 2(1) and 3, the
following are equivalent:

(1) There exist indices c1, . . . , cn for which the safety condition Φsafe is not preserved under
updates reachable from a state in which Φentry holds.

(2) There exists a finite set Iupdate ⊆ I of indices, of size polynomial in the size of n (assuming
that the lengths of the formulae describing the SFHA S are considered constants) describing
a suitable neighborhood of c1, . . . , cn which can effectively be described (they correspond to the
terms in IGupdate in Theorem 33) such that already in the systems Supdate = (Top|Iupdate

, {S(i) |
i ∈ Iupdate}) the safety condition Φsafe is not preserved under updates in states reachable from
a state in which Φentry holds.

The proofs are in all cases analogous to the proofs for the case of flows and jumps (Corollaries 44
and 44).

Parametric Verification. Also in this case, if we impose constraints on these parameters (in
the form of constraints between real numbers) then the results in Lemma 46 and Corollary 48
can be used to prove that the verification problems remain decidable. The complexity of the
problems is similar to that for jumps. We can also use hierarchical reasoning combined with
quantifier elimination for the theory of real numbers for generating constraints on the parameters
which guarantee Φsafe is preserved under GMR updates, as in [Sofronie-Stokkermans, 2013] (the
complexity is exponential).

37

Example 50 Consider the topology updates in Example 4. Invariance of Φg
safe under these

updates can be proved (cf. Section 7). Φl
safe is not invariant. We now consider a variant Φ

l
safe of

Φl
safe where:

Φ
front
safe : ∀i

(
i 6= nil ∧ front(i) 6= nil ∧ lane(i) = lane(front(i))→ pos(front(i))− pos(i) > ds

)
In order to prove that Φ

front
safe is preserved by topology updates, we prove that the formula

Φ
front
safe ∧ Update(front, front′) ∧G

is unsatisfiable, where G = ¬Φ
front′

safe is the ground clause

i0 6=nil ∧ front′(i0)6=nil ∧ lane(i0)=lane(front′(i0)) ∧ pos(front′(i0))− pos(i0)≤ds.

The extension: R∪Φ
front
safe ⊆ R∪Φ

front
safe ∪Update(front, front′) is local. We determine the conjuncts

of Update(front, front′)[G], where st(K,G) = {front′(i0)}. After instantiation and purification
(replacing front′(i0) with f ′) we obtain:

i0 6=nil ∧ ¬∃j(ASL(j, i0))→ f ′=nil
i0 6=nil ∧ ∃j(ASL(j, i0))→ Closestf (f ′, i0)

with the notations in Example 4. Transforming these formulae into prenex form and skolemizing
the existential quantifier, we obtain (with Skolem constant c0):

C1 : i0 6=nil ∧ ¬ASL(c0, i0)→ f ′=nil

C2 : i0 6=nil ∧ ASL(j, i0)→ Closest(f ′, i0).

The formula C1 is ground. To check the satisfiability of Φsafe ∪ C2 ∪ G1 where G1 = C1 ∧ G0

(where G0 is i0 6=nil ∧ f ′ 6=nil ∧ lane(i0)=lane(f ′) ∧ pos(f ′)−pos(i0)≤ds), it is sufficient to check
the satisfiability of Φsafe[G1] ∪ C2[G1] ∪G1.

5.3 Checking exhaustive entry conditions

In Theorem 23 we showed that for decoupled SFLHA S we can reduce checking conditions (i) and
(ii) in Definition 12 (exhaustive entry conditions) to checking the satisfiability of the following
formulae:

(i) Φentry(x) ∧
(
¬(
∨

q∈Q Initq(x(i0))) ∨ ¬Inittop(x)
)

is unsatisfiable.

(ii) for all (qi)i∈I ∈ QI :

(a) Topology updates:

(∀i Invqi(xi)) ∧ Update(p, p′) ∧ ¬Φ′entry(x) is unsatisfiable,

where Φ′entry arises from Φentry by replacing p with p′, and

(b) Jumps: For all e ∈ E, i0 ∈ I:

(∀i Invqi(xi)) ∧ guarde(xi0) ∧ jumpe(xi0 , x
′
i0) ∧

∀j(j 6= i0 → x′(j) = x(j)) ∧ ¬Φentry(x′) is unsatisfiable.

We now identify conditions under which these tasks are decidable and analyze their complexity.

38

Theorem 51 Under Assumption 1, and if both Φentry and Inittop satisfy the conditions on Φentry

in Assumption 2(1), then the following hold:

(i) The following are equivalent:

(1) Φentry(x) ∧
(
¬(
∨

q∈Q Initq(x(i0))) ∨ ¬Inittop(x)
)

is unsatisfiable.

(2) Φentry(x) ∧G1 is unsatisfiable, where G1 =
∧

q∈Q ¬Initq(x(i0)) and

Φentry(x) ∧G2 is unsatisfiable, where G2 = ¬Inittop(x).

(3) Φentry(x)[G1] ∧G1 is unsatisfiable, where G1 =
∧

q∈Q ¬Initq(x(i0)) and

Φentry(x)[G2] ∧G2 is unsatisfiable, where G2 = ¬Inittop(x).

The size of the set of terms of sort index in st(G1), st(G2) and hence also the size of the
sets of instances in (3) is polynomial in the number of terms of sort index in G1, G2.

(ii) (a) For every q = (qi)i∈I ∈ QI the following are equivalent:

(a1) (∀i Invqi(x(i))) ∧ Update(p, p′) ∧G3 is unsatisfiable, where G3 = ¬Φ′entry(x).

(a2) (∀i Invqi(x(i))) ∧ Update(p, p′)[G3] ∧G3 is unsatisfiable.

(a3) [(∀i Invqi(x(i))) ∧ Update(p, p′)[G3]][TG3
] ∧G3 is unsatisfiable, where TG3

is the set of
all ground terms of sort index in the formula in (2).

(b) For every q = (qi)i∈I ∈ QI the following are equivalent:

(b1) (∀i Invqi(xi)) ∧ guarde(xi0) ∧ jumpe(xi0 , x
′
i0) ∧ ∀j(j 6= i0 → x′(j) = x(j)) ∧ G4, is

unsatisfiable, where G4 = ¬Φentry(x′).

(b2) ((∀i Invqi(xi)) ∧ guarde(xi0) ∧ jumpe(xi0 , x
′
i0) ∧ ∀j(j 6= i0 → x′(j) = x(j)))[G4] ∧G4 is

unsatisfiable.

Theorem 52 (Decidability and complexity) The problem of checking the satisfiability of
the formula in (i)(3) is decidable (and in NP). For every q = (qi)i∈I ∈ QI , the problem of
checking the satisfiability of the formulae in (ii)(a3) and (ii)(b2) is decidable (and in NP).

Corollary 53 Under Assumption 1, and if Φentry and Inittop satisfy the conditions in Assump-
tion 2(1), there exists a finite set I0 ⊆ I of indices, such that the following are equivalent:

(1) The formula in (i)(a) is satisfiable for some q ∈ QI

(2) The formula in (i)(a) is satisfiable for some q ∈ QI0 .

Therefore checking invariance under all GMR jumps is decidable (and in NP).

Parametric Verification. These results can be used also for parametric systems, either for
checking whether a safety property has exhaustive entry conditions (assuming that certain con-
straints on the parameters are known) or for generating constraints on parameters used in the
specification of the system, and of Φentry under which Definition 12 holds.

Example 54 Consider the running example. Assume that the initial conditions for the topology
automaton are expressed by the formulae InitTop, stating that all sensor pointers have the correct
value, as if they had just been updated. For front this can be expressed by the following set of
formulae:

39

∀i(i 6= nil ∧ front(i) = nil → ∀k(k 6= nil ∧ k 6= i ∧ pos(k) ≥ pos(i)→ lane(k) 6= lane(i)))
∀i(i 6= nil ∧ front(i) 6= nil → posfront(i) > pos(i) ∧ lanefront(i) = lane(i)∧

∀k(k 6= nil ∧ k 6= i ∧ pos(k) ≥ pos(i) ∧ lane(k) = lane(i)
→ pos(k) ≥ posfront(i))∧

pos(front(i)) = posfront(i) ∧ lane(front(i)) = lanefront(i)).

In Example 3, the initial conditions of the two modes Appr and Rec are:

InitAppr = InitRec = ∀i(i 6= nil ∧ front(i) 6= nil→ posfront(i)− pos(i) ≥ d′).

Consider a safety property Φentry → �Φsafe, with entry states being states in which the informa-
tion provided by the sensors is correct and every car is sufficiently far away from the following
car on the same lane, described by the following formula Φentry (again stated only for front):

∀i(i 6= nil ∧ front(i) = nil → ∀k(k 6= nil ∧ k 6= i ∧ pos(k) ≥ pos(i)→ lane(k) 6= lane(i)))
∀i(i 6= nil ∧ front(i) 6= nil → posfront(i) > pos(i) + d′ ∧ lanefront(i) = lane(i)∧

∀k(k 6= nil ∧ k 6= i ∧ pos(k) ≥ pos(i) ∧ lane(k) = lane(i)
→ pos(k) ≥ posfront(i))∧

pos(front(i)) = posfront(i) ∧ lane(front(i)) = lanefront(i)).

It can be easily checked that Φentry ∧ ¬Inittop is unsatisfiable and that Φentry ∧G1, where

G1 = ¬Inita ∧ ¬Initr = (c 6= nil ∧ front(c) 6= nil ∧ posfront(c)− pos(c) < d′)

is unsatisfiable.

In general, we can only guarantee that ∀iInvqi(x(i))∧Update(p, p′)∧¬Φ′entry is unsatisfiable if the
invariants and the update rules are designed such that after an update each car is sufficiently far
away from the following car on the same lane.

Similarly, we can only guarantee that ∀iInvqi(x(i)) ∧ guarde(x) ∧ jumpe(x, x
′) ∧ ¬Φentry(x′) is

unsatisfiable if the jump rules are designed such that after a jump that resets some of the variables
(e.g. after a lane change) each car is sufficiently far away from the following car on the same lane.

6 Consequences of Locality

In what follows we present two applications of the previous results: a small model property and
a complexity result which refines the NP-complexity results established in Section 5.

6.1 A small model property

From Corollaries 34, 39, 44 and 49 we obtain the following small model property for the verifi-
cation of safety properties with exhaustive entry conditions.

Theorem 55 (Small model property) Under Assumptions 1, 2(1) and 3, a decoupled SFLHA
S satisfies a safety property with exhaustive entry conditions iff the property holds in all systems
of the form S0 = (Top, {S(i) | i ∈ I0}), where I0 is a set of indices corresponding to ground terms

in G = ¬Φsafe occurring in the instances of the formulae F entry[G]
, F flow

q
[G]
, F jump

q
[G]

, or F top
q

[G]
.

The size |I0| of I0 is polynomial in the number of terms of sort index occurring in Φsafe, and
can be precisely determined from the form of the formulae Φsafe, F

entry, F flow
q , F jump

q , or F top
q .

40

Proof: Direct consequence of Corollaries 34, 39, 44 and 49. From the proofs of Lemma 32,
36, 41 and 46, we know that for checking the safety of entry conditions and invariance un-
der flows and GMR jumps and topology update we only need to analyze systems with set
of indices of cardinality at most (npentry + npsafe + npFlow + 2npUpdate) · npG + npjump, where
npentry, npsfsafe, npFlow, npUpdate is the number of all terms of sort index occurring in the corre-
sponding formulae (Φentry,Φsafe,Flow,Update(p, p′)) and npG is the set of ground terms of sort
index occurring in G. �

6.2 Decidability, Complexity

From Theorems 33, 37, 42 and 47 and from Theorem 52 and Corollaries 34, 39, 44 and 49 we
obtain the following decidability and complexity results:

Theorem 56 Under Assumptions 1, 2(1) and 3, the problem of checking invariance of a safety
condition in an SFLHA S is decidable (and in NP).

Proof: Direct consequence of Theorems 33, 37, 42 and 47 . �.

Theorem 57 Under Assumptions 1, 2(1), and 3, and if Inittop consists of guarded index-positive
extended clauses where the scalar constraint is a conjunction of linear inequalities, the problem
of checking whether a safety property Φentry → �Φsafe has extended entry condition in an SFLHA
S is decidable (and in NP).

Proof: Direct consequence of Theorem 52. �.

Under Assumption 4, some of the verification problems can be solved in PTIME:

Theorem 58 With the notation introduced in Theorem 22 and used in Sections 5.2.1–5.2.4, and
under Assumptions 1, 2(1), 3 and 4, the following hold for every conjunction Def :

∧
p(t)∈T1

p(t)=nil∧∧
p(t)∈T2

p(t) 6= nil, where T1 ∪ T2 = {p(t) | t subterm of sort index of G, p ∈ P, p(t) not in G}
and every q ∈ QIentry (resp. QIflow or QIupdate):

(1) The satisfiability of Fentry
q ∧ Def can be checked in PTIME.

(2) The satisfiability of Fflow
q ∧ Def can be checked in PTIME.

(2) The satisfiability of Fjump
q ∧ Def can be checked in PTIME.

(4) Assuming that either (a) PS is empty, or else (b) Update(p, p′) has the form in Theorem 27,
the satisfiability of Fupdate

q ∧ Def can be checked in PTIME.

If we consider |Q|, |E| and |P | to be constant and the number of terms of sort index in Φsafe,
and the maximal number of variables in the update axioms as a parameter, these problems can
be considered to be fixed parameter tractable.

Proof: All transformations in the hierarchical reduction increase the size of the ground formulae
to be checked polynomially. If the constraints over R we obtain after this reduction lie in a
tractable fragment of linear arithmetic, and if the ground constraints involving terms of sort
index are unit and contain definedness or undefinedness conditions9 for all ground terms of sort
index, then checking satisfiability can be done in PTIME. The number of possible choices for Def
is 2(T1∪T2)\st(G). Since each of the verification tasks for a fixed Def can be solved in PTIME, this
yields the fixed parameter tractability result. �

9A definedness condition for a term t of sort index is a literal t 6= nil; an undefinedness condition for t is a literal
of the form t = nil.

41

Theorem 59 (Parametric systems) The complexity results in Theorems 33–47 and 58, as
well as the small model property, also hold for parametric SFLHA in which only the bounds in
Φentry,Φsafe, Invq, Initq,, guarde, jumpe, and Update are parameters. For systems in which param-
eters are allowed as coefficients or appear in the flow conditions, the complexity is exponential.

Proof: This follows from the fact that all verification problems can be reduced to checking
satisfiability for quantifier-free formulae (i.e. validity of existentially quantified formulae). If the
parameters occur only in the bounds in Φentry,Φsafe, Invq, Initq,, guarde, jumpe, and Update then
the numerical constraints are still linear hence the complexity is as in the non-parametric case,
and the satisfiability of quantifier-free formulae over the theory of real-closed fields (R) can be
checked in EXPTIME [Ben-Or et al., 1986]. �.

Theorem 60 (Parametric synthesis) Under Assumptions 1, 2(1) and 3, the complexity of
synthesizing constraints on parameters which guarantee that a parametric SFLHA satisfies a
safety condition with exhaustive entries (using quantifier elimination) is exponential.

Proof: The proof is similar to the proof of Theorem 59, taking into account that the complexity
of quantifier elimination for formulae without alternation quantifiers (hence also for existential
formulae) is EXPTIME [Collins, 1975, Ben-Or et al., 1986]. �.

Similar methods can be used for showing that under Assumptions 1, 2(1) and 3 the problem
of checking conditions (i) and (ii) in the definition of exhaustive entry conditions is in NP. We
can also express Φentry and S parametrically and infer constraints on parameters under which
conditions (i) and (ii) hold.

Remark 61 Similar results can also be obtained under Assumption 2(2) or 2(3), but because in
those cases we need to instantiate in two steps the description of the instances needed is a bit more
complicated (the number of instances and the size of I0 is still polynomial in these situations.

In fact, all decidability results directly translate to situations where the involved formulas do
not satisfy Assumptions 2 or 3 but belong to other fragments for which the theory extensions
in Theorem 31 are local or stably local; the complexity depends on the complexity of checking
satisfiability for formulae obtained after instantiation.

7 Tool Support

In order to perform the verification tasks automatically, we implemented our approach in the tool
HAHA (Hierarchic Analysis of Hybrid Automata)10. HAHA employs H-PILoT11, a program for
hierarchical reasoning in extensions of logical theories [Ihlemann and Sofronie-Stokkermans, 2009],
to perform reductions of the verification proof tasks to satisfiability problems in a combination
of linear arithmetic over R and pure equality. These are then solved using the theorem prover
Z3 [de Moura and Bjørner, 2008].

7.1 Input syntax

We specify spatial families of linear hybrid automata in XML files, whose structure directly
mirrors the constituent structure of such a family. For example, the specifications of the approach
mode and the lane-changing jump for our running example are presented in Figure 5. Note that
we do not explicitly specify the definedness guards E . Instead, they are added automatically by
H-PILoT.
10http://userp.uni-koblenz.de/~sofronie/horbach/haha.html
11http://userp.uni-koblenz.de/~sofronie/hpilot/

42

http://userp.uni-koblenz.de/~sofronie/horbach/haha.html
http://userp.uni-koblenz.de/~sofronie/hpilot/

<mode id="approach">

<invariant>OR(lane(i) = 1,lane(i) = 2)</invariant>

<invariant>pos(front(i))-pos(i) >= mindistance</invariant>

<flow derivatives=".lane(i)" value="0"/>

<flow derivatives=".pos(i)" upperbound="100"/>

<flow derivatives=".pos(i)" lowerbound="0"/>

<flow derivatives=".pos(i)-.pos(front(i))" lowerbound="0"/>

</mode>

<jump source="__any__" target="approach">

<guard>mindistance >= pos(front(i))-pos(i)</guard>

<guard>pos(sidefront(i))-pos(i) >= mindistance</guard>

<guard>pos(i)-pos(sideback(i)) >= mindistance</guard>

<guard>pos(i)-pos(back(i)) >= mindistance</guard>

<reset variable="lane" value="3-lane(i)"/>

</jump>

Figure 5: XML specification of the Appr mode and of the lane change jump

Figure 6: Implementation Data Flow Overview.

7.2 System architecture

An overview of our implementation is depicted in Figure 6. In a first step, HAHA parses the
problem from the XML specification and creates internal representations of the four verification
tasks explained in Theorem 22.

Each of them is then translated into H-PILoT syntax, and H-PILoT performs the reduction
to quantifier-free problems as in the proofs of Theorems 33–47. H-PILoT’s output consists of
problems in linear real and integer arithmetic, whose satisfiability is checked by Z3.

If Z3 detects unsatisfiability, the proof task was successful. For satisfiable formulae, H-PILoT
returns a model which can be used to visualize the counterexample to the invariance properties
[Krawez, 2012]. Finally, HAHA collects statistics on run times, satisfiability, and model sizes for
the individual verification problems.

The check whether a given entry condition satisfies the properties in Definition 12 or 17 works
similarly.

The use of GMR constraints is not always necessary to prove safety, because some safety
properties are maintained by all jumps and updates, not just by globally mode reachable ones.
Because the inclusion of GMR constraints affects the performance of the approach, HAHA can
also run in a mode that does not create them (c.f. our experimental results below).

43

Figure 7: The property Φfront
safe is violated by the depicted update if the distance between cars 7

and 5 is below the minimal safe distance ds. Restriction to globally mode reachable
jumps avoids this situation.

7.3 Experiments

We evaluated HAHA on variations of our running problem and on examples from the Passel
benchmark suite [Johnson and Mitra, 2012b]. In the following sections, we describe the results
of the verification of some of the safety conditions presented throughout the paper. The list
is not exhaustive, but includes safety properties that demonstrates a variety of features of our
approach. On the HAHA homepage, we provide all source data for these examples, including an
xml description of the automaton, the verification problems that are handed over to H-PILoT,
and finally the SMT problems handled by Z3. We also provide formalizations of several of the
examples from the Passel benchmark suite.

7.3.1 Decision Problems

We considered our running example with the entry condition Φentry from Example 54:

∀i(i 6= nil ∧ front(i) = nil → ∀k(k 6= nil ∧ k 6= i ∧ pos(k) ≥ pos(i)→ lane(k) 6= lane(i)))
∀i(i 6= nil ∧ front(i) 6= nil → posfront(i) > pos(i) + d′ ∧ lanefront(i) = lane(i)∧

∀k(k 6= nil ∧ k 6= i ∧ pos(k) ≥ pos(i) ∧ lane(k) = lane(i)
→ pos(k) ≥ posfront(i))∧

pos(front(i)) = posfront(i) ∧ lane(front(i)) = lanefront(i))

As safety conditions, we chose the following:

Φtop
safe : ∀i(i 6= nil→ front(i) 6= i)

Φg
safe : ∀i, j(i6=nil ∧ j 6=nil ∧ lane(i)=lane(j) ∧ pos(i)>pos(j)→ pos(i)− pos(j)≥ds)

Φfront
safe : ∀i(i 6= nil ∧ front(i) 6= nil→ pos(front(i))− pos(i) ≥ ds)

The first condition states a basic consistency property of the sensor information; the next two
are the ones first introduced in Example 11. We provided constraints for all parameters, stating
e.g. that the minimal distance between cars in mode Appr does not exceed the maximal distance
between cars in mode Rec (d ≤ D), and both are nonnegative (d ≥ 0, D ≥ 0).

Results of experiments with our running example are summarized in Figure 9. The left half of
the diagram shows the results and run times as well as the maximal model sizes (cf. Theorem 55)
of verification attempts that ignore the entry condition and global mode reachability. A result
of unsat means that HAHA could prove the respective verification task, sat means that it found
a counter example. As can be seen, the analysis without regard to global mode reachability is
faster but not always powerful enough. For example, Φfront

safe is not invariant under all updates;
Figure 7 shows an example of such an update that violates Φfront

safe .
The right half of the diagram shows the results of verification including global mode reacha-

bility. In this mode, we could prove that Φfront
safe holds in all runs.

From the tests presented in Figure 9, we observe the following facts:

44

Figure 8: The property Φg
safe is violated by by a lane change if there is another car between

sidefront and sideback. This can happen even for globally mode reachable jumps.

• The formula Φtop
safe is an invariant of the system, and is also invariant under globally mode

reachable flows, jumps and topology updates.

• The formula Φfront
safe is true in the initial states and is invariant under jumps and flows, but

not under all topology updates. It is however invariant under all globally mode reachable
topology updates.

• The formula Φg
safe is true in the initial states and is invariant under topology updates.

However, the formula is not invariant under jumps and flows. We could show that it is
invariant under globally mode reachable flows and topology updates, but not under globally
mode reachable jumps.

7.3.2 Model generation

The fact that we could show that Φg
safe is not invariant under globally mode reachable jumps

contradicted our intuition, because a lane change (and no other jump could be the culprit) can
only take place if the adjacent cars front, back, sidefront and sideback are sufficiently far away.
In order to understand the problem, we used the model returned by H-PILoT to construct a
counterexample to safety. After simplifying this model, we obtained a model describing the
situation presented in Figure 8: Because we do not specify in Φentry that sensors have to be set
correctly, there may be another car between sidefront and sideback which will cause a lane change
to lead to a collision.

A jump in the situation described in Figure 8 can only occur because the information provided
by sensors at the moment of a line change is outdated. One way to avoid this is to ensure that a
topology update takes place immediately before any lane change. This is exactly what a human
driver would do: to recheck the surroundings immediately before a lane change. We proved that
for all runs in which topology updates take place before lane changes, formula Φg

safe is invariant
under all jumps. The detailed results are presented in the bottom rows of Figure 9.

7.3.3 Complexity

From the detailed run times in Figure 9, one can see that the locality-based reduction of the prob-
lem usually dominates the overall run time. The final satisfiability check with Z3 is much faster,
especially when the problem size increases. We could partially reduce the gap by adding several
optimizations to H-PILoT. The results reported in the table are thus an order of magnitude
faster than the ones we reported in [Damm et al., 2015].

Comparing runs with and without consideration of entry states, we can see that the analysis of
entry conditions and flows starting in an entry state is only marginally slower than the analysis
of initial conditions and general flows. For jumps and topology updates, on the other hand,
the additional flow formulae lead to larger ground problems, corresponding to larger potential
counter models (cf. Theorem 55). Of course, a similar effect also occurs when every jump is
preceded by an update.

45

without mode reachability with mode reachability
init flow jump update entry flow jump update

Φtop
safe unsat unsat unsat unsat unsat unsat unsat unsat verified

constants 11 43 141 19 11 43 206 51
reduction 0.028 0.072 0.460 0.024 0.028 0.060 2.224 0.108
SMT 0.008 0.020 0.050 0.012 0.004 0.000 0.072 0.020
total time 0.036 0.092 0.510 0.036 0.032 0.060 2.296 0.128

Φfront
safe unsat unsat unsat sat unsat unsat unsat unsat verified

constants 11 43 141 19 11 43 206 51
reduction 0.020 0.048 0.420 0.024 0.020 0.060 2.260 0.140
SMT 0.000 0.008 0.060 0.008 0.000 0.000 0.080 0.020
total time 0.020 0.056 0.480 0.032 0.020 0.060 2.340 0.160

Φg
safe unsat sat sat unsat unsat unsat sat unsat not verified

constants 9 33 131 15 9 33 191 39
reduction 0.012 0.028 0.692 0.020 0.020 0.044 2.372 0.100
SMT 0.012 0.004 0.048 0.000 0.000 0.012 0.292 0.000
total time 0.024 0.032 0.740 0.020 0.020 0.056 2.664 0.100

including forced topology updates before every jump

Φg
safe unsat sat unsat unsat unsat unsat unsat unsat verified

constants 9 33 155 15 9 33 215 39
reduction 0.012 0.032 2.240 0.016 0.016 0.040 4.784 0.072
SMT 0.008 0.012 0.070 0.012 0.012 0.010 0.144 0.020
total time 0.020 0.044 2.310 0.028 0.028 0.050 4.928 0.092

Figure 9: Verification times (in seconds) for the given safety properties and number of constants
of index type in the reduced satisfiability problem

8 Conclusions

8.1 Summary of results

We proved that safety properties with exhaustive entry conditions for spatial families of similar
linear hybrid automata can be verified efficiently: We reduced the proof task to invariant checking
for certain mode reachable states and analyzed the complexity of such problems. As a by-product,
we obtained a modularity result for checking safety properties. The results can also be used for
invariant checking (for this the information about mode reachability in the formulae is ignored).
The results we obtained are summarized in Figure 10.

The decidability and complexity results and the small model property were established under
Assumptions 1, 2(1), 3 (and possibly 4 for tractability). Similar results can also be obtained under
Assumption 2(2) or (3) (we did not present these situations explicitly in this paper because the
instances obtained due to the locality results are more complicated to describe (the instantiation
takes place in several steps); however it can be proved that the number of instances and the size
of T0 is still polynomial.

All decidability results directly translate to situations where the involved formulas do not
satisfy Assumptions 2 or 3 but belong to other fragments for which the theory extensions in
Theorem 31 are local or stably local; the complexity depends on the complexity of checking
satisfiability for formulae obtained after instantiation.

46

Safety of ΦEntry → �ΦSafe Exh. entry conds ΦEntry

Assumptions 1–3 Assumptions 1–4 Assumptions 1–3 Assumptions 1–4

Verification decidable decidable decidable decidable
(Thm. 33–47,56,57,58) NP fixed parameter NP fixed parameter

tractable tractable

Small model property yes yes yes yes
(Thm. 55)
Parametric verification decidable decidable decidable decidable
(Thm. 59)

non-param. coefficients/ NP fixed parameter NP fixed parameter
bounds flows: tractable tractable

parametric coefficients EXPTIME EXPTIME EXPTIME EXPTIME
parametric bounds flows EXPTIME EXPTIME EXPTIME EXPTIME

Parameter Synthesis EXPTIME EXPTIME EXPTIME EXPTIME
(Thm. 60)

Figure 10: Summary of Results

We would like to point out that although in this paper we refer to a countable set I of car
identities, due to the verification method we use the concrete identities of the cars are not
important. If we prove safety, then we prove it for any model (and thus for any possible index
set); if we cannot prove it then a counterexample gives us a possible index set for which the
safety propery fails (thus a set of possible identities of the cars for which we can construct a
counterexample to safety). On the other hand, fixing a set of car identities is not a restriction.
In all the models that can be obtained in case the formulae we consider are satisfiable, the index
sets are quotients (finite or countably infinite) of a countable set (which can for instance be
chosen to be I or the set of natural numbers); all countable models are isomorphic to this set (I
or the set of natural numbers). In the paper this is handled by introducing Skolem constants for
the indexes of the cars at which the safety condition might not hold. A model gives values for
these constants (in I or in N).

8.2 Plans for further work

Another important class of properties, related to timely completion of maneuvers, are bounded
reachability properties. They state that for every run starting in a suitable initial configuration
Φentry, a maneuver completion condition Φcomplete becomes true in a given bounded time frame.
Similar methods can be used for efficiently checking also this type of properties if we guarantee
that the number of jumps and topology updates in any fixed interval is bounded. We did not
include such considerations here in order to keep the presentation and the required logics simpler.

Acknowledgments. This work was partly supported by the German Research Council (DFG)
as part of the Transregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR 14 AVACS) www.avacs.org.

References

[Abdulla et al., 2013] Abdulla, P. A., Haziza, F., and Hoĺık, L. (2013). All for the price of few.
In Proc. VMCAI 2013, volume 7737 of LNCS, pages 476–495. Springer.

47

[Alur et al., 1996] Alur, R., Henzinger, T. A., and Ho, P. (1996). Automatic symbolic verification
of embedded systems. IEEE Trans. Software Eng., 22(3):181–201.

[Ben-Or et al., 1986] Ben-Or, M., Kozen, D., and Reif, J. H. (1986). The complexity of elemen-
tary algebra and geometry. J. Comput. Syst. Sci., 32(2):251–264.

[Collins, 1975] Collins, G. E. (1975). Hauptvortrag: Quantifier elimination for real closed fields
by cylindrical algebraic decomposition. In Barkhage, H., editor, Automata Theory and Formal
Languages, 2nd GI Conference, Kaiserslautern, May 20-23, 1975, volume 33 of Lecture Notes
in Computer Science, pages 134–183. Springer.

[Damm et al., 2015] Damm, W., Horbach, M., and Sofronie-Stokkermans, V. (2015). Decidabil-
ity of verification of safety properties of spatial families of linear hybrid automata. In Lutz,
C. and Ranise, S., editors, Frontiers of Combining Systems - 10th International Symposium,
FroCoS 2015, Wroclaw, Poland, September 21-24, 2015. Proceedings, volume 9322 of Lecture
Notes in Computer Science, pages 186–202. Springer.

[Damm et al., 2011] Damm, W., Ihlemann, C., and Sofronie-Stokkermans, V. (2011). PTIME
parametric verification of safety properties for reasonable linear hybrid automata. Mathematics
in Computer Science, 5(4):469–497.

[Damm et al., 2013] Damm, W., Peter, H., Rakow, J., and Westphal, B. (2013). Can we build it:
formal synthesis of control strategies for cooperative driver assistance systems. Mathematical
Structures in Computer Science, 23(4):676–725.

[de Moura and Bjørner, 2008] de Moura, L. M. and Bjørner, N. (2008). Z3: an efficient SMT
solver. In Proc. TACAS 2008, volume 4963 of LNCS, pages 337–340. Springer.

[Emerson and Srinivasan, 1990] Emerson, E. A. and Srinivasan, J. (1990). A decidable temporal
logic to reason about many processes. In Proc. PODC 1990, pages 233–246. ACM.

[Faber et al., 2010] Faber, J., Ihlemann, C., Jacobs, S., and Sofronie-Stokkermans, V. (2010).
Automatic verification of parametric specifications with complex topologies. In Proc. IFM
2010, volume 6396 of LNCS, pages 152–167. Springer.

[Frehse et al., 2008] Frehse, G., Jha, S. K., and Krogh, B. H. (2008). A counterexample-guided
approach to parameter synthesis for linear hybrid automata. In Proc. HSCC 2008, volume
4981 of LNCS, pages 187–200. Springer.

[Frese, 2010] Frese, C. (2010). A comparison of algorithms for planning cooperative motions of
cognitive automobiles. In Proc. 2010 Joint Workshop of Fraunhofer IOSB and Institute for
Anthropomatics, Vision and Fusion Laboratory, number IES-2010-06 in Karlsruher Schriften
zur Anthropomatik, vol. 7, pages 75–90. KIT Scientific Publishing.

[Frese and Beyerer, 2010] Frese, C. and Beyerer, J. (2010). Planning cooperative motions of
cognitive automobiles using tree search algorithms. In KI 2010, volume 6359 of LNCS, pages
91–98. Springer.

[Fribourg and Kühne, 2013] Fribourg, L. and Kühne, U. (2013). Parametric verification and
test coverage for hybrid automata using the inverse method. Int. J. Found. Comput. Sci.,
24(2):233–250.

[Henzinger et al., 2001] Henzinger, T. A., Minea, M., and Prabhu, V. S. (2001). Assume-
guarantee reasoning for hierarchical hybrid systems. In Benedetto, M. D. D. and Sangiovanni-
Vincentelli, A. L., editors, HSCC 2001, volume 2034 of LNCS, pages 275–290. Springer.

48

[Hilscher et al., 2011] Hilscher, M., Linker, S., Olderog, E., and Ravn, A. P. (2011). An abstract
model for proving safety of multi-lane traffic manoeuvres. In Proc. ICFEM 2011, volume 6991
of LNCS, pages 404–419. Springer.

[Hoeger et al., 2008] Hoeger, R., Amditis, A., Kunert, M., Hoess, A., Flemish, F., Krueger, H.-
P., Bartels, A., and Beutner, A. (2008). Highly automated vehicles for intelligent transport:
HAVEit approach. In ITS World Congress.

[Hungar et al., 1995] Hungar, H., Grumberg, O., and Damm, W. (1995). What if model checking
must be truly symbolic. In Proc. CHARME ’95, volume 987 of LNCS, pages 1–20. Springer.

[Ihlemann et al., 2008] Ihlemann, C., Jacobs, S., and Sofronie-Stokkermans, V. (2008). On lo-
cal reasoning in verification. In Proc. TACAS 2008, volume 4963 of LNCS, pages 265–281.
Springer.

[Ihlemann and Sofronie-Stokkermans, 2009] Ihlemann, C. and Sofronie-Stokkermans, V. (2009).
System description: H-PILoT. In Proc. CADE-22, volume 5663 of LNCS, pages 131–139.
Springer.

[Ihlemann and Sofronie-Stokkermans, 2010] Ihlemann, C. and Sofronie-Stokkermans, V. (2010).
On hierarchical reasoning in combinations of theories. In Proc. IJCAR 2010, volume 6173 of
LNCS, pages 30–45. Springer.

[Jacobs and Bloem, 2014] Jacobs, S. and Bloem, R. (2014). Parameterized synthesis. Logical
Methods in CS, 10(1).

[Jacobs and Kuncak, 2011] Jacobs, S. and Kuncak, V. (2011). Towards complete reasoning
about axiomatic specifications. In Proc. VMCAI 2011, volume 6538 of LNCS, pages 278–
293. Springer.

[Johnson and Mitra, 2012a] Johnson, T. T. and Mitra, S. (2012a). Parametrized verification of
distributed cyber-physical systems: An aircraft landing protocol case study. In Proc. CPS
2012, pages 161–170. IEEE.

[Johnson and Mitra, 2012b] Johnson, T. T. and Mitra, S. (2012b). A small model theorem for
rectangular hybrid automata networks. In Proc. FTDS 2012, volume 7273 of LNCS, pages
18–34. Springer.

[Kaiser et al., 2010] Kaiser, A., Kroening, D., and Wahl, T. (2010). Dynamic cutoff detection
in parameterized concurrent programs. In CAV 22, volume 6174 of LNCS, pages 645–659.
Springer.

[Khachian, 1979] Khachian, L. (1979). A polynomial time algorithm for linear programming.
Soviet Math. Dokl., 20:191–194.

[Koubarakis, 2001] Koubarakis, M. (2001). Tractable disjunctions of linear constraints: basic
results and applications to temporal reasoning. Theo. Comp. Sci., 266(1-2):311–339.

[Krawez, 2012] Krawez, M. (2012). Model generation in local theory extensions and applications
to verification. BSc Thesis, University Koblenz-Landau.

[McPeak and Necula, 2005] McPeak, S. and Necula, G. C. (2005). Data structure specifications
via local equality axioms. In Proc. CAV 2005, volume 3576 of LNCS, pages 476–490. Springer.

49

[Mickelin et al., 2014] Mickelin, O., Ozay, N., and Murray, R. M. (2014). Synthesis of correct-
by-construction control protocols for hybrid systems using partial state information. In Proc.
ACC 2014, pages 2305–2311. IEEE.

[Nebel and Bürckert, 1995] Nebel, B. and Bürckert, H.-J. (1995). Reasoning about temporal
relations: A maximal tractable subclass of Allen’s interval algebra. J. of the ACM, 42(1):43–
66.

[Platzer, 2008] Platzer, A. (2008). Differential dynamic logic for hybrid systems. J. Autom.
Reasoning, 41(2):143–189.

[Platzer, 2010] Platzer, A. (2010). Quantified differential dynamic logic for distributed hybrid
systems. In Proc. CSL 2010, volume 6247 of LNCS, pages 469–483. Springer.

[Sofronie-Stokkermans, 2005] Sofronie-Stokkermans, V. (2005). Hierarchic reasoning in local
theory extensions. In Proc. CADE-20, volume 3632 of LNCS, pages 219–234. Springer.

[Sofronie-Stokkermans, 2009] Sofronie-Stokkermans, V. (2009). Sheaves and geometric logic and
applications to modular verification of complex systems. Electr. Notes Theor. Comput. Sci.,
230:161–187.

[Sofronie-Stokkermans, 2010] Sofronie-Stokkermans, V. (2010). Hierarchical reasoning for the
verification of parametric systems. In Proc. IJCAR 2010, volume 6173 of LNCS, pages 171–
187. Springer.

[Sofronie-Stokkermans, 2013] Sofronie-Stokkermans, V. (2013). Hierarchical reasoning and
model generation for the verification of parametric hybrid systems. In Proc. CADE-24, volume
7898 of LNCS, pages 360–376. Springer.

[Sontag, 1985] Sontag, E. (1985). Real addition and the polynomial hierarchy. Inf. Proc. Letters,
20(3):115–120.

50

	1 Introduction
	1.1 Related work
	1.2 Paper Structure

	2 Spatial Families of Hybrid Automata
	2.1 The language.
	2.2 Component systems.
	2.3 Topology
	2.3.1 Topology automata
	2.3.2 Timed topology automata

	2.4 Spatial family of hybrid automata

	3 Verification Tasks
	3.1 Safety properties
	3.1.1 Safety properties with exhaustive entry conditions
	3.1.2 Reduction to GMR invariant checking
	3.1.3 Safety properties with GMR-exhaustive entry conditions

	3.2 Reducing verification tasks to satisfiability checking
	3.2.1 Sequentializing parallel jumps
	3.2.2 Verification of safety properties and satisfiability checking
	3.2.3 Checking exhaustive entry conditions

	4 Automated Reasoning
	4.1 Local theory extensions
	4.2 Hierarchical reasoning in local theory extensions
	4.3 Examples of local theories and theory extensions
	4.3.1 Update rules
	4.3.2 A theory of pointers

	4.4 Chains of local theory extensions

	5 Verification: Decidability and Complexity
	5.1 Verification tasks: Chains of local theory extensions
	5.2 Verification of safety properties.
	5.2.1 Entry conditions
	5.2.2 Flows
	5.2.3 Jumps
	5.2.4 Topology updates

	5.3 Checking exhaustive entry conditions

	6 Consequences of Locality
	6.1 A small model property
	6.2 Decidability, Complexity

	7 Tool Support
	7.1 Input syntax
	7.2 System architecture
	7.3 Experiments
	7.3.1 Decision Problems
	7.3.2 Model generation
	7.3.3 Complexity

	8 Conclusions
	8.1 Summary of results
	8.2 Plans for further work

