
ar
X

iv
:1

50
2.

05
50

1v
1

 [
cs

.L
O

]
 1

9
Fe

b
20

15

NRCL - A Model Building Approach to

the Bernays-Schönfinkel Fragment

(Full Paper)

Gábor Alagi1,2 and Christoph Weidenbach2

1 Saarland University, Saarbrücken, Germany
2 Max-Planck-Institut für Informatik, Saarbrücken, Germany

{galagi, weidenbach}@mpi-inf.mpg.de

Abstract

We combine key ideas from first-order superposition and propositional

CDCL to create the new calculus NRCL deciding the Bernays-Schönfinkel

fragment. It inherits the abstract redundancy criterion and the monotone

model operator from superposition. CDCL adds to NRCL the dynamic,

conflict-driven search for an atom ordering inducing a model. As a result,

in NRCL a false clause can be effectively found modulo the current model

assumption. It guides the derivation of a first-order ordered resolvent

that is never redundant. Similar to 1UIP-learning in CDCL, the learned

resolvent induces backtracking and via propagation blocks the previous

conflict state for the rest of the search. Since learned clauses are never

redundant, only finitely many can be generated by NRCL on the Bernays-

Schönfinkel fragment, which provides a nice argument for termination.

1 Introduction

The Bernays-Schönfinkel fragment, also called Effectively Propositional frag-
ment, or BS (or EPR) for short, is a meaningful and important fragment of
classic first-order logic, where only constants are allowed as function symbols in
the clause normal form.

This decidable and NEXPTIME-complete fragment has many applications,
and over the years a number of calculi attempted to provide an efficient solu-
tion for BS problems. These approaches range from the early SEM and Mace
systems [31] to the recent state-of-the-art solvers like iProver [14] and Dar-
win [7], but even general purpose first-order theorem provers provide specialized
techniques for BS problems, like generalisation in Vampire [25], or specialized
splitting techniques for SPASS introduced in [16] and [13].

In this paper, we give a brief introduction to our on-going research on solving
BS problems with iterative model building. Our approach aims to work on full-
fledged first-order candidate models instead of approximations, uses constrained
literals for model representation, and learns new clauses to guide the search.

Our calculus, called NRCL or Non-Redundant Clause Learning, shares many
principles with propositional SAT solving and superposition. For a detailed

1

http://arxiv.org/abs/1502.05501v1

introduction to conflict-driven clause learning (CDCL), see the early article
[29], or the more recent handbook [8]. The interested reader can get a thorough
overview of superposition in the articles [3][4][32][2][23].

The most closely related existing system is DPLL(SX) [27], a calculus aiming
to lift the propositional CDCL algorithm through representing sets of clause
ground instances with substitution sets.

Compared to DPLL(SX), our formulation depends less on the concrete con-
straint language, our choice of dismatching constraints provides more compact
representations, and we address redundancy as well. In particular, we prove
that our learned clauses are not subject to any ordering-independent redun-
dancy criterion, e.g. they cannot be subsumed by previously derived clauses.

Finally, the recent calculus SGGS [9] introduces a model based and seman-
tically guided approach. It uses a simpler constraint language and constrained
clauses to represent model candidates, and resolves conflicts by repairing the cur-
rent model assumption through splitting and resolving the constrained clauses
in the current representation.

Compared to SGGS, we use a more expressive constraint language, our
model representation is more explicit, and our search is guided by learning
non-redundant clauses.

In the rest of the paper, we first introduce some basic definitions and notions
in Section 2, followed by a description of our calculus in Section 3. Section 4
establishes its soundness, while, after introducing some regularity conditions in
Section 5, we provide our key result, namely non-redundant clause learning, in
Section 6. We then prove termination in Section 7.

In Section 8, we specify some details on handling constraints, and basic
heuristics for a future implementation. We compare our calculus to the existing
literature in more details in Section 9. Finally, Section 10 provides a summary
and outlines future work.

2 Preliminaries

2.1 Basic Definitions

We assume the reader is familiar with first-order logic, its syntax, and its se-
mantics. We denote the finite signature by Σ, the set of predicate symbols by
Pr, and the set of function symbols by Fn. For a literal L, |L| denotes the atom
contained by L.

This paper handles the special case of the Bernays-Schönfinkel fragment, or
BS for short. In this case the only functions allowed in the clause normal form
are constants, and we call their set the domain and denote it by D.

We denote the set of all first-order atoms over a signature Σ and a possibly
infinite set of variables X by AΣ(X). In particular the set of ground atoms
is denoted by AΣ, a short-hand for AΣ(∅). In general, we denote the ground
instances of an expression - a term, literal, or clause - e over the domain D by
the notation gnd(e).

W.l.o.g., we assume that each independent expression is variable disjoint,
and we call a variable fresh if it does not occur in any expression - e.g. clause
or clause set - of the current context.

2

We consider substitutions in the usual way, and for a substitution σ, dom(σ)
denotes the domain of σ, i.e. the finite set of variables with x 6= xσ, and rng(σ)
denotes the range of σ, i.e. the image of dom(σ) w.r.t. σ.

We assume the reader is familiar with most general unifiers, and mgu is
used to denote the result of unifying two or more expressions or substitutions.
We use the short-hand ∃σ = mgu(e1, e2) to both state the existence of a most
general unifier and bind σ to one such substitution.

The ordering ≥ expresses that the larger expression or substitution is an
instance of the smaller one, i.e. e1 ≥ e2 if and only if there is a substitution
σ such that e1 = e2σ. In the latter case we also say that e2 can be matched
against e1.

We represent a first-order interpretation I with the set {A ∈ AΣ | I |= A}.
We define satisfiability and semantic consequence as usual.

In particular, we consider the problem of deciding whether a finite clause set
N over a BS language Σ without equality is satisfiable. This problem is known
to be NEXPTIME-complete [21].

2.2 Constraints and Constrained Literals

Next, we provide details about the constraint language we use. Our constraints
are essentially implicit generalizations, a constraint language for representing
terms and models with exceptions. It has applications in inductive learning,
logic programming and term rewriting. For more details see e.g. [11][20].

The name dismatching constraints was chosen in the spirit of iProver[18],
although for our purposes checking satisfiability has to be carried out over the
ground instances and thus, the linear-time algorithm of iProver based on match-
ing is not applicable.

While implicit generalizations maintain a list of literals with fresh variables
representing exceptions for the literal constrained, dismatching constraints ex-
tract the arguments of the literals and represent the restrictions as conjunctions
of disequations to allow more simplification and a more compact representation.
In particular, we maintain a strict normal form, which already assumes most
inexpensive simplifications.

Definition 2.1 (Dismatching Constraint) A dismatching constraint π is of
the form

∧i∈I ~si 6= ~ti

where I is a finite set of indices, and for each i ∈ I, ~si and ~ti are tuples of
terms of the same dimension.

Furthermore, we assume that all the left-hand side variables in π differ from
any right-hand side variable, and for each i, j ∈ I, ~ti and ~tj are variable disjoint
whenever i differs from j.

We further extend the set of constraints with the constants ⊤, ⊥ representing
the tautological and the unsatisfiable constraint, respectively.

Finally, an atomic constraint ~s 6= ~t occurring in π is also called a subcon-
straint of π.

To enforce a normal form, we make further assumptions below.

Definition 2.2 (Normal Form) We say a constraint π = ∧i∈I ~si 6= ~ti is in
normal form iff the following conditions hold:

3

(C1) each ~si contains only variables

(C2) no variable occurs more than once in any left-hand side ~si

A simple consequence of the normal form is that the two sides of any sub-
constraint ~s 6= ~t are always unifiable, and the induced substitution {~s ← ~t} is
always well-defined and matches the left-hand side against the right-hand side.

Definition 2.3 (Induced Substitutions) The set of induced substitutions
of a dismatching constraint π in normal form is the set given by

{{~si ← ~ti} | i ∈ I}

if π = ∧i∈I ~si 6= ~ti. For ⊥, we define it as the set containing only the identity,
and for ⊤ as the empty set.

We define lvar(π) and rvar(π) as the set of the left-hand side and right-
hand side variables of some dismatching constraint π, respectively. Then the
semantics for our constraints can be given as below.

Definition 2.4 A solution of a constraint π over some variable set V , which
contains lvar(π) but contains no variable from rvar(π), is a ground substitution
δ : V → D such that no ~ti can be matched against the respective ~siδ, i.e. no ~siδ
is an instance of the respective ~ti.

In particular, if π = ⊤, any such grounding substitution is a solution, and
π = ⊥ has no solution at all.

As usual, π is called satisfiable and unsatisfiable if it has a solution or no solution,
respectively. We note that the notion of satisfiability depends only on lvar(π).

Example 2.5 Consider the domain D = {a, b} and the constraint

π = (x, y) 6= (v, v) ∧ y 6= a

Then π is satisfiable and the ground substitution σ = {x← a, y ← b} is the only
solution of π (over V = {x, y}).

Remark 2.6 It can be shown that a ground substitution δ : V → D with
lvar(π) ⊆ V is not a solution of π if and only if there is an induced substi-
tution σ which is more general than δ.

Definition 2.7 Let π and π′ denote constraints for which both

• lvar(π) ∩ rvar(π′) = ∅, and

• lvar(π′) ∩ rvar(π) = ∅

hold. Such constraints are called equivalent iff their sets of solutions coincide
for any V such that lvar(π) ∪ lvar(π′) ⊆ V , and both V ∩ rvar(π) = ∅ and
V ∩ rvar(π′) = ∅.

4

Normal Form Transformation

Next, we show that any dismatching constraint of the form ∧i∈I ~si 6= ~ti can be
normalized in polynomial time. This can be achieved with the rule set below,
given as rewriting rules over the subconstraints.

1. (~s1, a, ~s2) 6= (~t1, a,~t2)⇒ (~s1, ~s2) 6= (~t1,~t2), where a ∈ D

2. (~s1, a, ~s2) 6= (~t1, b,~t2)⇒ ⊤, where a 6= b ∈ D

3. (~s1, a, ~s2) 6= (~t1, x,~t2)⇒ (~s1, ~s2) 6= (~t1,~t2)σ, where a ∈ D, σ = {x← a}

4. () 6= ()⇒ ⊥

5. (~s1, x, ~s2, x, ~s3) 6= (~t1, r1,~t2, r2,~t3) ⇒ (~s1, x, ~s2, ~s3) 6= (~t1, r1,~t2,~t3)σ, if
∃σ = mgu(r1, r2)

6. (~s1, x, ~s2, x, ~s3) 6= (~t1, r1,~t2, r2,~t3)⇒ ⊤, if ∄mgu(r1, r2)

7. ~s 6= ~t⇒ ⊥, if ~t can be matched against ~s

8. (~s1, ~s2) 6= (~t1,~t2)⇒ ~s1 6= ~t1, if var(~t1)∩var(~t2) = ∅, and ~t2 can be matched
against ~s2

Where the last rule is considered modulo permutations of positions correspond-
ing to the (~s1, ~s2)-partitionings.

Example 2.8 Let us normalize the following constraint:

(x, a, y, x) 6= (b, v, w, w) ∧ (x, a, y, x) 6= (w0, w0, v0, t0)

For the first subconstraint we get

(x, a, y, x) 6= (b, v, w, w)
(3)
⇒ (x, y, x) 6= (b, w, w)

(4)
⇒ (x, y) 6= (b, b)

and for the second one

(x, a, y, x) 6= (w0, w0, v0, t0)
(4)
⇒ (x, a, y) 6= (w0, w0, v0)

(3)
⇒ (x, y) 6= (a, v0)

(8)
⇒ x 6= a

Thus, the normalized constraint is

(x, y) 6= (b, b) ∧ x 6= a

Applying these rules together with the usual rules for conjunction and the con-
stants ⊥,⊤

1. preserves the variable disjointness conditions of Definition 2.1

2. preserves solutions, i.e. the left-hand side and right-hand side constraints
are equivalent

3. transforms π into normal form in polynomial time

We note that the rules (7) and (8) are optional, and that (7) is a special case
of (8).

Therefore, w.l.o.g. we might assume that the constraints are always in nor-
mal form, and the result of any operation is transformed into normal form with-
out explicitly expressing it. We also express it by using the notation ∧i∈I ~xi 6= ~ti
for dismatching constraints in the rest of the paper.

5

Constrained Literals

Next, we define literals constrained with dismatching constraints in normal form,
and give their semantics as sets of ground literals.

Definition 2.9 (Constrained Literal) We call the pair (L;π) of a literal L
and a dismatching constraint π such that both lvar(π) ⊆ var(L) and rvar(π) ∩
var(L) = ∅ hold a constrained literal.

The semantics of constrained literals is given by the following definition of
the set of covered literals:

gnd(L;π) = {Lδ | δ : var(L)→ D s.t. ∀i ∈ I : ∄mgu(~xiδ,~ti)}

where π = ∧i∈I~xi 6= ~ti. A ground literal L′ is covered by a constrained literal
(L;π) iff L′ ∈ gnd(L;π).

We say that a constrained literal (L;π) is empty if it covers no ground
literals, i.e. gnd(L;π) is empty.

It is easy to see that (L;π) is empty if and only if π is unsatisfiable, and
that given a solution δ of π over lvar(π), for any extension δ′ of δ to var(L),
Lδ′ ∈ gnd(L;π) holds.

Example 2.10 Let (L;π) = (P (x, y); (x, y) 6= (v, v) ∧ x 6= a ∧ y 6= b). Then
the set of covered literal over the domain D2 = {a, b} is

gnd(L;π) = {P (b, a)}

and if we take D3 = {a, b, c} instead, it is

gnd(L;π) = {P (b, a), P (c, a), P (b, c)}

In the rest of the paper we make some further assumptions as common in au-
tomated reasoning:

1. Different constrained literals are variable disjoint, unless stated otherwise.

2. Apart from normal form transformations, for any substitution σ applied
to a constrained literal (L;π), the following always hold unless stated
otherwise:

• dom(σ) ∩ rvar(π) = ∅

• var(rng(σ)) ∩ rvar(π) = ∅

Constrained Clauses

Occasionally, we have to represent a collection of ground clauses by a constrained
clause (C;π). Extending the notations and semantics for constrained literals to
constrained clauses is straightforward.

Furthermore, we might use the notation (C;σ;π) for the constrained clause
(Cσ;π), whenever we wish to explicitly separate in notation C and σ.

We only note that during resolving away literals from C, we might get to a
state where lvar(π) contains variables not occurring in C. See the constrained
unit clause

(P (y, z); (x, y) 6= (v, v) ∧ (x, z) 6= (w,w))

6

from Example 8.1 for a demonstration.
For semantic purposes, these free variables are considered existential vari-

ables. We assume that such variables are eliminated through instantiation, see
Section 8 for further details.

2.3 Operations on Constrained Literals

In the context of our calculus, three operations are of significance: conjunction,
difference, and checking whether a constrained literal is empty.

Conjunction is used whenever we try to unify two constrained literals, e.g.
during learning a new clause via resolution.

Difference is needed when we remove already defined literals ensuring that
a new assignment only defines new values.

Finally, emptiness is tested overall in the calculus to ensure that a new
assignment indeed defines the value of at least one ground atom.

In the literature checking emptiness also relates to sufficient completeness
and negation elimination and it is known to be a co-NP-complete problem [20]
in the case of finitely many function symbols and infinite Herbrand universe.

This complexity result also holds for our setting - one might take a binary do-
main with true and false, and then each atomic constraint with constant right-
hand side can be seen as clauses with the left-hand side variables as propositional
variables, and the emptiness of the whole constraint as the unsatisfiability of
this clause set.

In this section, we propose an enumeration-based algorithm to solve empti-
ness. We believe it will scale better in our context compared to other solutions.

Conjunction

For two constrained literals (L1;π1), (L2;π2) with the same polarity and pred-
icate symbol, we look for a constrained literal (L;π) for which

gnd(L;π) = gnd(L1;π1) ∩ gnd(L2;π2)

holds. If the two literals are unifiable, such a literal exists. Otherwise, any
empty constrained literal can be chosen.

Definition 2.11 (Conjunction) Let as the define and denote the conjunction
of two constrained literals (L1;π1), (L2;π2) as

(L1;π1) ∧ (L2;π2) = (L1σ;π1σ ∧ π2σ)

if ∃σ = mgu(L1, L2). If the literals are not unifiable, we define it as the empty
(L1;⊥).

This definition is sound, i.e.

Lemma 2.12 For any unifiable constrained literals (L1;π1), (L2;π2),

gnd(L1;π1) ∩ gnd(L2;π2) = gnd(L1σ;π1σ ∧ π2σ)

holds, where σ = mgu(L1, L2).

7

Proof:
(⊆): Consider a ground literal from gnd(L1;π1) ∩ gnd(L2;π2), and w.l.o.g.

assume it has the form L1δ. Then L1δ ≥ Li holds for both i = 1, 2.
Thus, δ = σǫ for some substitution ǫ. Since L1δ ∈ gnd(Li;πi), πiσǫ must be

true (i = 1, 2). But then L1δ ≥ L1σ, and L1δ = (L1σ)ǫ ∈ gnd(L1σ;π1σ ∧ π2σ)
both hold.

(⊇): Now, assume that (L1σ)ǫ is a literal from gnd(L1σ;π1σ ∧ π2σ). Then,
since σ is the most general unifier, we know that L1σǫ ≥ Li hold for both
i = 1, 2. Furthermore, πiσǫ is true (i = 1, 2), and thus, L1σǫ ∈ gnd(L1;π1) and
L1σǫ = L2σǫ ∈ gnd(L2;π2). Qed.

We note that the case when no unifier exists is trivial.

Example 2.13 Consider the following constrained literals

• (L;π) = (P (x, y); (x, y) 6= (v, v) ∧ x 6= a ∧ y 6= b)

• (L′;π′) = (P (z, a); z 6= b)

Then according to the definition above

(L;π) ∧ (L′;π′) = (P (z, a); (z, a) 6= (v, v) ∧ z 6= a ∧ a 6= b ∧ z 6= b)

which can be simplified to

(P (z, a); z 6= a ∧ z 6= b)

This expression is empty over D2 = {a, b}, and covers exactly the atom P (c, a)
over D3 = {a, b, c}.

Difference

The difference, or relative difference, (L;π) of two constrained literals (L1;π1),
(L2;π2) satisfies

gnd(L;π) = gnd(L1;π1)− gnd(L2;π2)

Again, if the two literals are unifiable, such a π does exist for any finite
domain - in the worst case we just add ground constraints to rule out the disal-
lowed atoms. However, this operation might increase the size of π exponentially,
as demonstrated by the example below.

Example 2.14 Consider the difference

(L(x1, x2, x3);⊤)− (L(x1, x2, x3);∧
3
i=1 xi 6= a)

where arity(L) = 3. If D2 = {a, b}, we might get the still simple expression

(L(x1, x2, x3); (x1, x2, x3) 6= (b, b, b))

However, if D3 = {a, b, c}, the best we can get is

(L(x1, x2, x3); (x1, x2, x3) 6= (b, b, b) ∧ (x1, x2, x3) 6= (c, b, b) ∧ · · · 6= (c, c, c))

It is easy to see that in general, if |D| = n with a ∈ D, and arity(L) = r, the
size of the resulting constraint is O((n − 1)r).

8

Alternatively, one might take a set of disjoint constrained literals describing
the difference as follows. First, take the simpler case when L1 and L2 are
the same literal L, and consider the difference (L;π1) − (L;π2). Assume π1 =
∧i∈I1

νi, π2 = ∧i∈I2
ηi, and {σi | i ∈ I2} is the set of induced substitutions for

π2. Then, the constrained literal set

{(Lσi;π1σi) | i ∈ I2}

describes the difference, i.e.

Lemma 2.15
⋃

i∈I2

gnd(Lσi;π1σi) = gnd(L;π1)− gnd(L;π2)

Proof:
(⊇): Assume Lδ ∈ (gnd(L;π1) − gnd(L;π2)). Since Lδ /∈ gnd(L;π2), a

subconstraint ηi ∈ π2 must be violated, i.e. for some i ∈ I2, ηiδ = ⊥.
Then, by the earlier Remark 2.6, δ ≥ σi where σi is the corresponding

induced substitution. Thus, δ = σiξ for some substitution ξ. Finally, since
π1δ = (π1σi)ξ, Lδ ∈ gnd(Lσi;π1σi) must hold.

(⊆): Now, assume (Lσi)ξ ∈ gnd(Lσi;π1σi) for some i ∈ I2 and grounding
substitution ξ. Then, we know that π1σiξ = ⊤, and that π2σiξ = ⊥ since
ηiσiξ = ⊥. Thus, Lσiξ ∈ (gnd(L;π1)− gnd(L;π2)). Qed.

However, this set is not pairwise disjoint, and therefore a further step is needed
for our purposes.

Lemma 2.16 W.l.o.g. assume I2 = {1, . . . , l}, and take

{(Lσi;π1σi ∧ η1σi ∧ η2σi ∧ · · · ∧ ηi−1σi) | i = 1, . . . , l}

Then this set still describes the difference and its elements are pairwise disjoint.

Proof: We only prove one inclusion, as the other direction is analogous to the
first proof, and disjointness trivially follows form the definition of the set.

(⊇): Assume Lδ is a ground literal from the difference. Thus, π1δ = ⊤ and
ηiδ = ⊥ for at least one i ∈ I2. Let i be the smallest (left-most) such index.

Then, δ ≥ σi must hold along with ηjδ = ⊤ for each j < i from I2. Thus,
Lδ ∈ gnd(Lσi;π1σi ∧ η1σi ∧ η2σi ∧ · · · ∧ ηi−1σi). Qed.

We also note that the above manipulations preserve the variable disjointness
of the left-hand and right-hand sides.

Example 2.17 Carrying on with example 2.14 above, we have I2 = {1, 2, 3},
ηi : xi 6= a and σi = {xi ← a}, which gives

{(L(a, x2, x3);⊤), (L(x1, a, x3);x1 6= a), (L(x1, x2, a);x1 6= a ∧ x2 6= a)}

as a result.

Let |π| denote the size of π. Then, this operation introduces O(|I2|) atoms
with a maximal constraint size of O(|π1| + |π2|) in general. This gives a total
size of O(2|π∗|2) where |π∗| = max{|π1|, |π2|}. Clearly, it is independent of the
domain size.

9

Lemma 2.18 Finally, if L1 6= L2, but mgu(L1, L2) = δ exists (otherwise the
difference is (L1;π1)), and ~u denotes the argument of the top symbol in L1, we
get the desired set by adding

(L1;π1 ∧ ~u 6= ~uδρ)

to the set (L1δ;π1δ)− (L2δ;π2δ) where the variable renaming ρ introduces fresh
variables for the variables in ~uδ.

Proof: The literals in gnd(L1;π1) can be divided into two disjoint group
based on whether they are instances of L2 or not.

Those that are no instances of L2 are covered by the proposed constrained
literal (L1;π1 ∧ ~u 6= ~uδρ). Clearly, each such literal is in the difference.

The common instances are covered by (L1δ;π1δ). From these literals we
have to remove those which are covered by (L2;π2) as well. Clearly, it is enough
to compute the difference (L1δ;π1δ)− (L2δ;π2δ).

The resulting set together with (L1;π1∧~u 6= ~uδρ) covers exactly the elements
of the difference. Qed.

It is easy to see that the proofs above hold even if some of the constraints
are the constants ⊥ or ⊤, and our definition of induced substitutions in the case
of constants supports the proofs.

The disadvantage of the second method is the fragmentation of the con-
strained literal, especially since after every time we derive a new assignment we
have to subtract each unifiable already defined literal.

Remark 2.19 Whenever we compute a difference and get a set of literals as a
result, we carry on working with the literals separately.

We could extend our constraint language to handle a set of constrained lit-
erals as a single expression. In the literature the corresponding constraints are
called disjunctive implicit generalizations, see e.g. [26] for details.

Checking Emptiness

The problem of deciding whether a constrained literal is empty. As we men-
tioned before, this is equivalent with the unsatisfiability of the corresponding
constraint.

This is in general a co-NP-complete problem [11][20]. Lassez and Marriott
proposes an algorithm for computing explicit representation in [20], which can
be used for determining emptiness as well. Their algorithm is based on generat-
ing disjoint partitions of instances by instantiating a single variable with every
possible function symbol at every step.

We also note that emptiness over a finite domain can be encoded as a proposi-
tional satisfiability problem, and as such, can be solved with any state-of-the-art
CDCL solver.

We propose here an enumeration-based algorithm. Assume D = {a1, . . . , an}
is ordered by >, and an > an−1 > · · · > a0. For a constrained literal (L;π) with
left-hand side variables x1, . . . , xk, we find a solution (c1, c2, . . . , ck) denoting
{xj ← cj | j = 1, . . . , k} by enumerating the possible assignments starting with
(a0, a0, . . . , a0).

If for an intermediate assignment (c1, c2, . . . , ck) the subconstraint ~x 6= ~t ∈ π
is false, then we increase the value of the right-most position involved in ~x. If

10

it is already an, we reset it to a0 and increase the next involved variable to the
left.

If no further increase is possible, there is no solution. If we get a solution
for ~x 6= ~t, we pick the left-most involved variable which we changed, and reset
all non-~x variables to a0.

By repeating the above steps, we either get a solution satisfying π, or attempt
to increase beyond (an, an, . . . , an), proving the unsatisfiability of the constraint.

Besides simplicity, this algorithm also has the advantage that the solution
might be reusable in operations. We only need to make sure that the solutions
for the operands are comparable in the sense that they denote the minimal
solutions of the respective constraints w.r.t. the same ordering over the possible
assignments.

This can be ensured by ordering the variables based on their left-most oc-
currence. This way, the solutions of any two non-empty constrained literals
with the same predicate symbol are comparable by taking the arguments of the
ground literals representing the solutions.

Then, it is enough to consider substitution and adding new subconstraints
as primitive operations. Both meet and difference builds upon these steps.

When applying a substitution σ, we check if the current solution satisfies the
positive equality constraints induced by σ. If yes, then we apply the substitution
and keep this solution.

Otherwise, we keep enumerating by always checking the positive conditions
first. If we find an assignment satisfying both π and σ, we apply σ and save the
new solutions. If no solutions to be found, the new constrained literal is empty.

When extending π with a new subconstraint ~x 6= ~t, we simply continue the
enumeration with the current solution and the extended constraint π ∧ ~x 6= ~t.

2.4 Model Representation

Model Candidate

On the course of this paper, we represent a model candidate, also called a model
assumption, as a set Γ of constrained literals.

Definition 2.20 A set of constrained literals Γ is called consistent if there is
no ground atom covered by both a positive and a negative literal from Γ.

Γ is strongly consistent if its elements are pairwise disjoint w.r.t. covering
atoms, i.e. for all different (L;π), (L′;π′) ∈ Γ, gnd(|L|;π) ∩ gnd(|L′|;π′) = ∅.

We consider only strongly consistent sets in this paper.

Definition 2.21 (Induced Interpretation) The set of positive constrained
literals in Γ is denoted by Γ+. Then the first-order interpretation IΓ induced
by Γ is given as

IΓ =
⋃

(L;π)∈Γ+

gnd(L;π)

Trail

NRCL attempts to lift the classic CDCL, and as such, it uses a sequence of
literals to store the current partial model assumption.

11

This trail in our case is a sequence of annotated constrained literals. We
retain the notation Γ, and extend all our definitions and operations for sets of
constrained literals to trails as well. We call the elements of Γ assignments, as
they define truth-values of ground atoms.

Literals in Γ are either decision or deduced literals. Decisions are annotated
with a unique positive integer, with (L;π)i representing the ith decision in Γ.
Deduced literals are annotated with their reasons, a first-order clause from the
current clause set. On the course of the paper, α is used to denote an arbitrary
annotation, C to denote a reason clause, and k, l, i to denote decision levels.

We define the value of a ground literal or ground clause true, false, or unde-
fined under Γ in the usual sense. In particular, a ground literal L′ is defined by
a constrained literal (L;π) ∈ Γ, iff |L′| ∈ gnd(|L|;π). If such an (L;π) exists,
we also say that Γ defines L′.

A set of ground clauses represented by the constrained clause (C;π) is true
or false in Γ, if all or none of the covered ground instances are true, or false,
respectively. The notion of defined by Γ can be extended to constrained clauses
similarly.

The level lvl(L) of a ground literal L w.r.t. the trail Γ is defined as usual: if
Γ defines a value for L, it is the annotation of the right-most decision on the left
of the constrained literal responsible for the assignment, and zero if no decision
precedes it.

If k is the level of a literal, we might also say the literal is of level k. We call
the largest level occurring in a trail the top-level, and also the level of the trail.
If no decision occurs in the trail, it is considered 0.

Following the terminology of SAT solvers, we call a ground clause assertive
iff it is false w.r.t. the current trail and contains exactly one top-level literal.

Finally, we say a first-order clause C or a constrained clause (Cσ;π) is as-
sertive iff gnd(C), and gnd(Cσ;π) contains at least one assertive ground clause,
respectively.

Induced Abstraction

Using Γ to define truth-values for groups of ground atoms represented by con-
strained literals can also be seen as providing a propositional abstraction and
an abstract partial interpretation.

In this context, our calculus can be seen as a fine-grained abstraction-
refinement algorithm, which interleaves refinement and abstract model search,
and let the clauses and decision heuristics guide the implicit abstraction and
refinement steps.

Below, we provide the related definitions and use these later to define our
induced ordering. Beyond this, we do not take any advantage of this connection.
Further investigation this direction and utilizing existing results for abstraction-
refinement-based procedures is left for future work.

We call a set of positive constrained literals Φ an abstraction. An abstraction
Φ provides a (partial) partitioning of AΣ, and by identifying its elements with
propositional atoms, we can assign a propositional abstraction to our clause set
N.

These propositional atoms are called abstract atoms. The notions abstract
literal and abstract clause are the corresponding syntactic expressions built from

12

abstract atoms. We use the abstraction function defΦ, or simply def, to assign
the set of abstract expressions to literals or clauses w.r.t. an abstraction Φ.

Then an abstract interpretation over an abstraction Φ is simply a proposi-
tional interpretation over the corresponding abstract atoms.

If the totality of defΦ is needed, we identify uncovered ground atoms with
the unique abstract atom ⊥, and the domain of the interpretation is extended
accordingly.

The abstraction ΦΓ induced by Γ is defined as

ΦΓ = |Γ| = {(|L|;π) | (L;π) ∈ Γ}

If Γ is strongly consistent, ΦΓ is always consistent, i.e. any ground atom is
covered by at most one element of Φ.

Γ can be seen as defining an abstract interpretation over ΦΓ assigning truth-
values to abstract atoms based on the polarity of the corresponding constrained
literals in Γ, and undef to the abstract atom ⊥.

2.5 Induced Ordering

In the followings, let < denote a given well-founded total ordering over ground
expressions - atoms, literals and clauses. Furthermore, let Γ denote a strongly
consistent trail.

Definition 2.22 The abstraction function def defined by Γ is given as

def(P) =

{

(L;π) if (L;π) ∈ Γ and (L;π) defines P
⊥ if no such (L;π) ∈ Γ exists

for each P ∈ AΣ.

def can be extended to ground literals and clauses in the usual manner.

Definition 2.23 The precedence ordering <Γ
p (<p) defined by Γ, is the ordering

over the constrained literals in Γ defined by their position in Γ, i.e.
(L1;π1) <p (L2;π2) iff

Γ = Γ1, (L1;π1)
α1 ,Γ2, (L2;π2)

α2 ,Γ3

for some Γ1,Γ2,Γ3 and annotations α1, α2.
We extend the ordering to Γ∪{⊥} with ⊥ as maximal element. Finally, this

ordering can be extended to abstract literals and clauses as usual.

Definition 2.24 The ordering <atom
Γ induced by Γ defined over AΣ is given as

follows: P <atom
Γ Q iff either

1. def(P) <p def(Q), or

2. def(P) = def(Q) and P < Q

The ordering can be extended to ground literals in the usual way, resulting in
the literal ordering <lit

Γ .

Finally, we extend it to ground clauses: C <Γ C′ iff either

1. def(C) <p def(C′), or

13

2. def(C) = def(C′) and C (<lit
Γ)mul C

′

where (<lit
Γ)mul denotes the multiset extension of the literal ordering.

<Γ extends the atom and literal orderings, and we call it the ordering induced
by Γ.

Proposition 2.25 <Γ is well-defined, total on ground clauses, and a well-
founded ordering.

Proof: It is easy to see that both <p and (<lit
Γ)mul are well-founded and total

orderings over ground clauses. Since <Γ is the lexicographical combination of
these orderings, <Γ inherits these properties. Qed.

Finally, we introduce an easily provable proposition, which is used in the
proofs later on.

Proposition 2.26 Let < be an arbitrary well-founded and total ordering over
ground clauses, S and S′ finite sets of ground clauses, and assume there is a
function γ : S′ → S such that for each C ∈ S′, C < γ(C).

Then S′ < S holds w.r.t. the multiset extension of <.

3 Calculus

The calculus NRCL attempts to find a model through a series of both arbitrary
and deduced assignments. Analogous to the propositional SAT solvers, we ap-
ply propagation to find literals implied by existing assignments, and once it is
exhausted, we add arbitrary literals, so-called decisions to the trail.

We call this phase conflict search and it ends with either a model of the
original clause set, or with finding a clause C with some instances given in the
form (C;σ;π) falsified by the current trail. In the latter case, we start conflict
resolution and through resolving the current false clause with reason clauses
from the trail, we learn a new assertive clause and backtrack to a state where
this clause is not yet falsified.

As opposed to propositional SAT solving, where every clause can be consid-
ered already exhaustively factorized, in our case some ground instances might
be still subject to factorization, and this requires further rules.

The rule Factorize handles this during clause learning. However, the calculus
might still reach a state where the right-most literal on the trail is the last
decision, the learnable clause is not assertive, but no factorization is possible.
When such a state is reached, we simply learn the current candidate for clause
learning. To avoid this situation again, we further demand that a new decision
should not falsify any clause instance immediately, unless Factorize is applicable.

We call a clause blocking a new decision if adding the decision to the trail
would falsify an instance of the clause without allowing Factorize to handle
the immediate conflict, see the precise definition below. We note that a clause
learned in the above fashion blocks the last decision.

Definition 3.1 We say that a decision (L;π) is blocked by a clause C ∈ (N∪U)
in Γ, if C has a ground instance Cσ with L1, L2 ∈ Cσ such that for Γ′ = Γ, (L;π)

• Cσ is false under Γ′

14

• (L;π) is undefined in Γ

• L1 and L2 become false by the decision, i.e. ¬L1,¬L2 ∈ gnd(L;π)

• L1 6= L2

If no such C exists, we say that the decision is not blocked in Γ.

Example 3.2 Consider D = {a, b, c}, Γ = {(¬Q(x, y);⊤)1}, and

N = {C : ¬P (x) ∨ ¬P (y) ∨Q(x, y), . . . }

Then the decisions (P (x);⊤), (P (x);x 6= c) are both blocked by C in Γ, as
witnessed by the ground instance ¬P (a) ∨ ¬P (b) ∨Q(a, b).

We give our calculus as a set of rules over so-called states, tuples of the form

(Γ;N;U; k; s)

where Γ denotes the trail, N the given clause set, U the set of learned clauses, k a
non-negative integer - unless terminating with Success -, and s a state indicator.
The latter can be ⊤, ⊥, or a set of clause instances gnd(Cσ;π) given as (C;σ;π).
⊤ indicates the conflict search phase, if k ≥ 0, or that Γ defines a model for

N, if k = −1. ⊥means the empty clause has been learned, i.e. the unsatisfiability
of N has been established. Finally, an indicator of the form (C;σ;π) represents
a set of clause instances falsified by the current trail Γ, and indicates the conflict
resolution phase of our calculus.

Our results extend to any derivation starting from a sound state (see Defi-
nition 4.1). Here we propose the initial state

(ǫ; N; ∅; 0;⊤)

where ǫ stands for the empty trail, and N is the set of first-order clauses being
investigated.

Finally, we address a technical question regarding deduced literals and con-
flict resolution. It is often the case that for a clause (C∨L) ∈ N with Cσ imply-
ing (Lσ;π) for some σ, π w.r.t. the current trail Γ, the involved substitution σ
substitutes variables not occurring in L. See Example 3.3 for a demonstration
of this behavior.

Should we save only (Lσ;π) to the trail, we would lose this part of the assign-
ment. However, during conflict resolution we need the exact clause instances
responsible for the assignment. Therefore, to avoid recomputing the relevant
substitutions, we save the constrained closure (L ·σ;π), where L ·σ is the closure
representing Lσ.

This is simply an extension of the existing notation for the sake of clause
learning. For all other purposes, L · σ is identified with Lσ, and all definitions
over constrained literals can be extended to constrained closures accordingly.
The literal L is also considered to be a short-hand for L · ∅. We also note that
in our calculus a decision is always considered to have an empty closure.

Below, we provide the rules of our calculus as a state transition system. We
note that in the rules π1, π2 is often used as a short-hand for π1 ∧ π2, if it is
unambiguous. The rules are given as generic as possible. For further details on
the applied strategy and technicalities, see Section 5 and Section 8.

15

3.1 Rules for Conflict Search

Propagate
(Γ;N;U; k;⊤)⇒ (Γ, (L · σ;π)C∨L; N;U; k;⊤)

if k ≥ 0, and for some (C ∨ L) ∈ (N ∪ U), σ, and π

• (Cσ;π) is false under Γ

• (Lσ;π) is undefined in Γ

• (Lσ;π) is not empty

This rule deduces new literals which have to be true under the current model
assumption. The conditions ensure that this step is sound and effective, i.e.
each ground literal defined by the added literal is indeed a consequence and at
least one such literal exists.

Example 3.3 Let a, b ∈ D, N and U arbitrary, C1, C2 ∈ N, and the current
state

(Γ;N;U; 1;⊤)

where

Γ = (P (x, x);⊤)C1 , (Q(a, x);⊤)C2 , (¬P (x, y); (x, y) 6= (v, v))1

Then, if C = P (y, b) ∨ ¬Q(x, y) ∨ R(y) is a clause from N, Propagate can be
applied for C, and we might get the state

(Γ, (R(y) · {x← a}; y 6= b)C ;N;U; 1;⊤)

Decide
(Γ;N;U; k;⊤)⇒ (Γ, (L;π)k+1; N;U; k + 1;⊤)

if k ≥ 0, and for some L, π

• (L;π) is undefined in Γ

• (L;π) is not blocked in Γ

• (L;π) is not empty

• ∃(C ∨ L′) ∈ N such that |L| ≥ |L′|, i.e. ∃δ : L = L′δ, or L = ¬L′δ

Decide adds an assumption to Γ which is not blocked by any of the clauses, and
which is effective.

We note that the last condition is optional, it does not influence any of our
results. This restriction allows earlier termination with Success and keeps the
calculus from defining irrelevant ground atoms. After terminating with Success,
every undefined ground atom can be considered having arbitrary truth-value,
or simply false, the way it is defined in IΓ.

We also note that blocking only identifies one kind of immediate conflicts,
we might still get to an outright conflict if it can be handled with factorization,
see Example 3.4 below, and Lemma 5.5 for details.

16

Example 3.4 Let D = {a, b, c}, Γ = (P (x, x);⊤)P (x,x), (Q(x, a);⊤)Q(x,a), and

N = {P (x, x), Q(x, a),¬Q(x, y) ∨ P (x, y) ∨ P (x, y)}

Then, the decision (P (x, y); (x, y) 6= (v, v)) is not blocked, yet

(¬Q(x, y) ∨ P (x, y) ∨ P (x, y); {y ← a};x 6= a)

is false w.r.t. Γ, (P (x, y); (x, y) 6= (v, v))1. We note that conflict resolution
learns the clause ¬Q(x, y) ∨ P (x, y) from this conflict.

We also note that whenever a decision is blocked, we can always pick a stricter
unblocked decision, shown below.

Proposition 3.5 For every blocked decision (L;π) and blocking clause C, there
is a decision (Lσ;πσ, π′) for some σ, π′ such that it is not blocked by C and it
is not empty.

Proof: It is easy to see that any ground literal from gnd(L;π) satisfies this
condition. Qed.

Conflict
(Γ;N;U; k;⊤)⇒ (Γ;N;U; k; (C;σ;π))

if k ≥ 0, and for some ⊥ 6= C ∈ (N ∪ U), σ, and π

• (Cσ;π) is false under Γ

• (Cσ;π) is not empty

Conflict identifies a set of clause instances contradicting the current model as-
sumption. We also refer to this set as the conflict-set.

Example 3.6 Let D = {a, b, c}, and

N = { C1 : ¬P (c), C2 : ¬P (x) ∨ ¬P (y) ∨Q(x, y),

C3 : ¬P (y) ∨ ¬Q(a, y), C4 : ¬Q(x, b) ∨ ¬P (x) }

Γ = (¬P (c);⊤)C1 , (P (x);x 6= c)1, (¬Q(a, y); y 6= c)C3

Then the following is a valid step:

(Γ;N; ∅; 1;⊤)
Conflict(C2)
⇒ (Γ;N; ∅; 1; (¬P (x) ∨ ¬P (y) ∨Q(x, y); {x← a}; y 6= c))

Success
(Γ;N;U; k;⊤)⇒ (Γ;N;U;−1;⊤)

if k ≥ 0, and IΓ |= N.

We note that the last condition, IΓ |= N, can be replaced by demanding that
the rules Propagate, Decide and Conflict are exhausted and ⊥ /∈ (N ∪ U).

From this it follows that each ground atom is defined and there is no falsified
instance, i.e. every ground clause C ∈ gnd(N∪U) is true w.r.t. the current trail.

Failure
(Γ;N;U; k;⊤)⇒ (Γ;N;U; 0;⊥)

if ⊥ ∈ (N ∪ U).

The two terminal rules correspond to the satisfiability and unsatisfiability
of the clause set, respectively. Unsatisfiability is detected through learning the
empty clause ⊥.

17

3.2 Rules for Conflict Resolution

Skip
(Γ, (L′ · σ′;π′)C

′

; N;U; k; (C;σ;π))⇒ (Γ;N;U; k; (C;σ;π))

if there is no L ∈ C such that

• ∃η = mgu(L′σ′,¬Lσ), and

• (Cση;πη, π′η) is not empty

Skip drops the right-most literal from the trail during conflict resolution if it is
not a decision and it does not contribute to the conflict, i.e. it does not touch
any instance of the conflict-set.

Resolve

(Γ, (L′ · σ′;π′)C
′
∨L′

; N;U; k; (C ∨ L;σ;π))⇒

(Γ, (L′ · σ′;π′)C
′
∨L′

; N;U; k; ((C ∨ C′)η0;σ
∗;πη, π′η))

if for some L′, σ, π′ and C′ ∨ L′, and

• ((C ∨ L)σ;π) is not assertive, or k = 0

• ∃η = mgu(L′σ′,¬Lσ), and let

– η0 = mgu(L′,¬L)

– σ∗ such that σσ′η = η0σ
∗

• ((C ∨ L)ση;πη, π′η) is not empty

We note that keeping σ∗|var((C∨C′)η0) instead of σ∗ is enough for the sound-
ness of the rule and our calculus, as it contains all the relevant information.
Furthermore, the existence of η implies the existence of η0 and σ∗.

If the right-most literal in Γ is not a decision and is involved in the conflict-
set, we proceed with resolution. The conditions imply that there are corre-
sponding ground inferences and the new conflict-set is not empty.

Note that dropping the used literal is not desired as the new conflict might
still be resolvable with it.

Factorize

(Γ, ℓ; N;U; k; (C ∨ L1 ∨ L2;σ;π))⇒ (Γ, ℓ; N;U; k; ((C ∨ L1)η0;σ
∗;πη))

if ℓ = (L′ · σ′;π′)α for some L′, σ′, π′, and annotation α, and

• ∃η = mgu{L1σ, L2σ, L
′σ′}, and let

– η0 = mgu(L1, L2)

– σ∗ such that ση = η0σ
∗

• ((C ∨ L1)ση;πη, π
′η) is not empty

18

Again, the existence of η implies the existence of η0 and the appropriate σ∗,
and keeping σ∗ ↾var((C∨C′)η0) is sufficient. We also note that α can be both a
reason clause and a decision level.

Factorize factorizes some of the conflicting ground clauses. As in the case
of Resolve, the used literal should not be dropped from the trail.

Backjump

(Γ1,Γ2; N;U; k; (C;σ;π))⇒ (Γ1; N;U ∪ {C}; k
′;⊤)

if 0 ≤ k′ ≤ k, k′ = lvl(Γ1), and one of the following condition-sets hold:

(1) k = 0, and C = ⊥, or

(2) k > 0, (Cσ;π) is assertive, and C has no false instance under Γ1, or

(3) k > 0, the right-most element of Γ2 is the top-level decision, (Cσ;π) is not
assertive, Factorize cannot be applied, and C has no false instance under
Γ1

It is clear that k′ = 0 or k′ < k in case (1) and (2), (3), respectively.
The optimal choice for k′ the smallest level for which the learned clause can

be used in Propagate. Such a k′ might not always exist for the learned clause
C, largely due to the instances of C not covered by (Cσ;π). In these cases the
optimal choice for k′ is the largest level for which C has no false instance. For
more details see Section 8.

In case (1), we say that the empty clause ⊥ is learned. In case (2), we say a
new assertive clause is learned, and in case (3) a new blocking clause is learned.

The latter clause is indeed blocking the last decision under some regularity
conditions, see Lemma 5.4 for details. We note that case (3) can indeed occur
as the following example demonstrates:

Example 3.7 (Learning a blocking clause)

Consider the clause set

N = {C1 : R(x, x), C2 : P (x)∨¬Q(x, y), C3 : R(x, y)∨Q(x, y)∨P (x)∨P (y)}

and let Γ = Γ′, (¬Q(x, y);⊤)C2 with

Γ′ = (R(x, x);⊤)C1 , (¬R(x, y); (x, y) 6= (v, v))1, (¬P (x);⊤)2

Then the following is a valid conflict resolution:

(Γ;N; ∅; 2; (R(x, y) ∨Q(x, y) ∨ P (x) ∨ P (y); ∅; (x, y) 6= (v, v)))
Resolve
⇒

(Γ;N; ∅; 2; (R(x, y) ∨ P (x) ∨ P (x) ∨ P (y); ∅; (x, y) 6= (v, v)))
Skip
⇒

(Γ′;N; ∅; 2; (R(x, y) ∨ P (x) ∨ P (x) ∨ P (y); ∅; (x, y) 6= (v, v)))
Factorize
⇒

(Γ′;N; ∅; 2; (R(x, y) ∨ P (x) ∨ P (y); ∅; (x, y) 6= (v, v)))
Backjump(3)
⇒

((R(x, x);⊤)C1 , (¬R(x, y); (x, y) 6= (v, v))1;N; {R(x, y) ∨ P (x) ∨ P (y)}; 1;⊤)

19

Remark 3.8 We also wish to note that the current formulation of the calculus
handles blocking decisions and learning blocking clauses asymmetrically in the
following sense.

Let D = {a, b, c}, N = {P (x, x), Q(x, a),¬Q(x, y) ∨ P (x, y) ∨ P (x′, y)}, and

Γ = (P (x, x);⊤)P (x,x), (Q(x, a);⊤)Q(x,a)

Then the decision (¬P (x, y); (x, y) 6= (z, z)) is blocked by ¬Q(x, y) ∨ P (x, y) ∨
P (x′, y). We could use factorization and learn (¬Q(x, y)∨P (x, y)), but instead
we rather throw away the decision candidate and try another.

On the other hand, if in some regular run (see Definition 5.2) a conflict state
of the form

(Γ′, ℓk;N’;U’; k; (¬Q(x, y) ∨ P (x, y) ∨ P (x′, y); {y ← a};x 6= a ∧ x′ 6= a))

with ℓ = (¬P (x, y); (x, y) 6= (z, z)) arises, we choose Factorize over learning a
blocking clause outright - there is indeed a blocking instance -, and learn the
assertive and not-blocking ¬Q(x, y) ∨ P (x, y) in the end.

3.3 Example

Example 3.9 Consider D = {a, b, c} and the finite clause set

N = { C1 : ¬P (c), C2 : ¬P (x) ∨ ¬P (y) ∨Q(x, y),
C3 : ¬P (y) ∨ ¬Q(a, y), C4 : ¬Q(x, b) ∨ ¬P (x) }

Then the following NRCL derivation constructs a model for N over D.

(ǫ;N; ∅; 0;⊤)
Propagate
⇒ ((¬P (c);⊤)C1 ;N; ∅; 0;⊤)

Decide
⇒

((¬P (c);⊤)C1 , (P (x);x 6= c)1;N; ∅; 1;⊤)
Propagate
⇒

((¬P (c);⊤)C1 , (P (x);x 6= c)1, (¬Q(a, y); y 6= c)C3 ;N; ∅; 1;⊤)
ConflictC2
⇒

(. . . ;N; ∅; 1; (¬P (x) ∨ ¬P (y) ∨Q(x, y); {x← a}; y 6= c))

Resolve
⇒ ((. . . , (¬Q(a, y); y 6= c)C3 ;N; ∅; 1; (¬P (a) ∨ ¬P (y) ∨ ¬P (y); ∅; y 6= c))

Skip
⇒ (((¬P (c);⊤)C1 , (P (x);x 6= c)1;N; ∅; 1; (¬P (a) ∨ ¬P (y) ∨ ¬P (y); ∅; y 6= c))

Factorize
⇒ (((¬P (c);⊤)C1 , (P (x);x 6= c)1;N; ∅; 1; (¬P (a) ∨ ¬P (y); ∅; y 6= c))

Factorize
⇒ ((¬P (c);⊤)C1 , (P (x);x 6= c)1; ;N; ∅; 1; (¬P (a); ∅;⊤))

Backjump(2)
⇒

Let U1 = {C5 : ¬P (a)}.

((¬P (c);⊤)C1 ;N;U1; 0;⊤)
Propagate
⇒ ((¬P (c);⊤)C1 , (¬P (a);⊤)C5 ;N;U1; 0;⊤)

Decide
⇒ ((¬P (c);⊤)C1 , (¬P (a);⊤)C5 , (P (b);⊤)1;N;U1; 1;⊤)

Propagate
⇒

((¬P (c);⊤)C1 , (¬P (a);⊤)C5 , (P (b);⊤)1, (Q(x, y)·σ1;⊤)
C2 ;N;U1; 1;⊤)

ConflictC4
⇒

20

Where σ1 = {x← b, y ← b}.

(. . . , (P (b);⊤)1, (Q(x, y)·σ1;⊤)
C2 ;N;U1; 1; (¬Q(x, b)∨¬P (x); {x← b};⊤))

Resolve
⇒

(. . . , (P (b);⊤)1, (Q(x, y)·σ1;⊤)
C2 ;N;U1; 1; (¬P (x)∨¬P (x)∨¬P (b); {x ← b};⊤))

Skip
⇒

(. . . , (¬P (a);⊤)C5 , (P (b);⊤)1;N;U1; 1; (¬P (x)∨¬P (x)∨¬P (b); {x ← b};⊤))
Factorize
⇒

((¬P (c);⊤)C1 , (¬P (a);⊤)C5 , (P (b);⊤)1;N;U1; 1; (¬P (x)∨¬P (b); {x← b};⊤))
Factorize
⇒

((¬P (c);⊤)C1 , (¬P (a);⊤)C5 , (P (b);⊤)1;N;U1; 1; (¬P (b); ∅;⊤))
Backjump(2)
⇒

((¬P (c);⊤)C1 , (¬P (a);⊤)C5 ;N;U1 ∪ {¬P (b)}; 0;⊤)
Propagate
⇒

((¬P (c);⊤)C1 , (¬P (a);⊤)C5 , (¬P (b);⊤)C6 ;N;U2; 0;⊤)
Decide
⇒

Where U2 = U1 ∪ {C6 : ¬P (b)}.

((¬P (c);⊤)C1 , (¬P (a);⊤)C5 , (¬P (b);⊤)C6 , (Q(x, y);⊤)1;N;U2; 1;⊤)
Success
⇒

((¬P (c);⊤)C1 , (¬P (a);⊤)C5 , (¬P (b);⊤)C6 , (Q(x, y);⊤)1;N;U2;−1;⊤)

4 Soundness

Now, we show soundness. The following state invariant defines a consistency
notion for states.

Definition 4.1 A state (Γ;N;U; k; s) is sound if and only if the followings hold:

1. Γ is a consistent sequence of constrained literals

2. Γ is well-formed, i.e.

(a) if k ≥ 0 then Γ contains exactly k decisions

(b) for each i from 1, 2, . . . , k, there is a unique (L;π)i ∈ Γ

(c) the decisions occur in Γ in the order of their levels

(d) for each decomposition Γ = Γ1, (L;π)
i,Γ2; (L, π)

i satisfies the condi-
tions of Decide w.r.t. Γ1, N, and U

(e) for each decomposition Γ = Γ1, (L · σ;π)C∨L,Γ2; (Cσ;π) is false
under Γ1, and (Lσ;π) satisfies the conditions for Propagate w.r.t.
Γ1 and C ∨ L

3. N |= U

4. s = ⊥ implies ⊥ ∈ N ∪ U

5. k = −1 implies IΓ |= N

6. if s = (C;σ;π) then (Cσ;π) is false under Γ, N |= C, and (Cσ;π) is not
empty.

A rule is called sound iff it preserves the soundness of its left-hand side state.

21

It is easy to see that the initial state (ǫ; N; ∅; 0;⊤) is always sound. Fur-
thermore, soundness is an invariant, since each rule preserves this property, as
proven below.

Theorem 4.2 The rules of NRCL are sound.

Proof: The soundness of Propagate, Decide, Conflict, and the terminal rules
Failure and Success is straightforward to prove from the definitions themselves,
and therefore, we entrust it to the reader.

In the case of Skip, dropping the right-most literal (L′ ·σ′;π′)C
′

from Γ does
preserve the well-formedness and consistency properties of Γ. N |= U remains
unchanged and the rest of the conditions are irrelevant in this case, except for
the last one.

Now, assume the last property does not hold after applying Skip. It is only
possible if some ground clause C′′ from gnd(Cσ;π) were false under Γ, (L′ ·
σ′;π′)C

′

, but is undefined under Γ. Thus, (L′σ′;π′) must have made it false,
and therefore, for some δ and L′′ ∈ C′′, L′′ = ¬L′σ′δ and π′δ is true.

Let L be the literal in C corresponding to L′′. Then, the most general unifier
η of ¬Lσ and L′σ′ must exist and C′′ ∈ gnd(Cση;πη, π′η), which is therefore
not empty. This violates the preconditions of Skip, a contradiction.

For Resolve, it is enough to see that the new clause is a consequence of N,
and the new state indicator ((C ∨ C′)η0;σ

∗;πη, π′η) is unsatisfiable under Γ,
using the notations of the definition for Resolve.

The first claim follows from the soundness of the left-hand side and from
the soundness of resolution. As for the second claim, we make the following
observations:

• (C ∨C′)η0σ
∗ = (C′ ∨ C)σσ′η

• Each instance from gnd(C′σ′η;π′η) is false under the current trail, as per
the well-formedness conditions for derived literals.

• Each instance from gnd(Cση;πη) is false under the trail by the soundness
of the left-hand side.

From these it follows that each ground clause from gnd(C ∨C′;σσ′η;πη, π′η) is
false under the current trail.

The soundness of Factorize can be proven analogously, and the proof for
Backjump is straightforward. We entrust them to the reader. Qed.

Next, we define runs, i.e. sound derivations in our calculus.

Definition 4.3 A run (from a clause set N) is a sequence of states such that
each subsequent state is derived with a rule from the previous one, and the initial
state is a sound state (with N as the original clause set).

A direct consequence of Theorem 4.2 is that each state in a run is sound,
and in particular, for each conflict resolution state (Γ;N;U; k; (C;σ;π)), each
ground clause from gnd(Cσ;π) is false w.r.t. Γ.

Theorem 4.4 (Soundness) The calculus NRCL is sound, i.e. if a run termi-
nates with the Failure, or Success rules, then the starting set N is unsatisfiable,
and satisfiable, respectively. Furthermore, in the latter case the trail upon ter-
mination defines a model of N.

Proof: It follows immediately from the definitions and Theorem 4.2. Qed.

22

5 Regular Runs

In this section, we define a strategy for NRCL in the form of regular runs, which
is sufficient to prove both non-redundant clause learning, and termination in the
later sections.

Definition 5.1 A sound state (Γ;N;U; k; s) is regular iff the following hold:

• If Γ = Γ′, (L · σ;π)α, then no clause from N ∪U is false w.r.t. Γ′.

• For all decomposition Γ = Γ1, (L;π)
i,Γ2 with decision (L;π)i, Propagate

is exhausted w.r.t. Γ1 and N ∪ U.

We note that the last assignment on the trail might still make some clauses
false, and the initial state (ǫ; N; ∅; 0;⊤) is always regular.

Definition 5.2 We call a run regular iff the following holds:

• The starting state is regular.

• During conflict search, rules are always applied in this order exhaustively:
terminal rules, Conflict, Propagate, Decide. (Or Failure, Conflict, Propa-
gate, Decide, Success, if we test success through exhausted conflict search.)

• In conflict resolution Backjump is always applied as soon as possible, and
it backtracks to a regular state.

Lemma 5.3 Regular runs preserve regularity, i.e. all state in a run is regular.

Proof: It follows from the definitions, we only note that backjumping to a state
which is regular w.r.t. the new learned clause set as well is always possible. If
nothing else, the empty trail is always a valid choice. Qed.

The backtrack-level proposed in the proof above is not practical, of course. For
more details on a more accurate backjumping to a regular state see Section 8.

Below, we show some useful properties of regular runs.

Lemma 5.4 In a regular run the following hold:

(1) For any deduced literal (L · σ;π)C∨L of level k on the trail, each ground
clause in gnd((C ∨ L)σ;π) contains at least two literals of level k.

(2) If (C;σ;π) represents false clauses in some conflict state, then each ground
clause in gnd(Cσ;π) contains at least two top-level literals, if the state is
the result of an application of Conflict, and at least one top-level literal
otherwise.

(3) If a clause C is learned according to the case Backjump-(3), then it blocks
the former top-level decision.

Proof: First, assume (L · σ;π) is a deduced literal and it was implied by (C ∨
L;σ;π) w.r.t. Γ which was the current trail before the corresponding application
of Propagate.

23

Let k be the level of the right-most decision in Γ, and C′∨L′ a ground clause
from gnd((C ∨ L)σ;π) such that L′ corresponds to L. Then L′ is of level k, of
course.

Furthermore, if no other literal in C′ is of level k, C′ ∨ L′ would have im-
plied L′ before the last decision, which contradicts the exhaustive application
of Propagate. Thus, C′ ∨ L′ must contain at least two literals of level k.

Second, since conflicts are found immediately, any conflicting non-empty
ground clause C′ must contain at least one top-level literal. A conflicting ground
clause with a single top-level literal, however, would contradict the exhaustive
application of Propagate. Thus, after applying Conflict, all ground clause in the
conflict-set contains at least two top-level literals. It only remains to show that
the rules Resolve, Skip, and Factorize preserve the weaker property of having
at least one top-level literals. Obviously, e.g. Factorize can break the stronger
property.

We only prove this for Resolve, the rest can be shown similarly. Assume
that at an application of Resolve (L′ ·σ′;π′)C

′
∨L′

is the involved deduced literal,
(C ∨ ¬L;σ;π) represents the false clauses before, and ((C ∨ C′)η0;σ

∗;πη, π′η)
after applying the rule, where η = mgu(L′σ′, Lσ), η0 = mgu(L′, L), and σ∗ such
that η0σ

∗ = σσ′η.
It is easy to see that for every ground clause

(C0 ∨ C′
0) ∈ gnd((C ∨ C′)σσ′η;πη, π′η)

there are corresponding ground clauses (C′
0 ∨ L′

0) ∈ gnd((C′ ∨ L′)σ′η;π′η) and
(C0∨¬L0) ∈ gnd((C ∨¬L)ση;πη) whose resolvent is exactly (C0∨C′

0), and L0,
L′
0 correspond to L and L′, respectively, and L0 = L′

0.
Then, by the first claim of this lemma, C′

0 must contain at least one top-level
literals, and so does C0 ∨C′

0.
Finally, assume C is learned when case (3) of Backjump is applied to the

state
(Γ, (L;π)k; N;U; k; (C;σ;π))

Now, let (C′ ∨ L′
1 ∨ · · · ∨ L′

s) ∈ gnd(Cσ;π) an arbitrary ground clause, where
L′
1, . . . , L

′
s denotes the top-level literals of the clause.

By (2), s ≥ 1, and, since (Cσ;π) has no assertive clause, even s ≥ 2 must
hold. We also know that Factorize was not applicable, thus, for any i 6= j from
1, . . . , s, Li 6= Lj holds. Thus, C blocks the decision (L;π) w.r.t. Γ, as witnessed
by the ground clause above. Qed.

It can be also shown that if there is an immediate conflict after a decision
in a regular run, Factorize is applied next.

Lemma 5.5 Assume

Decide
⇒ (Γ, (L;π)k;N;U; k;⊤)

Conflict
⇒ (Γ, (L;π)k;N;U; k; (C;σ′;π′))

is a valid subderivation in a regular run. Then Factorize, and only Factorize,
is applicable to the conflict state (Γ, (L;π)k;N;U; k; (C;σ′;π′)).

Proof: Obviously, Resolve and Skip cannot be applied. Furthermore, if case
Backjump-(3) were applicable, there would be a ground clause in gnd(Cσ′;π′)
blocking the last decision, a contradiction.

24

Also, there cannot be any ground clause in gnd(Cσ′;π′) with a single top-
level literal, since otherwise Propagate would not have been applied exhaustively
before the decision. And C = ⊥ cannot hold either, as otherwise Failure should
have been applied earlier. Thus, the other cases of Backjump do not apply
either.

Finally, let C0 a ground clause from gnd(Cσ′;π′). This clause exists, and
must contain at least two top-level literals, see Lemma 5.4(2). These literals are
falsified by the last decision, and do not block the decision.

Let L0,K0 two such literals and C0 = C′
0 ∨L0 ∨K0. Then these literals are

equal, and the corresponding literals L1, K1 in Cσ are unifiable.
Then Factorize is applicable unifying L1 and K1, and C′

0 ∨ L0 can be used
to prove the non-emptiness condition. Qed.

6 Redundancy

We define redundancy w.r.t. the induced ordering <Γ in the standard way:

Definition 6.1 A ground clause C is redundant w.r.t. a ground clause set N
(and <Γ) iff

C ∈ N, or ∃S ⊆ N <ΓC : S |= C

A first-order clause C is redundant w.r.t. the first-order clause set N (and <Γ)
iff

∀C′ ∈ gnd(C) : C′ is redundant w.r.t. gnd(N)

If redundancy does not hold, we call the corresponding clause non-redundant,
or irredundant.

6.1 Learning Non-Redundant Clauses

First, we show that each learned clause is non-redundant w.r.t. the current
clause set and induced ordering.

The most important consequence of this theorem that checking the learned
clauses for redundancy criterions which are independent from the concrete in-
duced orderings can be spared.

Such admissible criterions include subsumption, subsumption resolution and
tautologies, as it is shown in the next subsection.

Theorem 6.2 (Non-redundant Clause Learning) Let Γ denote the trail at
a conflict in a regular run, <Γ the induced ordering, and assume the clause C
is learned via the Backjump rule, and let N and U be the starting clause set and
the set of learned clauses before the conflict, respectively.

Then, C is not redundant w.r.t. N ∪U and <Γ.

Proof: Assume the first and last state in conflict resolution is

(Γ;N;U; k; (C0;σ0;π0))⇒
∗ (Γ′; N;U; k; (C;σ1;π1))

By soundness, N ∪ U |= C and each C′ ∈ gnd(Cσ1;π1) is false w.r.t. both Γ′

and Γ.

25

Now let C′ ∈ gnd(Cσ1;π1) and assume there is an S ⊂ gnd(N∪U) such that
S |= C′ and S <Γ C′. Because of S <Γ C′, each C′′ ∈ S has a defined truth-
value w.r.t. Γ. If all C′′ ∈ S is true, then, by S |= C′, so is C′, a contradiction.

Thus, let C′′ ∈ S arbitrary such that C′′ is false under Γ. We distinguish
two cases whether Γ′ is a strict subset of Γ, or equal to it.

First, if Γ′ 6= Γ, at least one Skip had to be used, and C′ contains no literal
covered by the right-most literal of Γ. Neither does C′′, since C′′ <Γ C′. But
then, C′′ has a defined truth-value and it can only be true, as otherwise an
earlier conflict detection would have been possible. A contradiction.

Second, assume Γ′ = Γ. If the right-most literal is a decision, no false clause
from gnd(C0σ0;π0) blocks this decision, and Factorize had to be applied several
times followed by an application of case (2) of Backjump. (See also Lemma 5.5
on immediate conflicts.)

Let now C′ such that it contains only a single top-level literal. Since case
(2) of Backjump was used, such a clause from gnd(Cσ1;π1) exists. Since C′′ is
false and it was undefined before, it contains some top-level literals.

Since it was not a subject of Propagate before the right-most decision, it has
to contain at least two such literals. But C′ contains only one, and therefore
def(C′) <p def(C′′) and C′ <Γ C′′ must hold, a contradiction.

Finally, if Γ = Γ′ and the right-most literal is not a decision, the last rule
had to be Backjump (case 1 or 2), and the same argumentation holds: If an
assertive clause is learned, let C′ an instance from gnd(Cσ1;π1) such that it
contains only a single top-level literal. However, C′′ must contain at least two
top-level literals, which again leads to C′ <Γ C′′, a contradiction. If C = ⊥ is
learned, it is smaller than any non-empty clause, and due to regularity, ⊥ is a
newly learned clause. Qed.

6.2 Admissible Redundancies

Next, we show that the classic redundancy criterions tautology, strict subsump-
tion, and subsumption resolution are admissible redundancies in NRCL, i.e. the
clauses these rules remove are indeed redundant w.r.t. any induced ordering.

Proposition 6.3 (Tautology) Let C a clause and N an arbitrary clause set.

If |= C holds, then C is redundant w.r.t. N.

Proof: Clearly, any ground instance of C is a ground tautology and redundant,
since it follows from the empty set which ”contains” only smaller clauses. Qed.

Furthermore, we also note that removing C has no effect on any run of
the calculus, since no instance of C can be ever a conflict clause or imply an
assignment.

Proposition 6.4 (Strict Subsumption) Let C, D be clauses, σ a substitu-
tion, and N a set of clauses.

If Cσ ⊂ D, then D is redundant w.r.t. N ∪ {C}.

Proof: Let Dδ be a ground instance of D. Then Cσδ ⊂ Dδ and Cσδ <Γ Dδ
holds, for any induced ordering <Γ. The latter holds, because def(Cσδ) <p

def(Dδ) holds in the abstract ordering.

26

Thus, Dδ is redundant w.r.t. {Cσδ}, and so is D w.r.t. N ∪ {C}, and strict
subsumption is admissible. Qed.

Similarly to tautology, removing a subsumed clause has little effect on the
calculus, since whenever the subsumed clause is a conflict or a reason clause,
the subsuming clause is either a conflict clause or implying the same assignment
as well.

Proposition 6.5 (Subsumption Resolution) Let C, D clauses, L a literal,
σ a substitution, and N a clause set.

If Cσ ⊆ D holds, then D ∨ ¬Lσ is redundant w.r.t. N ∪ {C ∨ L,D}.

Proof: Redundancy clearly holds as D subsumes D ∨ ¬Lσ. Furthermore, we
note that exchanging D ∨¬Lσ with D in the presence of C ∨L is a sound step.
Thus, subsumption resolution as a rule for reducing a clause is admissible. Qed.

7 Termination and Completeness

Just as most related calculi, NRCL is a decision procedure for BS as well, under
the regularity conditions of Definition 5.2. Below, we show that regular runs
never get stuck and eventually terminate.

Proposition 7.1 A regular run is never stuck, i.e. it terminates with the ter-
minal rules, or one of the other rules is applicable.

Proof: It is enough to show that, unless we already terminated, a rule is always
applicable. First, we show that conflict search cannot get stuck.

If ⊥ is already in one of the clause sets, Failure is applicable and we termi-
nate. Thus, w.l.o.g. assume ⊥ /∈ N ∪ U.

Assume Γ is total, i.e. defines each ground atom. Then IΓ defines all ground
atom occurring in gnd(N), and it either satisfies N or there is a false ground
clause from gnd(N∪U). In the first case, Success is applicable, and Conflict in
the second case.

If Γ is not total, and some undefined ground literal is implied by some ground
clause, Propagate is applicable. Otherwise, if no ground literal is implied and
there is an undefined ground atom, we can always apply Decide. We note that
decisions which define only a single ground atom are never blocked.

Second, assume we are resolving a conflict, i.e. the state indicator is (C;σ;π)
for some C, σ, and π. If the top literal in Γ is a decision and if (Cσ;π) is as-
sertive, then Backjump is applicable. If it is not assertive, then either Factorize,
or case (3) of Backjump is applicable.

If the top literal is a deduced literal, and neither does C = ⊥ hold, nor is
(Cσ;π) assertive - in these cases Backjump is applicable -, then we check the
conditions of Skip. If Skip is not applicable, it satisfies the conditions of Resolve.
Therefore, either Skip, Factorize, Resolve must be applicable in this case. Qed.

We show termination through a series of lemmas. First, we prove that both
conflict search and conflict resolution always terminate:

Lemma 7.2 Assume N, Σ and D are all finite. Then, a conflict search phase of
a regular run always terminates, i.e. leads either to a conflict or to termination.

27

Proof: By the finiteness of Σ, we know that AΣ is also finite. Since a regular
run is a series of sound steps, we also know that each application of Propagate
and Decide defines at least one formerly undefined ground atom.

Thus, a regular run eventually exhausts these rules, and, since it cannot get
stuck by Proposition 7.1, one of the rules Failure, Success, or Conflict has to be
applied. And thereby, the conflict search phase in question ends. Qed.

Lemma 7.3 Assume N, Σ and D are all finite. Then, a conflict resolution
phase of a regular run always terminates, i.e. leads to the application of Back-
jump in finitely many steps.

Proof: Let us assign to each intermediate state (Γ;N;U; k; (C;σ;π)) in a conflict
resolution the tuple (#(Γ); gnd(Cσ;π)) as a measure, where #(Γ) denotes the
number of elements in Γ.

Let us order these tuples with the lexicographical ordering <lex based on the
canonical ordering over non-negative integers and <0 where <0 denotes both
the ordering induced by the trail after finding the conflict, and its multiset
extension. This ordering is well-founded.

We note that conflict resolution cannot get stuck, see Proposition 7.1. There-
fore, it is enough to show that each application of the rules Skip, Resolve, and
Factorize strictly decreases our measure.

Skip strictly decreases the size of Γ, and therefore our measure as well. In
the case of Resolve and Factorize, it is enough to give a function satisfying the
conditions of Proposition 2.26 between the false instances on the two sides, i.e.
a function γ which assigns ground clauses from the right-hand side conflict-set
to larger ground clauses from the left-hand conflict-set.

First, assume we apply Resolve to the state

(Γ, (L′ · σ′;π′)C
′
∨L′

; N;U; k; (C ∨ L;σ;π))

and we get

(Γ, (L′ · σ′;π′)C
′
∨L′

; N;U; k; ((C ∨ C′)η0;σ
∗;πη, π′η))

where η = mgu(L′σ′,¬Lσ), η0 = mgu(L′,¬L), and σ∗ such that η0σ
∗ = σσ′η.

For the sake of readability, let us introduce the symbols α = σσ′η and π∗ =
πη, π′η.

Now, let β be a grounding substitution such that (C ∨ C′)αβ ∈ gnd((C ∨
C′)α;π∗). Since it was derived via resolution, there is a corresponding valid
ground resolution step with premises

• C1 ∨ L1 ∈ gnd((C ∨ L)α;πη)

• C2 ∨ L2 ∈ gnd((C′ ∨ L′)α;π′η)

where we assume L1 and L2 are the literals corresponding to L and L′, re-
spectively. Since we apply resolution, we also know that L1 = ¬L2, and
(C ∨ C′)αβ = C1 ∨ C2.

By the definition of sound states and Propagate, we know that C2 contains
only literals which were defined before the last assignment, and thus, C2 <0

(¬)L2, and therefore C2 <0 L1. Then, C1 ∨C2 <0 C1 ∨L1 must hold, and thus,
we shall define γ(C1 ∨ C2) as C1 ∨ L1.

28

Since γ can be defined over the whole gnd((C ∨ C′)α;π∗) and gnd((C ∨
L)α;πη) is a subset of gnd((C ∨L)σ;π), we can apply Proposition 2.26, and we
get

gnd((C ∨ L)σ;π) >0 gnd((C ∨C′)α;π∗)

and our measure strictly decreases, as the size of the trail is unchanged. The
proof for Factorize is analogous. Qed.

Next, we show that only finitely many new clauses can be learned thanks to our
non-redundancy results in Theorem 6.2.

Lemma 7.4 If N, Σ and D are finite, a regular run can only learn finitely many
new clauses.

Proof: We use Higman’s Lemma [15] to prove this claim. The lemma states
that given an infinite sequence w1, w2, . . . of words over a finite alphabet, there
is always an index i and a subsequent index j such that the word wi is embedded
into wj , i.e. after deleting some letters from wj we can get wi.

Now, consider AΣ. Since Σ and D are finite, both the set of ground atoms
and ground literals over Σ and D are finite. The latter serves as the finite
alphabet for our proof.

Since every learned clause is non-redundant at the time they are learned,
by Theorem 6.2, we can assign a non-redundant ground instance to any learned
clause, by the definition of redundancy.

Assume we learn infinitely many clauses, and let us consider the assigned
ground clauses C1, C2, . . . , where C1 is assigned to the clause learned at the first
conflict, C2 to the clause learned at the second, and so on.

Now, take any term ordering >, order the literals of the clauses, and assign
this ordered sequence of literals to each clause. Let us denote this word over
the alphabet of ground literals by w(C) for every ground clause C.

Then, by Higman’s Lemma, there are indices i < j such that w(Ci) is
embedded in w(Cj). But it means that Ci ⊆ Cj , i.e. Cj is strictly subsumed by
or equal to Ci.

The admissibility of strict subsumption was proven in Proposition 6.4, and
clearly an already present ground clause cannot be non-redundant either, for
any induced ordering. Thus, Cj cannot be redundant at the jth conflict, a
contradiction. Qed.

Finally, we show termination, and state the main result as a corollary.

Theorem 7.5 (Termination) A regular run always terminates if N, Σ and D
are finite.

Proof: First, we note that a run can be seen as a series of conflict search
and conflict resolution phases, which ideally ends with a terminal rule. By
Lemma 7.2, Lemma 7.3, and Proposition 7.1, we know that each phase ends
after finitely many steps without getting stuck.

Thus, an infinite run must be an infinite series of conflict search and resolu-
tion sequences. Since each conflict resolution ends with Backjump, it would im-
ply that infinitely many new clauses are learned. But it contradicts Lemma 7.4.
Qed.

29

Corollary 7.6 (Decision Procedure) Regular runs provide a decision pro-
cedure for the Bernays-Schönfinkel fragment if N, Σ and D are finite.

I.e. every regular run terminates after finitely many steps with Failure, or
Success, for an unsatisfiable, or satisfiable clause set N, respectively.

Proof: It follows from Proposition 7.1 and the Theorems 4.4 and 7.5. Qed.

8 Towards Implementation

This far we considered mostly our calculus in an abstract fashion, and it is
enough to establish the results of the previous chapters.

Here, we elaborate some details regarding the constraints, and refine some
steps to bring NRCL closer to practical application. In particular, we provide
an abstract algorithm for exhaustive propagation, to highlight some important
difficulties and expensive steps in the calculus.

However, this section does not aim to provide a complete abstract algorithm
for regular runs, we only briefly address some challenges and propose some
solutions and approaches, which provides us a starting point for later imple-
mentation and experimentation.

8.1 Free Variables

The definition of normal form for constrained literals demands the left-hand side
of a constraint to contain only variables occurring in the constrained literal. Our
calculus derives new assignments, i.e. new constrained literals for Γ, by applying
resolution between the literals in Γ and the clauses in N ∪ U.

However, even after normalization, the resulting candidate (L ·σ;π)C might
contain free left-hand side variables, i.e. variables which occur in the reason
clause instance Cσ, and still occur in lvar(π), but do not occur in Lσ. The
following example demonstrates this behaviour.

Example 8.1 Let us take

N = {C1 : ¬Q(x, x), C2 : ¬Q(x, y) ∨ ¬Q(x, z) ∨ P (y, z)}

And assume that after an application of Propagate and Decide we get the trail

Γ = (¬Q(x, x);⊤)C1 , (Q(x, y); (x, y) 6= (v, v))1

Now, applying Propagate between Γ and the clause C2, we get the constrained
literal

(P (y, z); (x, y) 6= (v, v) ∧ (x, z) 6= (w,w))

Over D = {a, b}, this constraint is satisfiable, the cover-set is {P (a, a), P (b, b)},
and after eliminating the free variable x we get the constrained literals

(P (y, z); y 6= a ∧ z 6= a) and (P (y, z); y 6= b ∧ z 6= b)

Semantically, these variables are to be treated as existential variables, of
course. These variables cause two problems.

30

First, in the presence of these existentially handled variables our constrained
literal set for difference defined in Lemma 2.16 is no longer valid. In particular
disjointness is no longer guaranteed.

A simple way to overcome this issue is to split the resulting literal into a
set of literals by instantiating the free left-hand side variables in every possible
way, as seen in the example above. This elimination procedure results in a set
of not necessarily disjoint constrained literals.

Second, while eliminating these variables might be a solution, we still need
to store the instantiating assignments. This information is used when apply-
ing the rules Resolve and Factorize during conflict resolution. This is already
accomplished through using closures as introduced in Section 3.

8.2 Indexing Scheme

In the propositional setting, the watched literal scheme watches two literals in
every non-unit clauses. These literals are assumed to be true or undefined under
the current model assumption, or all literals but a single watched literal are false
in the clause.

Whenever a new assignment makes a watched literal false, we attempt to
find a new non-false literal. If it is not possible, the other watched literal is
propagated resulting either in a new assignment or a new conflict clause.

This scheme enables efficient propagation at small computational costs as it
cuts back the number of clauses we have to consider after a new assignment and
requires no additional bookkeeping during backtrack.

When lifting the scheme, we have to keep in mind that manipulating our
constraints is more expensive. Therefore, a direct lifting of the technique by
exactly maintaining which literals are watched in the different instances of a
clause would be too expensive for our purposes.

Here, we propose a lightweight approach which uses two levels of indexing
the literals of the current clause set. Every clause is indexed by one of these
levels, but not both.

The first level attempts to mimic the two-watched-literal scheme, and indexes
only two literals in the clauses. We can choose the interpretation of watching a
literal L as an approximation of cannot be false by selecting one of the following:

• ∄(L′ · σ;π)α ∈ Γ : ∃mgu(¬L′σ, L)

• ∄(L′ · σ;π)α ∈ Γ : ∃δ = mgu(¬L′σ, L) and πδ 6= ⊥

• ∄(L′ · σ;π)α ∈ Γ : ∃δ = mgu(¬L′σ, L) and πδ is not empty

Obviously, the last choice is the most expensive and the first two should be
preferred.

Whenever a new assignment is made, we first try to adjust the watched
literals on level one. If a clause contains no longer two appropriate literals, we
push it to the second level. On this level we index all literals of the clauses, e.g.
in a context tree with top-level symbol hashing.

Putting clauses back to level one can be done either by maintaining an
activity heuristics and time to time manually check for watchable literals, or
managing lists of pointers for all clause-literals to relevant assignments on the
trail.

31

This topology should make propagation cheaper, and in particular using
level one should make it easier to ignore clauses irrelevant w.r.t. the recent
assignments.

8.3 Finding Candidates

Before we propose an abstract algorithm for exhaustive propagation, we intro-
duce a simple derivation system for finding candidates. Of course, in the actual
implementation this system will be replaced by more efficient algorithms on the
indexing structures.

The rules work on tuples of the form (C;σ;π)i where

• C is a clause, a subclause of some initial clause C0 from the current clause
set

• σ is a substitution over var(C0)

• π is a dismatching constraint

• i is the number of application of the last assignment of the trail, which
has relevance in the next section

The initial tuple for a clause C0 ∈ N ∪ U is (C0; ∅;⊤)0 and we try to resolve
each literal in C with the following rule:

(C ∨ L;σ;π)i ⇒Γ (C;σθ;πθ ∧ π′θ)i
′

Where there is a (¬L′ · σ′;π′)α ∈ Γ such that

• ∃θ = mgu(Lσ,L′σ′)

• (πθ ∧ π′θ) 6= ⊥ and normalized

• i′ is i+ 1 if (¬L′ · σ′;π′)α is the last assignment in Γ, and i otherwise

Applying this rule we can get candidates for the rules Conflict, and Propagate
by deriving respectively tuples of the form

• (⊥;σ;π)i, or

• (L;σ;π)i

We note that non-emptiness is not checked fully, only a cheaper precondition of
it. Free left-hand side variables and already defined instances are not removed
either.

8.4 Exhaustive Propagation

In this section, we propose the abstract algorithm PROP for exhaustive propa-
gation with conflict detection. It basically processes a queue PQ of candidates
for new assignments. As an invariant, we assume each constrained literal in the
queue

1. has a normalized non-⊥ constraint

2. consistent with the current Γ

3. contains no free left-hand side variable

32

PROP

Initially, this queue consists of the literals induced by the unit clauses. Unit
clauses has to be checked for contradiction prior calling PROP. When calling
after decisions, PQ is assumed to contain the immediate consequences of the
decision. Checking for blocking should generate this set anyway.

PROP processes the literals on PQ. First, it removes already defined instances
by calling the function DIFF. This produces a set of disjoint and undefined
constrained literals, each of which is a valid subject of Propagate. See Section
2.3 for the definition of the difference operation ”−”, and see below the abstract
algorithm for DIFF.

These literals are then checked for emptiness, added to Γ and set to true.
Their consequences - conflicts and new candidates for PQ - are then generated
by addConsequences.

We continue this process until PQ gets empty, or a conflict is found. The
first indicates the finished exhaustive application of Propagate, and Decide can
be called. In this case we return true. And in the latter case, we return false,
and the found conflict is stored in conflictSet.

On the course of this section, we might use the symbol ℓ to denote annotated
constrained literals, and the following auxiliary functions:

• pop: removes an element of a queue, list, or set

• notEmpty: carries out a full non-emptiness check for a constraint or con-
strained literal

• addAssignment: adds a new assignment to Γ (and its indexing structures)

• cUNIF(ℓ, Γ): Finds the literals in Γ which are unifiable with ℓ, and re-
turns an array of them and its size

• NF: normalizes a constraint, constrained literal, or a set of constrained
literals, as described in Subsection 2.2. In the latter case, it removes
resulting literals with ⊥-constraints.

• freeLVars: produces the set of free left-hand side variables of a con-
strained literal

• selectOne: randomly, or heuristically selects an element of a set, or a list

• adjustLevel1: adjusts the first index level for clauses after a new assign-
ment given as parameter, as described in Section 6.2.

• getCandidates: provides the list of indexed clauses which contains a
literal unifiable with the complement of a given literal

DIFF

It iteratively removes the already defined instances from the proposed assign-
ment. The result is a set of disjoint and undefined constrained literals with
non-⊥ constraints.

33

Function PROP(N, U, Γ, PQ)

1 while PQ 6= ∅ do
2 ℓ = (L · σ;π)C ← pop(PQ);
3 ∆ ← DIFF(ℓ, Γ);

4 foreach ℓ′ = (L′ · σ′;π′)C ∈ ∆ do
5 if notEmpty(ℓ′) then

// Applying Propagate:

6 addAssignment(Γ, ℓ′);
7 if addConsequences(N,U,Γ,ℓ′,PQ) = false then return false;

8 end

9 end

10 end
11 return true;

Function DIFF(ℓ∗, Γ)

1 (~ℓ, k) ← cUNIF(ℓ∗, Γ);
2 ∆0 ← {ℓ∗};
3 for i = 1, . . . , k do

4 ∆i ← NF(∆i−1 − ~ℓ[i]);
5 end
6 return ∆k;

elimFV

An auxiliary function for finding new candidates. It iteratively removes the
free left-hand side variables, and only keeps the literals with non-⊥ normalized
constraints.

addConsequences

Finally, addConsequences checks whether a new assignment produces a conflict
and generates new candidates for PQ. It returns true if no conflict is found, and
false otherwise. If a conflict is found, it is saved in conflictSet.

We distinguish two types of conflicts. It is easy to see, that if the new
assignment is used only once in deriving a conflict, then PQ must already hold
an unprocessed candidate which is falsified by the new assignment. Thus, we
check PQ first for a contradiction, and start generating new candidates with ⇒Γ

only afterwards.
We then use the derivation system of 6.3 to derive new constrained literals.

We only consider derivations where the latest assignment has to be used at least
once. If it is used only once we can be sure the new literal is not false. If it is
not the case, we check for a possible conflict.

As stated before, in the actual implementation the proper retrieval algo-
rithms will eliminate the inefficiency of considering all derivations.

Finally, the new candidates are tested for free variables, and they are re-
moved if there are any.

34

Function elimFV(ℓ0)

// Prereq: NF(πℓ0) 6= ⊥
1 ∆, ∆∗ ← {ℓ0}, ∅;
2 while ∆ 6= ∅ do
3 ℓ = (L · σ;π)C ← pop(∆);
4 if freeLVars(ℓ) = ∅ then
5 ∆∗ ← ∆∗ ∪ {ℓ};
6 end
7 else
8 x ← selectOne(freeLVars(ℓ));

// Instantiation with each constant from the domain:

9 foreach d ∈ D do
10 π′ ← NF(π{x← d});

11 if π′ 6= ⊥ then ∆ ← ∆ ∪ {(L · σ{x← d};π′)C};

12 end

13 end

14 end
15 return ∆∗

8.5 Picking the Next Decision

When making a new decision, we a pick a candidate (L;π), remove all the
already defined instances, and then test all immediate conflicts for blocking.

If there is a blocking conflict, we might then either pick an entirely new
decision candidate, or try to fix (L;π) by instantiating some variables in L, and
thereby generating a new set of candidates.

This can be achieved by picking a blocking ground instance C′ = Cδ which
contains ¬Lδ1,¬Lδ2 such that both Lδ1, Lδ2 ∈ gnd(L;π) and Lδ1 6= Lδ2 holds.
Now, choose a variable for which xδ1 6= xδ2, and split (L;π) into (L{x ←
xδ1};π{x← xδ1}) and (L;π ∧ x 6= xδ1). By instantiating further variables, we
eventually get a decision which is not blocking, since a ground decision is always
suitable.

A non-blocking decision is then added to Γ, and whether we found a non-
blocking conflict or not, we continue with conflict resolution or with calling PROP
after generating the immediate propagation candidates in a similar way as in
addConsequences.

Initially, the set of decision candidates are generated from the literals oc-
curring in N. This set can be later refined by the above steps, and individual
candidates might be substituted with sets of new candidates.

Since removing defined instances is always relative to the current Γ, it has
to be guaranteed that the set of all possible candidates covers the original set.
It can be ensured for example by keeping a trail for these refinement steps as
well, and re-roll them in parallel with the backtracking procedure.

8.6 Ranking Literals

Most current SAT solvers also employ variable selection schemes based on dy-
namic ranking of propositional variables. This technique rewards variables in-

35

Function addConsequences(N,U,Γ,ℓ′, PQ)

1 (L′ · σ′;π′)α ← ℓ′;
// Step 1: Check Type-1 Conflicts

2 foreach ℓ = (L · σ;π)C ∈ PQ do
3 if ∃δ = mgu(¬Lσ,L′σ′) and NF(πδ ∧ π′δ) 6= ⊥ and

notEmpty(πδ ∧ π′δ) then
4 conflictSet ← (C;σδ;πδ ∧ π′δ);
5 return false;

6 end

7 end
// Step 2: Adjust indexing level 1

8 adjustLevel1(N,U,ℓ′);
// Step 3: Generate consequences

9 foreach C ∈ getCandidates(N∪ U, ℓ′) do
10 foreach derivation (C; ∅;⊤)0 ⇒∗

Γ (L∗;σ∗;π∗)i with i ≥ 1 do
// Check Type-2 Conflicts

11 if i ≥ 2 then
12 if ∃ℓ = (L · σ;π)β ∈ Γ such that ∃δ = mgu(¬Lσ,L∗σ∗) and

NF(πδ ∧ π∗δ) 6= ⊥ and notEmpty(πδ ∧ π∗δ) then
13 conflictSet ← (C;σ∗δ;πδ ∧ π∗δ);
14 return false;

15 end

16 end

17 ℓ∗ ← (L∗ · σ∗;π∗)C ;
18 if freeLVars(ℓ∗) = ∅ then PQ ← PQ, ℓ∗;
19 else PQ ← PQ, elimFV(ℓ∗);

20 end

21 end
22 return true;

36

volved in recent conflicts, and proved itself efficient in the propositional context.
Following the footsteps of the now classic decaying variable sum, we reward

the literals involved in the clause learning phase following the latest conflict.
This is accomplished by maintaining a list of literals and scores. Whenever

some literal L is added to the clause of the intermediate state, we add a pair
(L; v) to this list.

To focus on recent conflicts, we increase v gradually, and occasionally we
reset v to some initial value and normalize the list. The latter can be trig-
gered upon reaching some extreme value, automatically after a certain number
conflicts, or at restarts.

Restarts are commonly used in SAT solvers to redirect the focus of the
search using the learned clauses and the current variable scores. Applying it
only finitely many times does not violate completeness.

Then, whenever we need to choose a new decision, we rank the candidates by
combining the scores belonging to literals which are unifiable with the candidate
in question. As an example we propose addition or maximum. We then choose
the literal with the highest combined score.

8.7 Clause Learning and Backjumping

As the conflicts are now discovered, every conflict-set uniquely assigns a Γ-
assignment to each literal of the conflict clause. This make detecting assertive-
ness easy and spares us a number of emptiness checks, as they are already done
during conflict detection. This way, the only non-deterministic choice is the
application of Factorize versus Resolve, when both is applicable.

Once a new clause is learned, a suitable backtrack level is needed. Should
we learn only the ground clauses in gnd(Cσ;π) when the last conflict-set is
(C;σ;π), we could determine the backtrack position at ease, similarly to the
propositional solvers.

But we learn the more general C, and the right backtrack position has to
be computed from all the instances of C. We have to consider all conflicting
instance of C w.r.t. Γ, and for each instance, we have to determine a minimal
backtrack position. Then, we backjump to the minimum of these positions.

Without providing more details, we only note that some instances produce
new assignments after backtrack, some might block existing decisions, and some
might even be new conflicts after backjump.

9 Related Work

In this section, we briefly compare NRCL to existing solutions. As Bernays-
Schönfinkel problems can be successfully handled with finite model finders as
well, we cover both BS-specific techniques and more general finite model building
approaches. In the case of the latter systems, we focus on their behavior on the
Bernays-Schönfinkel fragment.

The first successful approaches to finite model building were Mace and SEM,
see e.g. [31]. The early version of Mace flattens and grounds the given clause
set, and passes it on to a SAT solver. This approach is developed further by
Paradox [10].

37

Compared to this approach, we work directly with the first-order clause set
instead of the often exponentially larger set of ground instances.

The latest version of Mace [22] follows the approach of SEM [33] and
FINDER [30]. Instead of generating the ground instances, it maintains the
function and predicate tables, and fills them out using a sophisticated back-
tracking algorithm.

Compared to this approach, we represent the model implicitly via con-
strained literals, and let the learned clauses guide our calculus.

Over the last decade several attempts were made to lift the DPLL algorithm.
Model Evolution [7] and its implementation Darwin [5] represents a model with
a set of first-order literals, called context, and utilizes a backtracking algorithm
which detects conflicts via a propositional approximation. The latter approach
requires numerous extra branchings in Darwin.

It is refutationally complete over first-order clauses and provides a decision
procedure for the Bernays-Schönfinkel fragment. Its extension [6] enriches the
calculus with the ability to learn lemmas at conflicts.

Compared to Model Evolution, NRCL does not need expensive approxima-
tions to find conflicts, we treat redundancy, and we consider our model repre-
sentation easier to maintain. We also note that Model Evolution is a lifting of
DPLL, and relies on splitting the clauses and backtracking, while our search
makes progress with backjumping guided by clauses learned with resolution.

Furthermore, we handle redundancy and show that the clauses learned by
our calculus are non-redundant. Finally, it was shown in [12] that using contexts
might result in exponentially larger model representations.

We note that this result holds for the general case with function symbols,
but in our setting e.g. the constrained literal

(P (x1, x2, . . . , xk);x1 6= x2 ∧ x2 6= x3 ∧ . . . xk−1 6= xk)

whose size is O(k), requires a representation of size at least O(k2) as a con-
text. Thus, at least a quadratic relation holds even for the Bernays-Schönfinkel
fragment.

DPLL(SX) [27] attempts to lift DPLL to BS in the same manner as we do,
and uses substitution sets represented by BDDs as constraints. Substitution
sets provide an explicit way to represent models.

It is well-known that in the general setting with function symbols implicit
representations have stronger expressive power [26][20]. In our setting, explicit
representations have the potential to be exponentially larger then the corre-
sponding implicit representations.

The following simple example demonstrates this claim. Over D = {a, b, c},
consider the constrained literal

(P (x1, . . . , xk);x1 6= x2 ∧ x2 6= x3 ∧ · · · ∧ xk−1 6= xk)

Then it is easy to see that the corresponding explicit representation is made up
of all the ground instances covered by this literal.

Therefore, while the size of the implicit representation increases linearly in
k, the size of the corresponding explicit representation is O(2k), i.e. increases
exponentially in k.

The authors of this paper are convinced that this exponential blow-up hap-
pens whenever in the implicit representation has no finite explicit representation

38

(see [26][20] for details) in the language enriched with a function symbol. How-
ever, this conjuncture needs further consideration, and we leave it for future
work.

Furthermore, compared to DPLL(SX) our approach is more modular as it
allows the use of arbitrary constraint language, restricted only by the operations
we expect. We also address redundancy, and exploit the non-redundancy result
to show termination, which we consider a valuable addition.

The most recent calculus SGGS, introduced in [9], promises a semantically
guided, goal sensitive, model-based proof system. It uses simple constraints, so-
called standard forms, conjunctions of negative atomic constraints of the form
x 6= y, or top(x) 6= f .

Then, a model is represented by a sequence of constrained clauses with se-
lected literals. This sequence overrides a given initial interpretation I, which
serves both as initial model assumption and as semantic guidance for the cal-
culus.

The procedure then keeps expanding this sequence in order to satisfy more
and more clauses, and handles contradictions via resolution and splitting the
constrained clauses to maintain an invariant - every literal in every clause in
the sequence must have either only false, or only true instances w.r.t. I and the
constraints.

NRCL utilizes a more expressive constrained language, which allows tuples
to be used. This results in less fragmentation of the representation, i.e. SGGS
might need several constraints in standard form to express a single dismatching
constraint of our calculus.

This allows us to learn more general clauses, and also potentially decreases
the size of the representation. Our model representation relies on constrained
literals instead of clauses, and we consider it to be more explicit than the ap-
proach of SGGS which requires identifying the constrained instances of the
clauses which are indeed producing new assignments.

Finally, the resolution applied by SGGS only repairs the model, it can be
discarded later as the search progresses, and the splittings applied to maintain
the invariants also forces the result of resolution to be more specific, more local.
Compared to this, our calculus learns and saves new clauses, uses backjumping,
and we proved these clauses are non-redundant.

We also mention geometric resolution [24] which uses a special normal form
called geometric normal form. In this calculus the formulas themselves con-
stitute the rules of a system based on backtracking. Through the inference
geometric resolution it also provides a way to learn new formulas. The transfor-
mation to geometric normal form also includes flattening, which our approach
avoids.

The calculus Inst-Gen [14] and its implementation iProver [17] has been
quite successful at solving Bernays-Schönfinkel problems, and competitive even
for the first-order fragment. It generates a propositional approximation of the
clause set by instantiating all the variables with constants, and passes it on to
a SAT solver.

Unsatisfiability of the approximation entails the unsatisfiability of the origi-
nal problem. On the other hand, if an abstract model is generated, it is used to
guide the calculus to add proper instances of the original clauses, which refines
the propositional abstraction.

This procedure is continued then, until either unsatisfiability is proven, or

39

saturation is achieved, which implies that the abstract model can be lifted to a
first-order model for the original clause set.

The algorithm is further enhanced by using dismatching constraints, and
applying redundancy elimination based on generating first-order resolvents for
subsumption with a theorem prover, and finding simplification candidates effi-
ciently with ground reasoning.

Compared to iProver, our approach is fine-grained, as the evaluation and
refinement of our abstraction happen interleaved with the other reasoning steps.
Furthermore, we work directly with the original clause set, and our trail always
corresponds to a consistent first-order model candidate.

Finally, even general purpose first-order theorem provers implement special-
ized techniques to handle Bernays-Schönfinkel problems.

Generalisation introduced in [25] for Vampire is an additional technique for
resolution-based saturation. It infers P (x) if P (c) has been established for all
relevant constant c. Coupled with efficient sort inference, it has the potential
to exponentially speed up theorem proving.

The technique introduced in [16] for SPASS employs a combination of re-
stricted superposition on Horn clauses, and labelled splitting [13] on non-Horn
clauses.

Compared to these approaches, NRCL maintains a model candidate, it is
restricted to learn clauses only at conflicts and only non-redundant ones, con-
tains no Horn clause restrictions, and the implicit branchings through decisions
and backjumps are more elaborate and guided by the model search, compared
to the splitting techniques employed by first-order theorem provers.

10 Conclusion

In this paper, we proposed the decision procedure NRCL for the Bernays-
Schönfinkel fragment. Our approach represents a model candidate as a set
of constrained literals, and establishes a model or a proof of unsatisfiability
through a series of decisions, propagations, and learning new clauses.

Our work closely relates to DPLL(SX) [27], which introduces a similar cal-
culus, and the more recent calculus SGGS [9]. Compared to earlier work in this
direction, we investigated the standard redundancy notion w.r.t. the ordering
induced by the current trail. In particular, we proved that each learned clause
is non-redundant in our calculus, and we based our termination proof on this
result.

In Section 8, we addressed some of the difficulties of this approach, and
provided details for implementation. Finally, we gave a brief comparison to the
existing solutions in Section 9.

As future research, the immediate goal is to make an efficient implemen-
tation of NRCL. This includes developing suitable and efficient term indexing
structures, possibly revising the constraint language, and defining concrete and
efficient heuristics for selecting decisions.

On the other hand, the long-term goal of our research is to extend this
calculus beyond Bernays-Schönfinkel. The next step into this direction is to
enrich our calculus with function symbols and sorts to handle the non-cyclic
fragment introduced in [19]. This fragment still has the finite Herbrand model

40

property, thus, we are reasonably convinced that our results will directly extend
to this fragment.

The further goals are to consider fragments decidable with superposition,
to introduce equality into our calculus, and finally to extend our work to finite
model finding.

References

[1] A. Armando, P. Baumgartner, and G. Dowek, eds. Automated Reason-
ing, 4th International Joint Conference, IJCAR 2008, Sydney, Australia,
August 12-15, 2008, Proceedings, 2008, LNCS 5195. Springer.

[2] L. Bachmair and H. Ganzinger. Resolution Theorem Proving. In Robinson
and Voronkov [28], pp. 19–99.

[3] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic Paramodula-
tion and Superposition. In D. Kapur, ed., Automated Deduction - CADE-
11, 11th International Conference on Automated Deduction, Saratoga
Springs, NY, USA, June 15-18, 1992, Proceedings, 1992, LNCS 607, pp.
462–476. Springer.

[4] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic Paramodula-
tion. Inf. Comput., 121(2):172–192, 1995.

[5] P. Baumgartner, A. Fuchs, U. Koblenz-landau, F. Informatik, C. Tinelli,
and B. F. Tinelli. Darwin: A Theorem Prover for the Model Evolution
Calculus, 2004.

[6] P. Baumgartner, A. Fuchs, and C. Tinelli. Lemma Learning in the Model
Evolution Calculus. In M. Hermann and A. Voronkov, eds., LPAR, 2006,
LNCS 4246, pp. 572–586. Springer.

[7] P. Baumgartner and C. Tinelli. The Model Evolution Calculus. In
F. Baader, ed., CADE, 2003, LNCS 2741, pp. 350–364. Springer.

[8] A. Biere, M. Heule, H. van Maaren, and T. Walsh, eds. Handbook of
Satisfiability, 2009, Frontiers in Artificial Intelligence and Applications, vol.
185. IOS Press.

[9] M. P. Bonacina and D. A. Plaisted. SGGS theorem proving: an exposition.
Notes of the Fourth Workshop on Practical Aspects in Automated Reasoning
(PAAR), Seventh International Joint Conference on Automated Reasoning
(IJCAR) and Sixth Federated Logic Conference (FLoC), Vienna, Austria,
July 2014., 2014.

[10] K. Claessen and N. Srensson. New Techniques that Improve MACE-style
Finite Model Finding. In Proceedings of the CADE-19 Workshop: Model
Computation - Principles, Algorithms, Applications, 2003.

[11] H. Comon. Disunification: A Survey. In Computational Logic - Essays in
Honor of Alan Robinson, 1991, pp. 322–359.

41

[12] C. G. Fermüller and R. Pichler. Model Representation via Contexts and
Implicit Generalizations. In R. Nieuwenhuis, ed., CADE, 2005, LNCS 3632,
pp. 409–423. Springer.

[13] A. Fietzke and C. Weidenbach. Labelled splitting. In Ann. Math. Artif.
Intell. Vol. 55 No. 1-2, 2009, pp. 3–34.

[14] H. Ganzinger and K. Korovin. New Directions in Instantiation-Based The-
orem Proving. In LICS, 2003, pp. 55–64. IEEE Computer Society.

[15] G. Higman. Ordering by Divisibility in Abstract Algebras. Proceedings of
the London Mathematical Society, s3-2(1):326–336, 1952.

[16] T. Hillenbrand and C. Weidenbach. Superposition for Bounded Domains.
In M. P. Bonacina and M. Stickel, eds., McCune Festschrift, 2013, LNCS
7788, pp. 68–100. Springer. Based on the Research Report MPI-I-2007-
RG1-002.

[17] K. Korovin. iProver - An Instantiation-Based Theorem Prover for First-
Order Logic (System Description). In Armando et al. [1], pp. 292–298.

[18] K. Korovin. Inst-Gen - A Modular Approach to Instantiation-Based Auto-
mated Reasoning. In A. Voronkov and C. Weidenbach, eds., Programming
Logics, 2013, LNCS 7797, pp. 239–270. Springer.

[19] K. Korovin. Non-cyclic Sorts for First-Order Satisfiability. In P. Fontaine,
C. Ringeissen, and R. A. Schmidt, eds., FroCos, 2013, LNCS 8152, pp.
214–228. Springer.

[20] J.-L. Lassez and K. Marriott. Explicit Representation of Terms Defined by
Counter Examples. J. Autom. Reasoning, 3(3):301–317, 1987.

[21] H. R. Lewis. Complexity Results for Classes of Quantificational Formulas.
J. Comput. Syst. Sci., 21(3):317–353, 1980.

[22] W. McCune. Mace4 Reference Manual and Guide. CoRR, cs.SC/0310055,
2003.

[23] R. Nieuwenhuis and A. Rubio. Paramodulation-Based Theorem Proving.
In Robinson and Voronkov [28], pp. 371–443.

[24] H. de Nivelle and J. Meng. Geometric Resolution: A Proof Procedure Based
on Finite Model Search. In U. Furbach and N. Shankar, eds., IJCAR, 2006,
LNCS 4130, pp. 303–317. Springer.

[25] J. A. N. Pérez and A. Voronkov. Proof Systems for Effectively Propositional
Logic. In Armando et al. [1], pp. 426–440.

[26] R. Pichler. Explicit versus implicit representations of subsets of the Her-
brand universe. Theor. Comput. Sci., 290(1):1021–1056, 2003.

[27] R. Piskac, L. M. de Moura, and N. Bjørner. Deciding Effectively Propo-
sitional Logic Using DPLL and Substitution Sets. J. Autom. Reasoning,
44(4):401–424, 2010.

42

[28] J. A. Robinson and A. Voronkov, eds. Handbook of Automated Reasoning
(in 2 volumes). Elsevier and MIT Press, 2001.

[29] J. P. M. Silva and K. A. Sakallah. Conflict Analysis in Search Algorithms
for Satisfiability. In ICTAI, 1996, pp. 467–469.

[30] J. K. Slaney. FINDER: Finite Domain Enumerator - System Description.
In A. Bundy, ed., CADE, 1994, LNCS 814, pp. 798–801. Springer.

[31] T. Tammet. Finite Model Building: Improvements and Comparisons. In
In: Model Computation Principles, Algorithms, Applications, CADE-19
Workshop W4, 2003.

[32] C. Weidenbach. Combining Superposition, Sorts and Splitting. In Robinson
and Voronkov [28], pp. 1965–2013.

[33] J. Zhang and H. Zhang. SEM: a System for Enumerating Models. In IJCAI,
1995, pp. 298–303. Morgan Kaufmann.

43

	1 Introduction
	2 Preliminaries
	2.1 Basic Definitions
	2.2 Constraints and Constrained Literals
	2.3 Operations on Constrained Literals
	2.4 Model Representation
	2.5 Induced Ordering

	3 Calculus
	3.1 Rules for Conflict Search
	3.2 Rules for Conflict Resolution
	3.3 Example

	4 Soundness
	5 Regular Runs
	6 Redundancy
	6.1 Learning Non-Redundant Clauses
	6.2 Admissible Redundancies

	7 Termination and Completeness
	8 Towards Implementation
	8.1 Free Variables
	8.2 Indexing Scheme
	8.3 Finding Candidates
	8.4 Exhaustive Propagation
	8.5 Picking the Next Decision
	8.6 Ranking Literals
	8.7 Clause Learning and Backjumping

	9 Related Work
	10 Conclusion

