
ar
X

iv
:1

50
3.

02
97

1v
2 

 [
cs

.L
O

] 
 2

1 
M

ay
 2

01
5

First-Order Logic Theorem Proving and Model

Building via Approximation and Instantiation

Andreas Teucke1,2 and Christoph Weidenbach1

1 Max-Planck Institut for Informatics, Campus E1 4 66123 Saarbrücken Germany
2 Graduate School of Computer Science, Saarbrücken, Germany

Abstract. In this paper we consider first-order logic theorem proving
and model building via approximation and instantiation. Given a clause
set we propose its approximation into a simplified clause set where sat-
isfiability is decidable. The approximation extends the signature and
preserves unsatisfiability: if the simplified clause set is satisfiable in some
model, so is the original clause set in the same model interpreted in the
original signature. A refutation generated by a decision procedure on the
simplified clause set can then either be lifted to a refutation in the orig-
inal clause set, or it guides a refinement excluding the previously found
unliftable refutation. This way the approach is refutationally complete.
We do not step-wise lift refutations but conflicting cores, finite unsatisfi-
able clause sets representing at least one refutation. The approach is dual
to many existing approaches in the literature because our approximation
preserves unsatisfiability.

1 Introduction

The Inst-Gen calculus by Ganzinger and Korovin [5] and its implementation
in iProver has shown to be very successfull. The calculus is based on a under-
approximation - instantiation refinement loop. A given first-order clause set is
under-approximated by finite grounding and afterwards a SAT-solver is used to
test unsatisfiability. If the ground clause set is unsatisfiable then a refutation for
the original clause set is found. If it is satisfiable, the model generated by the
SAT-solver is typically not a model for the original clause set. If it is not, it is
used to instantiate the original clause such that the found model is ruled out for
the future.

In this paper we define a calculus that is dual to the Inst-Gen calculus.
A given first-order clause set is over-approximated into a decidable fragment
of first-order logic: a monadic, shallow, linear Horn (mslH) theory [12]. If the
over-approximated clause set is satisfiable, so is the original clause set. If it is
unsatisfiable, the found refutation is typically not a refutation for the original
clause set. If it is not, the refutation is analyzed to instantiate the original
clause set such that the found refutation is ruled out for the future. The mslH
fragment properly include first-order ground logic, but is also expressive enough
to represent minimal infinite models.

http://arxiv.org/abs/1503.02971v2


In addition to developing a new proof method for first-order logic this con-
stitutes our second motivation for studying the new calculus and the particular
mslH approximation. It is meanwhile accepted that a model-based guidence can
significantly improve an automated reasoning calculus. The propositional CDCL
calculus [8] is one prominent example for this insight. In first-order logic, (par-
tial) model operators typically generate inductive models for which almost all
interesting properties become undecidable, in general. One way out of this prob-
lem is to generate a model for an approximated clause set, such that important
properties with respect to the original clause set are preserved. In the case of
our calculus and approximation, a found model can be effectively translated
into a model for the original clause set. So our result is also a first step towards
model-based guidence in first-order logic automated reasoning.

For example, consider the first-order Horn clauses S(x) → P (x, g(x)); S(a);
S(b); S(g(x)); ¬P (a, g(b)); ¬P (g(x), g(g(x))) that are approximated (Section 2)
into the mslH theory S(x), R(y) → T (fP (x, y)); S(x) → R(g(x)); S(a); S(b);
S(g(x)); ¬T (fP (a, g(b))); ¬T (fP (g(x), g(g(x)))) where the relation P is encoded
by the function fP and the non-linear occurrence of x in the first clause is ap-
proximated by the introduction of the additional variable y. The approximated
clause set has two refutations: one using ¬T (fP (a, g(b))) and the second us-
ing ¬T (fP (g(x), g(g(x)))) plus the rest of the clauses, respectively. While the
first refutation cannot be lifted, the second one is liftable to a refutation of the
original clause set (Section 3). Actually, we do not consider refutations, but con-
flicting cores (Definition 1). Conflicting cores are finite, unsatisfiable clause sets
where variables are considered to be shared among clauses and rigid such that
any instantiation preserves unsatisfiability. Conflicting cores can be effectively
generated out of refutations via instantiation of (copies of) the input clauses
involved in the refutation. For the above second refutation the conflicting core
of the approximated clause set is S(g(x)), R(g(g(x))) → T (fP (g(x), g(g(x))));
S(g(x)) → R(g(g(x))); S(g(x)); ¬T (fP (g(x), g(g(x)))).
In case the first refutation is selected for lifting, it fails, so the original clause set
is refined (Section 4). The refinement replaces the first clause with
S(a) → P (a, g(a)); S(b) → P (b, g(b)) and S(g(x)) → P (g(x), g(g(x))).
The approximation of the resulting new clause set does no longer enable a refuta-
tion using ¬T (fP (a, g(b))). Therefore, the refutation using ¬T (fP (g(x), g(g(x))))
is found after refinement. In case the original clause set contains a non-Horn
clause, one positive literal is selected by the approximation.

The paper is now organized as follows. Section 2 introduces some basic no-
tions and the approximation relation ⇒APR that transforms any first-order
clause set into an mslH theory. The lifting of conflicting cores is described in
Section 3 and the respective abstraction refinement in Section 4 including sound-
ness and completeness results. Missing proofs can be found in the appendix. The
paper ends with Section 5 on future/related work and a conclusion.

2



2 Linear Shallow Monadic Horn Approximation

We consider a standard first-order language without equality where Σ denotes
the set of function symbols. The symbols x, y denote variables, a, b constants,
f, g, h are functions and s, t terms. Predicates are denoted by S, P,Q,R, literals
by E, clauses by C,D, and sets of clauses by N,M . The term t[s]p denotes that
the term t has the subterm s at position p. The notion is extended to atoms,
clauses, and multiple positions. A predicate with at most one argument is called
monadic. A literal is either an atom or an atom preceded by ¬ and it is then
respectively called positive or negative. A term is shallow if it has at most depth
one. It is called linear if there are no duplicate variable occurrences. A literal,
where every term is shallow, is also called shallow. A clause is a multiset of
literals which we write as an implication Γ → ∆ where the atoms in ∆ denote
the positive literals and the atoms in Γ the negative literals. If Γ is empty we
omit →, e.g., we write P (x) instead of → P (x) whereas if ∆ is empty → is
always shown. If a clause has at most one positive literal, it is a Horn clause.
If there are no variables, then terms, atoms and clauses are respectively called
ground. A substitution σ is a mapping from variables into terms denoted by pairs
{x 7→ t}. If for some term (literal, clause) t, tσ is ground, then σ is a grounding
substitution.

A Herbrand interpretation I is a - possibly infinite - set of positive ground
literals and I is said to satisfy a clause C = Γ → ∆, denoted by I � C, if
∆σ ∩ I 6= ∅ or Γσ 6⊆ I for every grounding substitution σ. An interpretation
I is called a model of N if I satisfies N , I � N , i.e., I � C for every C ∈ N .
Models are considered minimal with respect to set inclusion. A set of clauses
N is satisfiable, if there exists a model that satisfies N . Otherwise the set is
unsatisfiable.

Definition 1 (Conflicting Core) A finite clause set N⊥ is a conflicting core
if for all grounding substitutions τ the clause set N⊥τ is unsatisfiable. N⊥ is a
conflicting core of N if N⊥ is a conflicting core and for every clause C ∈ N⊥

there exists a C′ ∈ N such that C = C′σ.

Definition 2 (Specific Instances) Let C be a clause and σ1, σ2 be two sub-
stitutions such that Cσ1 and Cσ2 have no common instances. Then the specific
instances of C with respect to σ1, σ2 are clauses Cτ1, . . . , Cτn such that (i) any
ground instance of C is an instance of some Cτi, (ii) there is no Cτi such that
both Cσ1 and Cσ2 are instances of Cτi.

The definition of specific instances can be extended to a single substitution
σ. In this case we require C and σ to be linear, condition (i) from Definition 2
above, Cσ = Cτ1 and no Cτi, i 6= 1 has a common instance with Cτ1. Note that
under the above restrictions specific instances always exist [6].

Definition 3 (Approximation) Given a clause set N and a relation ⇒ on
clause sets with N ⇒ N ′ then (1) ⇒ is called an over-approximation if satisfia-
bility of N ′ implies satisfiability of N , (2) ⇒ is called an under-approximation
if unsatisfiability of N ′ implies unsatisfiability of N .

3



Next we introduce our concrete over-approximation ⇒APR that eventually
maps a clause set N to an mslH clause set N ′. Starting from a clause set N
the transformation is parameterized by a single monadic projection predicate T ,
fresh to N and for each non-monadic predicate P a projection function fP fresh
to N . The approximation always applies to a single clause and we establish on
the fly an ancestor relation between the approximated clause(s) and the parent
clause. The ancestor relation is needed for lifting and refinement.

Monadic N ∪ {Γ → ∆,P (t1, . . . , tn)} ⇒MO N ∪ {Γ → ∆,T (fP (t1, . . . , tn))}

provided n > 1; P (t1, . . . , tn) is the ancestor of T (fP (t1, . . . , tn))

Horn N ∪ {Γ → E1, . . . , En} ⇒HO N ∪ {Γ → Ei}

provided n > 1; Γ → E1, . . . , En is the ancestor of Γ → Ei

Shallow N ∪ {Γ → E[s]p} ⇒SH N ∪ {S(x), Γ1 → E[x]p} ∪ {Γ2 → S(s)}

provided s is a complex term, p not a top position, x and S fresh, and Γ1∪Γ2 = Γ ;
Γ → E[s]p is the ancestor of S(x), Γ1 → E[x]p and Γ2 → S(s)

Linear N ∪ {Γ → E[x]p,q} ⇒LI N ∪ {Γ{x 7→ x′}, Γ → E[x′]q}

provided x′ is fresh, the positions p, q denote two different occurrences of x in
E; Γ → E[x]p,q is the ancestor of Γ{x 7→ x′}, Γ → E[x′]q

For the Horn transformation, the choice of the Ei is arbitrary. In the Shallow
rule, Γ1 and Γ2 can be arbitrarily chosen as long as they “add up” to Γ . The goal,
however, is to minimize the set of common variables vars(Γ2, s)∩vars(Γ1, E[x]p).
If this set is empty the Shallow transformation is satisfiability preserving. In rule
Linear, the duplication of Γ is not needed if x 6∈ vars(Γ ).

Definition 4 (⇒APR) The overall approximation ⇒APR is given by ⇒APR =
⇒MO ∪ ⇒HO ∪ ⇒SH ∪ ⇒LI with a preference on the different rules where
Monadic precede Horn precede Shallow precede Linear transformations.

Definition 5 Given a non-monadic n-ary predicate P , projection predicate T ,
and projection function fP , define the injective function µP (P (t1, . . . , tn)) :=
T (fp(t1, . . . , tn)) and µP (Q(s1, . . . , sm)) := Q(s1, . . . , sm) for any atom with a
predicate symbol different from P . The function is extended to clauses, clause
sets and interpretations.

Lemma 1 (⇒APR is sound and terminating) The approximation rules are
sound and terminating: (i) ⇒APR terminates (ii) the Monadic transformation is
an over-approximation (iii) the Horn transformation is an over-approximation
(iv) the Shallow transformation is an over-approximation (v) the Linear trans-
formation is an over-approximation

4



Proof. (i) The transformations can be considered sequentially, because of the im-
posed rule preference (Definition 4). The monadic transformation strictly reduces
the number of non-monadic atoms. The Horn transformation strictly reduces
the number of non-Horn clauses. The Shallow transformation strictly reduces
the multiset of term depths of the newly introduced clauses compared to the
removed ancestor clause. The linear transformation strictly reduces the number
of duplicate variables occurrences in positive literals. Hence ⇒APR terminates.

(ii) Consider a transformation Nk ⇒∗
MO Nk+j that exactly removes all oc-

currences of atoms P (t1, . . . , tn) and replaces those by atoms T (fP (t1, . . . , tn)).
Then, Nk+j = µP (Nk) and Nk = µ−1

P (Nk+j). Let I be a model of Nk+j and
C ∈ Nk. Since µP (C) ∈ Nk+j , I � µP (C) and thus, µ−1

P (I) � C. Hence,
µ−1

P (I) is a model of Nk. Therefore, the Monadic transformation is an over-
approximation.

(iii) Let N ∪ {Γ → E1, . . . , En} ⇒HO N ∪ {Γ → Ei}. The clause Γ → Ei

subsumes the clause Γ → E1, . . . , En. Therefore, for any I if I |= Γ → Ei

then I |= Γ → E1, . . . , En. Therefore, the Horn transformation is an over-
approximation.

(iv) LetNk = N∪{Γ → E[s]p} ⇒SH Nk+1 = N∪{S(x), Γ1 → E[x]p}∪{Γ2 →
S(s)}. Let I be a model of Nk+1 and C ∈ Nk be a ground clause. If C is an
instance of a clause in N , then I |= C. Otherwise C = (Γ → E[s]p)σ for some
ground substitution σ. Then S(s)σ, Γ1σ → E[s]pσ = (S(x), Γ1 → E[x]p){x 7→
s}σ ∈ Nk+1 and Γ2σ → S(s)σ = (Γ2 → S(s))σ ∈ Nk+1. Since I |= Nk+1, I also
satisfies the resolvent Γ1σ, Γ2σ → E[s]σ = C. Hence I |= Nk. Therefore, the
Shallow transformation is an over-approximation.

(v) Let Nk = N∪{Γ → E[x]p,q} ⇒LI Nk+1 = N ∪{Γ{x 7→ x′}, Γ → E[x′]q}.
Let I be a model of Nk+1 and C ∈ Nk be a ground clause. If C is an instance
of a clause in N , then I |= C. Otherwise C = (Γ → E[x]p,q)σ for some ground
substitution σ. Then (Γ{x 7→ x′}, Γ → E[x′]q){x′ 7→ x}σ ∈ Nk+1 and I |=
(Γ{x 7→ x′}, Γ → E[x′]q){x′ 7→ x}σ = (Γ, Γ → E[x]q)σ |= C. Hence I |= Nk.
Therefore, Linear transformation is an over-approximation.

Corollary 2 (i) ⇒APR is an over-approximation. (ii) If N ⇒∗
APR N ′, P1, . . . , Pn

are the non-monadic predicates in N and N ′ is satisfied by model I,
then µ−1

P1
(...(µ−1

Pn
(I))) is a model of N .

Proof. Follows from Lemma 1 (ii)-(v).

In addition to being an over-approximation, the minimal model (with respect
to set inclusion) of the eventual approximation generated by ⇒APR preserves
the skeleton term structure of the original clause set, if it exists. The refinement
introduced in Section 4 instantiates clauses. Thus it contributes to finding a
model or a refutation.

Definition 6 (Term Skeleton) The term skeleton of term t , skt(t), is defined
as
(1) skt(x) = x′, where x′ is a fresh variable
(2) skt(f(s1, . . . , sn)) = f(skt(s1), . . . , skt(sn)).

5



Lemma 3 Let Nk be a monadic clause set and N0 be its approximation via
⇒APR. Let N0 be satisfiable and I be a minimal model for N0. If P (s) ∈ I and
P is a predicate in Nk, then there exists a clause C = Γ → ∆,P (t) ∈ Nk and
a substitution σ such that s = skt(t)σ and for each variable x and predicate S
with C = S(x), Γ ′ → ∆,P (t[x]p), S(s

′′) ∈ I, where s = s[s′′]p.

Proof. By induction on k.
For the base Nk = N0, assume there is no C ∈ N0 with Cσ = Γ → ∆,P (s) and
Γ ⊆ I. Then I \ {P (s)} is still a model of N0 and therefore I is not minimal.
Let N = Nk ⇒APR Nk−1 ⇒∗

APR N0, P (s) ∈ I and P is a predicate in Nk and
hence also in Nk−1. By the induction hypothesis, there exist a clause C = Γ →
∆,P (t) ∈ Nk−1 and a substitution σ such that s = skt(t)σ and for each variable
x and predicate S with C = S(x), Γ ′ → ∆,P (t[x]p), S(s

′′) ∈ I, where s = s[s′′]p.
The first approximation rule application is either a Linear, a Shallow or a Horn
transformation, considered below by case analysis.

Horn Case. Let⇒APR be a Horn transformation that replaces Γ ′′ → ∆′, Q(t′)
with Γ ′′ → Q(t′). If C 6= Γ ′′ → Q(t′), then C ∈ Nk fulfills the claim. Otherwise,
Γ ′′ → ∆′, Q(t) ∈ Nk fulfills the claim since P = Q and Γ ′ = Γ ′′.

Linear Case. Let ⇒APR be a linear transformation that replaces Ck = Γ ′′ →
E[x]p,q with Ck−1 = Γ ′′, Γ ′′{x 7→ x′} → E[x′]q. If C 6= Ck−1, then C ∈ Nk

fulfills the claim. Otherwise, Ck = Γ ′′ → P (t){x′ 7→ x} ∈ Nk fulfills the claim
since s = skt(t)σ = skt(t{x′ 7→ x})σ and Γ ′′ ⊆ Γ ′′, Γ ′′{x 7→ x′}.

Shallow Case. Let ⇒APR be a shallow transformation that replaces Ck =
Γ ′′ → E[s′]p with Ck−1 = S(x), Γ1 → E[x]p and C′

k−1
= Γ2 → S(s′). Since S

is fresh, C 6= C′
k−1. If C 6= Ck−1, then C ∈ Nk fulfills the claim. Otherwise,

C = Ck−1 = S(x), Γ1 → P (t[x]p) and hence, s = skt(t[x]p)σ and S(s′′) ∈ I for
s = s[s′′]p. Then by the induction hypothesis, there exist a clause CS = ΓS →
∆S , S(tS) ∈ Nk−1 and a substitution σS such that s′′ = skt(tS)σS and for each
variable x and predicate S′ with CS = S′(x), Γ ′

S → ∆S , P (tS [x]q), S
′(s′′′) ∈ I,

where s′′ = s′′[s′′′]q. By construction, CS = C′
k−1

. Thus, s′′ = skt(s′)σS and
s = skt(t[x]p)σ imply there exists a σ′′ such that s = skt(t[s′]p)σ”. Furthermore
since Γ1 ∪ Γ2 = Γ ′′, if Ck = S′(x), Γ ′′′ → P (t[s′]p)[x]q , then either S′(x) ∈ Γ1

and thus S′(s′′′′) ∈ I, where s = s[s′′′′]q, or S′(x) ∈ Γ2 and thus S′(s′′′′) ∈ I,
where s[s′′]p = (s[s′′]p)[s

′′′′]q. Hence, Ck ∈ Nk fulfills the claim.

Lemma 4 Let N be a clause set and N ′ be its approximation via ⇒APR. Let N
′

be satisfiable and I be a minimal model for N ′. If P (s) ∈ I (T (fp(s1, . . . , sn)) ∈
I) and P is a predicate in N , then there exist a clause Γ → ∆,P (t) ∈ N (Γ →
∆,P (t1, . . . , tn) ∈ N) and a substitution σ such that s = skt(t)σ (si = skt(ti)σ
for all i).

Proof. Let P1, . . . , Pn be the non-monadic predicates inN andNMO = µP1
(. . . (µPn

(N))).
Then, NMO is monadic and also has N ′ as its approximation via ⇒APR.

Let P (s) ∈ I and P is a predicate in N . Since P is monadic, P is a predicate
in NMO. Hence by Lemma 3, there exists a clause Γ → ∆,P (t) ∈ NMO and a
substitution σ such that s = skt(t)σ. Then, µ−1

P1
(. . . (µ−1

Pn
(Γ → ∆,P (t))) . . .) =

µ−1

P1
(. . . (µ−1

Pn
(Γ ) . . .) → µ−1

P1
(. . . (µ−1

Pn
(∆) . . .), P (t) ∈ N fulfills the claim.

6



Let T (fp(s1, . . . , sn)) ∈ I and P is a predicate in N . T is monadic and a pred-
icate inNMO. Hence by Lemma 3, there exists a clause Γ → ∆,T (t) ∈ NMO and
a substitution σ such that fp(s1, . . . , sn) = skt(t)σ. Therefore, t = fp(t1, . . . , tn)
with si = skt(ti)σ for all i. Then, µ−1

P1
(. . . (µ−1

Pn
(Γ → ∆,T (fp(t1, . . . , tn)))) . . .) =

µ−1

P1
(. . . (µ−1

Pn
(Γ ) . . .) → µ−1

P1
(. . . (µ−1

Pn
(∆) . . .), P (t1, . . . , tn) ∈ N fulfills the claim.

The above lemma also holds if satisfiability of N ′ is dropped and I is replaced
by the superposition partial minimal model operator [13].

3 Lifting the Conflicting Core

Given a monadic, linear, shallow, Horn approximation Nk of N and a conflicting
core N⊥

k of Nk, using the transformations provided in this section we attempt
to lift N⊥

k to a conflicting core N⊥ of N . In case of success this shows the
unsatisfiability of N . In case an approximation step cannot be lifted the original
clause set is refined by instantiation, explained in the next section.

Let Nk be an unsatisfiable monadic, linear, shallow, Horn approximation.
Since Nk belongs to a decidable first-order fragment, we expect an appropriate
decision procedure to generate a proof of unsatisfiability for Nk, e.g., ordered
resolution with selection [12]. A conflicting core can be straightforwardly gener-
ated out of a resolution refutation by applying the substitutions of the proof to
the used input clauses.

Starting with a resolution refutation, in order to construct the conflicting
core, we begin with the singleton set containing the pair of empty clause and the
empty substitution. Furthermore, we assume that all input clauses from Nk used
in the refutation are variable disjoint. Then we recursively choose a pair (C, σ)
from the set where C /∈ Nk. There exists a step in the refutation that generated
this clause. In the case of a resolution inference, there are two parent clauses
C1 and C2 in the refutation and two substitutions σ1 and σ2 such that C is the
resolvent of C1σ1 and C2σ2. In the case of a factoring inference, there is one
parent clause C′ in the refutation and a substitution σ′ such that C is the factor
of C′σ′. Replace (C, σ) by (C1, σ1σ) and (C2, σ2σ) or by (C′, σ′σ) respectively.
The procedure terminates in linear time in the size of the refutation. For each
pair (C, σ), collect the clause Cσ, resulting in a conflicting core N⊥

k of Nk.

Example 1 Let N = {P (x, x′); P (y, a), P (z, b) →} with signature Σ = a/0, b/0.
N is unsatisfiable and a possible resolution refutation is resolving P (b, a) and
P (a, b) with P (b, a), P (a, b) →. From this we get the conflicting core
N⊥

ba = {P (b, a);P (a, b);P (b, a), P (a, b) →}.
An alternative refutation is to resolve P (x, x′) and P (y, a), P (z, b) → with

substitution {x 7→ y;x′ 7→ a} and then the resolvent and P (x, x′) with substi-
tution {x 7→ z;x′ 7→ b}. From this refutation we construct the conflicting core
N⊥

yz = {P (y, a); P (z, b); P (y, a), P (z, b) →}.

Note that in Example 1 N⊥
yz is more general than N⊥

ba since N⊥
yz{y 7→ b; z 7→

a} = N⊥
ba. A conflicting core is minimal in that it represents the most general

clauses corresponding to the refutation from that it is generated.

7



Lifting the Monadic Transformation. Since the Monadic transformation is
satisfiability preserving, lifting always succeeds by replacing any T (fP (t1, . . . , tn))
atoms in the core by P (t1, . . . , tn).

Example 2 Let N0 = {P (x, x′); P (y, a), P (z, b) →}. Then Nk = {T (fP (x, x′));
T (fP (y, a)), T (fP (z, b)) →} is a Monadic transformation of N0 and a conflicting
core is N⊥

k = {T (fP (y, a)); T (fP (z, b)); T (fP (y, a)), T (fP (z, b)) →}. Reverting
the atoms in N⊥

k gives N⊥ = {P (y, a); P (z, b); P (y, a), P (z, b) →} a conflicting
core of N0.

Lemma 5 (Lifting the Monadic Transformation) Let Nk ⇒∗
MO

Nk+l be
the transformation that exactly removes all occurrences of atoms P (t1, . . . , tn)
and replaces those by atoms T (fP (t1, . . . , tn)). If N

⊥
k+l is a conflicting core for

Nk+l then there is a conflicting core N⊥
k of Nk.

Proof. Since the Monadic transformation is satisfiability preserving, unsatisfi-
ability of Nk+l directly implies unsatisfiability of Nk and the existence of a
conflicting core of Nk.

Lifting the Horn Transformation. For a Horn transformation there are
two ways for lifting. The first, directly lifting the core, only succeeds in special
cases, where the original clause and its approximation are equivalent for the
instantiations appearing in the core.

Example 3 Let N0 = {P (a, b) →; P (x, b), P (a, y)}. Then Nk = {P (a, b) →
; P (x, b)} is a Horn transformation of N0 and a conflicting core is N⊥

k =
{P (a, b) →; P (a, b)}. By substituting y with b, N⊥

k lifts to N⊥ = {P (a, b) →;
P (a, b), P (a, b)} a conflicting core of N0.

Lemma 6 (Lifting the Horn Transformation (direct)) Let Nk ⇒HO Nk+1

where Nk = N ∪ {Γ → E1, . . . , En} and Nk+1 = N ∪ {Γ → Ei}. Let N⊥
k+1

be

a conflicting core of Nk+1. If for all (Γ → Ei)σj ∈ N⊥
k+1, 1 ≤ j ≤ m there is

a substitution σ′
j such that N j

kτj |= (Γ → E1, . . . , En)σ
′
j → (Γ → Ei)σj, such

that N j
k ⊆ Nk and N j

kτj ∪ {(Γ → E1, . . . , En)σ
′
j ,¬(Γ → Ei)σj} is a conflicting

core, then N⊥
k+1

\ {(Γ → Ei)σj | 1 ≤ j ≤ m} ∪ {(Γ → E1, . . . , En)σ
′
j | 1 ≤ j ≤

m} ∪
⋃

j

N j
kτj is a conflicting core of Nk.

Proof. Let σ be a grounding substitution for N⊥
k and N⊥

k+1. Since Nk |= (Γ →

E1, . . . , En)σ
′
j → (Γ → Ei)σj , N

⊥
k σ |= N⊥

k σ ∪ {(Γ → Ei)σj | 1 ≤ j ≤ m}σ |=

N⊥
k+1

σ. Hence, N⊥
k σ is unsatisfiable because N⊥

k+1
σ is unsatisfiable. Therefore,

N⊥
k is an conflicting core of Nk.

Of course, the condition N j
kτj |= (Γ → E1, . . . , En)σ

′
j → (Γ → Ei)σj itself is

undecidable, in general. The above lemma is meant to be a justification for the
cases where this relation can be decided, e.g, by reduction. In general, the next

8



lemma applies. We assume any non-Horn clauses have exactly two positive liter-
als. Otherwise, we would have first redefined pairs of positive literals using fresh
predicates. Further assume w.l.o.g. that Horn transformation always chooses the
first positive Literal of a non-Horn clause.

The indirect method uses the information from the conflicting core to re-
place the non-Horn clause with a satisfiable equivalent unit clause, which is then
solved recursively. Since this unit clause is already Horn, we lifted one Horn
approximation step.

Example 4 Let Nk = {P (a), Q(a);P (x) →}. The Horn transformation Nk =
{P (a);P (x) →} has a conflicting core N⊥

k = {P (a);P (a) →}. N⊥
k abstracts a

resolution refutation with ⊥ as the result. If we replace P (a) with P (a), Q(a) in
such a refutation, the result will be Q(a) instead and hence Nk � Q(a) Since
Q(a) subsumes P (a), Q(a),
Nk is satisfiable if N ′

k = {Q(a);P (x) →} is too.

Lemma 7 (Lifting the Horn Transformation (indirect)) Let N be a set
of variable disjoint clauses, N ⇒∗

APR Nk ⇒HO Nk+1, Nk = N ∪ {Γ → E1, E2}
and Nk+1 = N ∪ {Γ → E1} and N⊥

k+1
be a conflicting core of Nk+1 where

Lemma 6 does not apply. Let (Γ → E1)σ ∈ N⊥
k+1 , where σ is a variable renaming

and N j
kτj 6|= (Γ → E1, E2)σ

′
j → (Γ → E1)σ for any N j

k ⊆ Nk,τj and σ′
j . If there

exists a conflicting core N⊥ of N ∪ {E2}, then a conflicting core of Nk exists.

Proof. From the conflicting core N⊥
k+1, we can conclude that there exists an

unsatisfiability proof of Nk+1 which derives ⊥ and uses (Γ → E1)σ as the only
instance of Γ → E1. If we were to replace (Γ → E1)σ by (Γ → E1, E2)σ,
the unsatisfiability proof’s root clause would instead be E2σ. Hence, we know
that Nk |= Nk ∪ {E2σ}. Furthermore, Nk |= N ∪ {E2σ} since E2σ subsumes
Γ → E1, E2.

Let E2σj ∈ N⊥ for 1 ≤ j ≤ m and NE2

k = N⊥
k+1

\ {(Γ → E1)σ} ∪ {(Γ →

E1, E2)σ} Then N⊥ \ {E2σj | 1 ≤ j ≤ m}
⋃

j

NE2

k σj is a conflict core of Nk.

Note that Nk now again contains the Non-Horn clause Γ → E1, E2. Then,
in a following indirect Horn lifting step Γ → E1, E2 can not necessarily be again
replaced by E2σ. Hence, the indirect Horn lifting needs to be repeated.

Lifting the Shallow Transformation. A Shallow transformation introduces
a new predicate S, which is removed in the lifting step. We take all clauses with
S-atoms in the conflicting core and generate any possible resolutions on S-atoms.
The resolvents, which don’t contain S-atoms anymore, then replace their parent
clauses in the core. Lifting succeeds if all introduced resolvents are instances of
clauses before the shallow transformation.

Example 5 Let N0 = {P (x), Q(y) → R(x, f(y));P (a);Q(b);R(a, f(b)) →}.
Then Nk = {S(x′), P (x) → R(x, x′);Q(y) → S(f(y));P (a);Q(b); R(a, f(b)) →}

9



is a Shallow transformation of N0 and a conflicting core is N⊥
k = S(f(b)),

P (a) → R(a, f(b));Q(b) → S(f(b));P (a);Q(b);R(a, f(b)) →. By replacing
S(f(b)), P (a) → R(a, f(b)) and Q(b) → S(f(b)) with the resolvent, N⊥

k lifts to
N⊥ = {P (a), Q(b) → R(a, f(b));P (a);Q(b);R(a, f(b)) →} a conflicting core of
N0.

Lemma 8 (Lifting the Shallow Transformation) Let Nk ⇒SH Nk+1 where
Nk = N ∪ {Γ → E[s]p} and Nk+1 = N ∪ {S(x), Γ1 → E[x]p} ∪ {Γ2 → S(s)}.
Let N⊥

k+1 be a conflicting core of Nk+1. Let NS be the set of all resolvents from

clauses from N⊥
k+1 on the S literal. If for all clauses Cj ∈ NS, 1 ≤ j ≤ m

there is a substitution σj such that Cj = (Γ → E[s]p)σj then N⊥
k+1

\ {C | C ∈

N⊥
k+1

and contains an S-atom} ∪ {(Γ → E[s]p)σj | 1 ≤ j ≤ m} is a conflicting
core of Nk.

Proof. Let σ be a grounding substitution for N⊥
k and N⊥

k+1 and I be an interpre-

tation. As N⊥
k+1σ is unsatisfiable, there is a clause D ∈ N⊥

k+1σ such that I 6� D.

If D does not contain an S-atom, then D ∈ N⊥
k σ and hence I 6� N⊥

k σ.
Now assume only clauses that contain S-atoms are false under I. By con-
struction, any such clause is equal to either (S(x), Γ1 → E[x]p)σ

′ = C1σ
′ or

(Γ2 → S(s))σ′ = C2σ
′ for some substitution σ′. Let I ′ := {S(s)σ′ | C2σ

′ ∈
N⊥

k+1σ and I 6� C2σ
′} ∪ I \ {S(x)σ′ | C1σ

′ ∈ N⊥
k+1σ and I 6� C1σ

′}, i.e., we
change the truth value for S-Literals such that the clauses unsatisfied under I
are satisfied under I ′.
Since I and I ′ only differ on literals with predicate S and N⊥

k+1
σ is unsatisfiable,

some clause C, containing an S-atom and satisfied under I, has to be false under
I ′.
Let C = C1σ1. Since I � C, S(x)σ1 was added to I ′ by some clause D = C2σ2,
where S(s)σ2 = S(x)σ1. Hence, C and D can be resolved on their S-literals and
the resolvent R is in N⊥

k σ. Since I 6� D, I ′ 6� C and R contains no S-atom, I 6� R
and therefore I 6� N⊥

k σ.
For C = C2σ2 the proof is analogous.
Thus, for all interpretations I and grounding substitutions σ, I 6� N⊥

k σ and
hence N⊥

k σ is a conflicting core of Nk.

Lifting the Linear Transformation. In order to lift a Linear transformation
the remaining and the newly introduced variable need to be instantiated the
same term.

Example 6 Let Nk−1 = {P (x, x); P (y, a), P (z, b) →}. Then Nk = {P (x, x′);
P (y, a), P (z, b) →} is a Linear transformation of Nk−1 and and N⊥

k = {P (a, a);
P (b, b); P (a, a), P (b, b) →} is a conflicting core of Nk. Since P (a, a) and P (b, b)
are instances of P (x, x) lifting succeeds and N⊥

k is also a core of Nk−1.

Lemma 9 (Lifting the Linear Transformation) Let Nk ⇒LI Nk+1 where
Nk = N ∪ {Γ → E[x]p,q} and Nk+1 = N ∪ {Γ{x 7→ x′}, Γ → E[x′]q}. Let N⊥

k+1

be a conflicting core of Nk+1. If for all (Γ{x 7→ x′}, Γ → E[x′]q)σj ∈ N⊥
k+1

,

10



1 ≤ j ≤ m we have xσj = x′σj then N⊥
k+1

\ {(Γ{x 7→ x′}, Γ → E[x′]q)σj | 1 ≤
j ≤ m} ∪ {(Γ → E[x]p,q)σj | 1 ≤ j ≤ m} is a conflicting core of Nk.

Proof. Let σ be a grounding substitution for N⊥
k and N⊥

k+1
. As xσj = x′σj for

1 ≤ j ≤ m, (Γ → E[x]p,q)σjσ � (Γ, Γ → E[x]p,q)σjσ = (Γ{x 7→ x′}, Γ →
E[x′]q)σjσ. Hence, N

⊥
k σ � N⊥

k σ∪{(Γ{x 7→ x′}, Γ → E[x′]q)σjσ | 1 ≤ j ≤ m} �

N⊥
k+1

σ. Since N⊥
k+1

σ is unsatisfiable N⊥
k σ is unsatisfiable as well. Therefore, N⊥

k

is a conflicting core of Nk.

Lifting with Instantiation. By definition, ifN⊥ is a conflicting core ofN , then
N⊥τ is also a conflicting core of N for any τ . Example 7 shows it is sometimes
possible to instantiate a conflicting core, where no lifting lemma applies, into a
core, where one does. This then still implies a successful lifting.

Example 7 Let Nk−1 = {P (x, x); P (y, a), P (z, b) →}. Then Nk = {P (x, x′);
P (y, a), P (z, b) →} is a Linear transformation of Nk−1 and and N⊥

k = {P (y, a);
P (b, b); P (y, a), P (b, b) →} is a conflicting core of Nk. Since for P (y, a) =
P (x, x′)σ xσ = y 6= a = x′σ Lemma 9 is not applicable.

However, Lemma 9 can be applied on N⊥
k {y 7→ a; z 7→ b} = {P (a, a); P (b, b);

P (a, a), P (b, b) →}.

4 Approximation Refinement

In the previous section, we have presented the lifting process. If, however, in
one of the lifting steps conditions of the lemma are not met, lifting fails and we
now refine the original clause set in order to rule out the non-liftable conflicting
core. Again, since lifting fails at one of the approximation steps, we consider the
different approximation steps for refinement.

Linear Approximation Refinement. A Linear transformation enables fur-
ther instantiations of the abstracted clause compared to the original, that is, two
variables that were the same can now be instantiated differently. If the conflicting
core of the approximation contains such instances the lifting fails.

Definition 7 (Linear Approximation Refinement) Let N be a set of vari-
able disjoint clauses, N ⇒∗

APR Nk ⇒LI Nk+1 and N⊥
k+1

be a conflicting core of
Nk+1 where Lemma 9 does not apply. Let C′σ = (Γ{x 7→ x′}, Γ → E[x′]q)σ ∈
N⊥

k+1
such that xσ and x′σ have no common instances. Let C ∈ N be the Ances-

tor of C′ ∈ Nk+1. Then the linear approximation refinement of N , C, x, x′, σ is
the clause set N \ {C}∪ {Cτ1, . . . , Cτn} where the Cτi are the specific instances
of C with respect to the substitutions {x 7→ xσ} and {x 7→ x′σ}.

Note that if there is no C′σ, where xσ and x′σ have no common instances, it
implies that there is a substitution τ where Lemma 9 applies on N⊥

k+1
τ . Hence,

N⊥
k+1

τ is a liftable conflicting core.

11



Let N0 ⇒∗
APR Nk−1 = N ∪ {Γ → E[x]p,q} ⇒LI Nk = N ∪ {Γ{x 7→ x′}, Γ →

E[x′]q} and the core N⊥
k of Nk contains the clause C′σ = (Γ{x 7→ x′}, Γ →

E[x′]q)σ, where xσ and x′σ have no common instances. After applying Linear
Approximation Refinement, there are Cτi and Cτj with i 6= j such that Cτi
contains all instances where {x 7→ xσ} and Cτj contains all instances where
{x 7→ x′σ}. Assume there is a C′′ with an ancestor Cτ such that C′σ is an
instance of C′′. This would imply that Cτ has instances, where {x 7→ xσ} and
{x 7→ x′σ}. Then Cτi = Cτ = Cτj , which is a contradiction to Definition 2.

Example 8 Let N0 = {P (x, x); P (y, a), P (z, b) →}. Then Nk = {P (x, x′);
P (y, a), P (z, b) →} is a Linear transformation of N0 and and N⊥

k = {P (a, a);
P (a, b); P (a, a), P (a, b) →} is a conflicting core of Nk.
Due to P (a, b) = P (x, x′){x 7→ a, x′ 7→ b} lifting fails. The Linear Approxima-
tion Refinement replaces P (x, x) in N0 with P (a, a) and P (b, b). In the refined
approximation N ′

k = {P (a, a);P (b, b); P (y, a), P (z, b) →} the violating clause
P (a, b) is not an instance of N ′

k and hence, the not-liftable conflicting core N⊥
k

cannot be found again.

Shallow Approximation Refinement. The Shallow transformation is some-
what more complex than linear transformation, but the idea behind it is very
similar to the linear case. As mentioned before, the Shallow transformation can
always be lifted if the set of common variables vars(Γ2, s) ∩ vars(Γ1, E[x]p) is
empty. Otherwise, each such variable potentially introduces instantiations that
are not liftable.

Definition 8 (Shallow Approximation Refinement) Let N be a set of vari-
able disjoint clauses, N ⇒∗

APR Nk ⇒SH Nk+1 and N⊥
k+1

be a conflicting core of
Nk+1 where Lemma 8 does not apply. Let CR be the resolvent from the final Shal-
low rule application such that CR 6= (Γ → E[s]p)σR for any σR. Let C1σ1 ∈ N⊥

k+1

and C2σ2 ∈ N⊥
k+1

be the parent clauses of CR. Let y ∈ dom(σ1) ∩ dom(σ2),
where yσ1 and yσ2 have no common instances. Let C ∈ N be the Ancestor of
C1 ∈ Nk+1. Then the shallow approximation refinement of N , C, x, σ1, σ2 is
the clause set N \ {C}∪ {Cτ1, . . . , Cτn} where the Cτi are the specific instances
of C with respect to the substitutions {x 7→ xσ1} and {x 7→ xσ2}.

As in Linear Approximation Refinement, if for every resolvent CRσ yσ1 and
yσ2 have common instances, it implies that there is a substitution τ where
Lemma 8 applies on N⊥

k+1
τ . After applying Shallow Approximation Refinement,

there are Cτi and Cτj with i 6= j such that Cτi contains all instances where
{x 7→ xσ1} and Cτj contains all instances where {x 7→ xσ2}. Hence, Cτi is
now the ancestor of C1σ1, while Cτj is the ancestor of C2σ2. Since they have
different ancestors, they can no longer be resolved on their S-atoms which now
have different predicates. Hence CR is no longer a resolvent in the conflicting
core.

Example 9 Let N0 = {P (f(x, g(x)));P (f(a, g(b)) →} with signature Σ = a/0,
b/0, g/1, f/2. Then Nk = {S(z) → P (f(x, z));S(g(y)); P (f(a, g(b)) →} is a

12



Shallow transformation of N0 and and N⊥
k = {S(g(b)) → P (f(a, g(b)));S(g(b));

P (f(a, g(b)) →} is a conflicting core of Nk.
The clauses S(g(b)) → P (f(a, g(b))) and S(g(b)) have the resolvent P (f(a, g(b))),
which is not an instance of P (f(x, g(x))). The Shallow Approximation Refine-
ment replaces P (f(x, g(x))) in N0 with P (f(a, g(a))), P (f(b, g(b))),
P (f(g(x), g(g(x)))) and P (f(f(x, y), g(f(x, y)))).
The approximation of the refined N0 is now satisfiable.

Horn Approximation Refinement. Lifting a core of a Horn transformation
fails, if the positive literals removed by the Horn transformation are not dealt
with in the approximated proof. Since Lemma 7 only handles cases where the
approximated clause appears uninstantiated in the conflicting core, the Horn
Approximation Refinement is used to ensure such a core exists.

Definition 9 (Horn Approximation Refinement) Let N be a set of vari-
able disjoint clauses, N ⇒∗

APR Nk ⇒HO Nk+1, Nk = N ∪ {Γ → E1, E2}
and Nk+1 = N ∪ {Γ → E1} and N⊥

k+1 be a conflicting core of Nk+1 where

Lemmas 6 and 7 do not apply. Let (Γ → E1)σ ∈ N⊥
k+1 be a clause from

the final Horn rule application such that σ is not a variable renaming and
N j

kτj 6|= (Γ → E1, E2)σ
′
j → (Γ → E1)σ for any N j

k ⊆ Nk,τj and σ′
j. Let

C ∈ N be the Ancestor of Γ → E1 ∈ Nk+1 and σ′ a substitution such that σσ′

is linear for C. Then the horn approximation refinement I of N , C, σ, σ′ is
the clause set N \ {C} ∪ {Cσσ′, Cτ1, . . . , Cτn} where the Cτi are the specific
instances of C with respect to the substitutions σσ′.

Note that the condition for the extended version of specific instantiation to
have a finite representation is not generally met by an arbitrary σ. Therefore,
σ may need to be further instantiated or even made ground. After the Horn
Approximation Refinement, Lemma 7 can be applied on the clause with ancestor
Cσσ′.

Example 10 Let N0 = {P (x), Q(x);P (a) →} with signature Σ = a/0, f/1.
The Horn transformation Nk = {P (x);P (a) →} has a conflicting core N⊥

k =
{P (a);P (a) →}. We pick → P (a) as the instance of P (x) ∈ N⊥

k to use for the
Horn Approximation Refinement. The result is N ′

0 = {P (a), Q(a); P (f(x)), Q(f(x));
P (a) →} and its approximation also has N⊥

k as a conflicting core. However, now
Lemma 7 applies.

Lemma 10 (Completeness) Let N be an unsatisfiable clause set and Nk its
approximation. Then, there exists a conflicting core of Nk that can be lifted to
N .

Proof. by induction on the number k of approximation steps. The case k = 0 is
obvious. For k > 0, let N ⇒∗

APR Nk−1 ⇒APR Nk. By the inductive hypothesis,
there is a conflicting core N⊥

k−1
of Nk−1 which can be lifted to N .

The final approximation rule application is either a Linear, a Shallow, a Horn
or a Monadic transformation, considered below by case analysis.

13



Linear Case. Let N ⇒∗
APR Nk−1 = N ′ ∪ {Γ → E[x]p,q} ⇒LI Nk = N ′ ∪

{Γ{x 7→ x′}, Γ → E[x′]q}. For every (Γ → E[x]p,q)σj ∈ N⊥
k−1 1 ≤ j ≤ m, (Γ →

E[x]p,q)σj |= (Γ{x 7→ x′}, Γ → E[x′]q)({x′ 7→ x}σj). Hence N
⊥
k = N⊥

k−1
\{(Γ →

E[x]p,q)σj | 1 ≤ j ≤ m} ∪ {(Γ{x 7→ x′}, Γ → E[x′]q){x′ 7→ x}σj | 1 ≤ j ≤ m}
is a conflicting core of Nk. By Lemma 9 N⊥

k can be lifted back to N⊥
k−1

. Hence,

the conflicting core N⊥
k can be lifted to N .

Shallow Case. Let N ⇒∗
APR Nk−1 = N ′ ∪ {Γ → E[s]p} ⇒SH Nk = N ′ ∪

{S(x), Γ1 → E[x]p} ∪ {Γ2 → S(s)}. We construct N⊥
S from N⊥

k−1
by replacing

every (Γ → E[s]p)σj ∈ N⊥
k−1 1 ≤ j ≤ m with (Sj(x), Γ1 → E[x]p)σj and

(Γ2 → Sj(s))σj . N
⊥
S is a conflicting core, which by m applications of Lemma 8

on each Sj can be lifted to N⊥
k−1

. From N⊥
S we get N⊥

k by renaming every Sj

into S, which is a conflicting core of Nk. The existence of N⊥
S shows that N⊥

k

can be lifted to N⊥
k−1

.

Horn Case. W.l.o.g. let N ⇒∗
APR Nk−1 = N ′ ∪ {Γ → E1, E2} ⇒HO Nk =

N ′ ∪ {Γ → E1}. Let C = Γ → E1, E2 and C′ = Γ → E1. If Cσ ∈ N⊥
k−1 holds

for at most one σ, we construct N⊥
k from N⊥

k−1
by replacing Cσ with C′σ such

that N⊥
k ⊆ Nk. Since C′σ subsumes Cσ, N⊥

n � N⊥
n ∪ {Cσ}. As N⊥

k ∪ {Cσ} is a
superset of N⊥

k−1, N
⊥
k is therefore a ground conflicting core of Nk. If C

′σ and Cσ

are already equivalent, N⊥
k can be lifted to N⊥

k−1
. Otherwise, let N ′⊥

k−1
be N⊥

k−1

where Cσ is instead replaced by E2σ. Again since E2σ subsumes Cσ, N ′⊥
k−1

is a

ground conflicting core. As shown before, (N ′⊥
k−1\{E2σ})∪(N

⊥
k \{C′σ}) = N⊥

k−1

is a lifting from Nk to Nk−1.
Assume Cσ1 ∈ N⊥

k−1 and Cσ2 ∈ N⊥
k−1 holds for σ1 6= σ2. In this case the original

clause C can be specifically instantiated in such a way that Cσ1 and Cσ2 are
no longer instances of the same clause, while N⊥

k−1
remains a conflicting core.

Hence, after finitely many such partitions eventually the first case will hold.

Monadic Case. Let N ⇒∗
APR Nk−j ⇒∗

MO Nk where Nk−j has no occurrence
of an atom T (fP (t1, . . . , tn)) and Nk no occurrence of an atom P (t1, . . . , tn) and
all introduced atoms in the transformation are of the form T (fP (s1, . . . , sn)). By
the inductive hypothesis, there is a ground conflicting core N⊥

k−j of Nk−j which
can be lifted to N . By Lemma 1(ii) Monadic transformation preserves unsatis-
fiability and therefore µP (N

⊥
k−j) is a ground conflicting core of Nk. µP (N

⊥
k−j)

can be lifted to µ−1

P (µP (N
⊥
k−j)) = N⊥

k−j a conflicting core of Nk−j .

The above lemma considers static completeness, i.e., it does not tell how the
conflicting core that can eventually be lifted is found. One way is to enumerate
all refutations of Nk in a fair way. A straightforward fairness criterion is to
enumerate the refutations by increasing term depth of the clauses used in the
refutation. Since the decision procedure on the mslH fragment [12] generates
only finitely many different non-redundant clauses not exceeding a concrete term
depth with respect to the renaming of variables, eventually the liftable refutation
will be generated.

14



5 Future and Related Work

The condition for the lifing lemma for Shallow transformation (Lemma 8) is
stronger than necessary, as the following example shows.

Example 11 Let N0 = {P (x, z), Q(y, z) → R(x, f(y));P (a, a); P (a, b);
Q(b, a), Q(b, b); R(a, f(b)) →} and Nk = {S(y), P (x, z) → R(x, y);Q(y, z) →
S(f(y));P (a, a);P (a, b);Q(b, a), Q(b, b); R(a, f(b)) →} is a Shallow transfor-
mation of Nk. N0 and Nk are unsatisfiable and N⊥

k = {S(f(b)), P (a, a) →
R(a, f(b));Q(b, a) → S(f(b));S(f(b)), P (a, b) → R(a, f(b));Q(b, b) → S(f(b));
P (a, a);P (a, b);Q(b, a), Q(b, b);R(a, f(b)) →} is a conflicting core of Nk. Lift-
ing N⊥

k fails because the resolvent P (a, a), Q(b, b) → R(a, f(b)) is not an in-
stance of P (x, z), Q(y, z) → R(x, f(y)). However, if we ignored the violating
resolvents, it would result in the valid conflicting core N⊥ = {P (a, a), Q(b, a) →
R(a, f(b));P (a, b), Q(b, b) → R(a, f(b));P (a, a);P (a, b); Q(b, a), Q(b, b);
R(a, f(b)) →}.

This does not break lifting. The shallow refinement will partition the clause
in such a way that the resolvents that violate the lifting condition are one-by-
one removed. In Example 11, the refinement would partition P (x, z), Q(y, z) →
R(x, f(y)) on the variable z. This will result in S(f(b)), P (a, a) → R(a, f(b))
and Q(b, b) → S(f(b)) containing different S-predicates and hence no longer
being resolvable.

However, a refinement is not necessary to achieve this effect. The necessary
information can be taken from the refutation and incorporated into the conflict-
ing core during construction.

If a problem N is unsatisfiable, not only does there exist an unsatisfiability
proof but one where S-literals only occur on leaves. Such a proof can be found
by a ordered resolution calculus through selecting negative S-literals and an
ordering where positive S-literals are strictly maximal. Given such a setting a
solver will only resolve a clause S(x), Γ1 → E[x]p1,...,pn

with Γ2 → S(s) on the
S-atom and hence any S-atom will only appear at the leaves of the refutation.

In such a proof, we then uniquely rename the S-predicate in each pair of
leaves. The conflicting core constructed from this proof then only allows resolu-
tions on S-literals that also occur in the proof. On this core we can then check
the lifting condition.

In example 11 the core would then instead be {S1(f(b)), P (a, a) → R(a, f(b));
Q(b, a) → S1(f(b));S2(f(b)), P (a, b) → R(a, f(b));Q(b, b) → S2(f(b)); P (a, a);
P (a, b);Q(b, a), Q(b, b);R(a, f(b)) →}. This core is liftable to N⊥ by Lemma 8.

Related Work In ”A theory of abstractions” [2] Giunchiglia and Walsh don’t
define an actual approximation but a general framework to classify and com-
pare approximations, which are here called abstractions. They informally define
abstractions as ”the process of mapping a representations of a problem” that
”helps deal with the problem in the original search space by preserving certain
desirable properties“ and ”is simpler to handle“.

15



In their framework an abstraction is a mapping between formal systems,
i.e., a triple of a language, axioms and deduction rules, which satisfy one of the
following conditions: An increasing abstraction (TI) f maps theorems only to
theorems, i.e., if α is a theorem, then f(α) is also a theorem, while a decreasing
abstraction (TD) maps only theorems to theorems, i.e., if f(α) is a theorem,
then α was also a theorem.

Furthermore, they define dual definitions for refutations, where not theo-
rems but formulas that make a formal system inconsistent are considered. An
increasing abstraction (NTI) then maps inconsistent formulas only to inconsis-
tent formulas and vice versa for decreasing abstractions (NTD).

They list several examples of abstractions such as ABSTRIPS by Sacer-
doti [10], a GPS planning method by Newell and Simon [7], Plaisted’s theory of
abstractions [9], propositional abstractions exemplified by Giunchiglia [1], pred-
icate abstractions by by Plaisted [9] and Tenenberg [11], domain abstractions by
Hobbs [3] and Iemielinski [4] and ground abstractions introduced by Plaisted [9].

With respect to their notions the approximation described in this paper is
an abstraction where the desirable property is the over-approximation and the
decidability of the fragment makes it simpler to handle. More specifically in the
context of [2] the approximation is an NTI abstraction for refutation systems,
i.e., it is an abstraction that preserves inconsistency of the original.

In Plaisted [9] three classes of abstractions are defined. The first two are
ordinary and weak abstractions, which share the condition that if C subsumes
D then every abstraction of D is subsumed by some abstraction of C. However,
our approximation falls in neither class as it violates this condition via the Horn
approximation. For example Q subsumes P,Q, but the Horn approximation P
of P,Q is not subsumed by any approximation of Q. The third class are general-
ization functions, which change not the problem but abstract the resolution rule
of inference.

The theorem prover iProver uses the Inst-Gen [5] method, where a first-order
problem is abstracted with a SAT problem by replacing every variable by the
fresh constant ⊥. The approximation is solved by a SAT solver and its answer is
lifted to the original by equating abstracted terms with the set they represent,
e.g., if P (⊥) is true in a model returned by the SAT solver, then all instantia-
tions of the original P (x) are considered true as well. Inst-Gen abstracts using
an under-approximation of the original clause set. In case the lifting of the sat-
isfying model is inconsistent, the clash is resolved by appropriately instantiating
the involved clauses, which mimics an inference step. This is the dual of our
method with the roles of satisfiability and unsatisfiability switched. A further
difference, however, is that Inst-Gen only finds finite models after approxima-
tion, while our approximation also discovers infinite models. For example the
simple problem {P (a), ¬P (f(a)), P (x) → P (f(f(x))), P (f(f(x))) → P (x)} has
the satisfying model where P is the set of even numbers. However, iProver’s
approximation can never return such a model as any P (fn(⊥)) will necessarily
abstract both true and false atoms and therefore instantiate new clauses in-
finitely. Our method on the other hand will produce the approximation {P (a),

16



¬P (f(a)), S(y) → P (f(y)), P (x) → S(f(x)), P (f(f(x))) → P (x)}, which is
saturated after inferring P (x) → P (f(f(x))) and ¬S(f(a)).

In summary, we have presented the first sound and complete calculus for
first-order logic based on an over-approximation-refinement loop. There is no
implementation so far, but the calculus will be practically useful if a problem
is close to the mslH fragment in the sense that only a few refinement loops are
needed for finding the model or a liftable refutation. The abstraction relation
is already implemented and applying it to all satisfiable non-equality problems
TPTP version 6.1 results in a success rate of 34%, i.e., for all these problems the
approximation is not too crude and directly delivers the result.

It might be possible to apply our idea to other decidable fragments of first-
order logic. However, then they have to support via approximation the presented
lifting and refinement principle.

Our result is also a first step towards a model-based guidance of first-order
reasoning. We proved that a model of the approximated clause set is also a model
for the original clause set. For model guidance, we need this property also for
partial models. For example, in the sense that if a clause is false with respect to
a partial model operator on the original clause set, it is also false with respect
to a partial model operator on the approximated clause set. This property does
not hold for the standard superposition partial model operator and the mslH
approximation suggested in this paper. It is subject to future research.

References

1. Fausto Giunchiglia and Enrico Giunchiglia. Building complex derived inference
rules: A decider for the class of prenex universal-existential formulas. In ECAI,
pages 607–609, 1988.

2. Fausto Giunchiglia and Toby Walsh. A theory of abstraction. Artif. Intell., 57(2-
3):323–389, October 1992.

3. Jerry R. Hobbs. Granularity. In In Proceedings of the Ninth International Joint

Conference on Artificial Intelligence, pages 432–435. Morgan Kaufmann, 1985.
4. Tomasz Imielinski. Domain abstraction and limited reasoning. In Proceedings

of the 10th International Joint Conference on Artificial Intelligence - Volume 2,
IJCAI’87, pages 997–1003, San Francisco, CA, USA, 1987. Morgan Kaufmann
Publishers Inc.

5. Konstantin Korovin. Inst-gen - A modular approach to instantiation-based auto-
mated reasoning. In Andrei Voronkov and Christoph Weidenbach, editors, Pro-
gramming Logics - Essays in Memory of Harald Ganzinger, volume 7797 of Lecture
Notes in Computer Science, pages 239–270. Springer, 2013.

6. J.-L. Lassez and K. Marriott. Explicit representation of terms defined by counter
examples. J. Autom. Reason., 3(3):301–317, September 1987.

7. Allen Newell. Human Problem Solving. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1972.

8. Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving sat and sat
modulo theories: From an abstract davis–putnam–logemann–loveland procedure
to dpll(t). Journal of the ACM, 53:937–977, November 2006.

9. David A. Plaisted. Theorem proving with abstraction. Artif. Intell., 16(1):47–108,
1981.

17



10. Earl D. Sacerdott. Planning in a hierarchy of abstraction spaces. In Proceedings of

the 3rd International Joint Conference on Artificial Intelligence, IJCAI’73, pages
412–422, San Francisco, CA, USA, 1973. Morgan Kaufmann Publishers Inc.

11. Josh Tenenberg. Preserving consistency across abstraction mappings. In In Pro-

ceedings of the 10th IJCAI, pages 1011–1014. International Joint Conference on

Artificial Intelligence, 1987.
12. Christoph Weidenbach. Towards an automatic analysis of security protocols in

first-order logic. In Harald Ganzinger, editor, 16th International Conference on

Automated Deduction, CADE-16, volume 1632 of LNAI, pages 314–328. Springer,
1999.

13. Christoph Weidenbach. Combining superposition, sorts and splitting. In Alan
Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning, vol-
ume 2, chapter 27, pages 1965–2012. Elsevier, 2001.

18



A Skeleton and Partial Minimal Model Construction

As mentioned before, Lemma 4 also holds if satisfiability of N ′ is dropped and
I is replaced by the superposition partial minimal model operator [13].

Definition 10 (Partial Minimal Model Construction) Given the set of ground
clauses Ng of N and an ordering ≺ we construct an interpretation IN for N ,
called a partial model, inductively as follows:

IC :=
⋃

D∈Ng,D≺C

δD

δD :=

{

{P} if D = D′ ∨ P , P strictly maximal and ID 6� D
∅ otherwise

IN :=
⋃

C∈Ng

δC

Clauses C with δC 6= ∅ are called productive.

Note that this construction doesn’t terminate since the ground clause set of
N is generally infinite.

Lemma 11 Let Nk be a monadic clause set and N0 be its approximation via
⇒APR. If P (s) ∈ IN0

and P is a predicate in Nk, then there exists a clause
C = Γ → ∆,P (t) ∈ Nk and a substitution σ such that s = skt(t)σ and for each
variable x and predicate S with C = S(x), Γ ′ → ∆,P (t[x]p), S(s

′′) ∈ IN0
, where

s = s[s′′]p.

Proof. By induction on k.
The base Nk = N0 holds by definition of the model operator I.
Let N = Nk ⇒APR Nk−1 ⇒∗

APR N0, P (s) ∈ IN0
and P is a predicate in

Nk and hence also in Nk−1. By the induction hypothesis, there exist a clause
C = Γ → ∆,P (t) ∈ Nk−1 and a substitution σ such that s = skt(t)σ and for
each variable x and predicate S with C = S(x), Γ ′ → ∆,P (t[x]p), S(s

′′) ∈ IN0
,

where s = s[s′′]p.
Let ⇒APR be a Horn transformation that replaces Γ ′′ → ∆′, Q(t′) with

Γ ′′ → Q(t′). If C 6= Γ ′′ → Q(t′), then C ∈ Nk fulfills the claim. Otherwise,
Γ ′′ → ∆′, Q(t) ∈ Nk fulfills the claim since P = Q and Γ ′ = Γ ′′.

19



Let ⇒APR be a linear transformation that replaces Ck = Γ ′′ → E[x]p,q
with Ck−1 = Γ ′′, Γ ′′{x 7→ x′} → E[x′]q. If C 6= Ck−1, then C ∈ Nk fulfills
the claim. Otherwise, Ck = Γ ′′ → P (t){x′ 7→ x} ∈ Nk fulfills the claim since
s = skt(t)σ = skt(t{x′ 7→ x})σ and Γ ′′ ⊆ Γ ′′, Γ ′′{x 7→ x′}.

Let ⇒APR be a shallow transformation that replaces Ck = Γ ′′ → E[s′]p with
Ck−1 = S(x), Γ1 → E[x]p and C′

k−1
= Γ2 → S(s′). Since S is fresh, C 6= C′

k−1
.

If C 6= Ck−1, then C ∈ Nk fulfills the claim. Otherwise, C = Ck−1 = S(x), Γ1 →
P (t[x]p) and hence, s = skt(t[x]p)σ and S(s′′) ∈ IN0

for s = s[s′′]p. Then by the
induction hypothesis, there exist a clause CS = ΓS → ∆S , S(tS) ∈ Nk−1 and a
substitution σS such that s′′ = skt(tS)σS and for each variable x and predicate
S′ with CS = S′(x), Γ ′

S → ∆S , P (tS [x]q), S
′(s′′′) ∈ IN0

, where s′′ = s′′[s′′′]q. By
construction, CS = C′

k−1
. Thus, s′′ = skt(s′)σS and s = skt(t[x]p)σ imply there

exists a σ′′ such that s = skt(t[s′]p)σ”. Furthermore since Γ1 ∪Γ2 = Γ ′′, if Ck =
S′(x), Γ ′′′ → P (t[s′]p)[x]q , then either S′(x) ∈ Γ1 and thus S′(s′′′′) ∈ IN0

, where
s = s[s′′′′]q, or S

′(x) ∈ Γ2 and thus S′(s′′′′) ∈ IN0
, where s[s′′]p = (s[s′′]p)[s

′′′′]q.
Hence, Ck ∈ Nk fulfills the claim.

Lemma 12 Let N be a clause set and N ′ be its approximation via ⇒APR. If
P (s) ∈ IN ′ (T (fp(s1, . . . , sn)) ∈ IN ′) and P is a predicate in N , then there exist
a clause Γ → ∆,P (t) ∈ N (Γ → ∆,P (t1, . . . , tn) ∈ N) and a substitution σ
such that s = skt(t)σ (si = skt(ti)σ for all i).

Proof. Let P1, . . . , Pn be the non-monadic predicates inN andNMO = µP1
(. . . (µPn

(N))).
Then, NMO is monadic and also has N ′ as its approximation via ⇒APR.

Let P (s) ∈ IN ′ and P is a predicate inN . Since P is monadic, P is a predicate
in NMO. Hence by Lemma 11, there exists a clause Γ → ∆,P (t) ∈ NMO and a
substitution σ such that s = skt(t)σ. Then, µ−1

P1
(. . . (µ−1

Pn
(Γ → ∆,P (t))) . . .) =

µ−1

P1
(. . . (µ−1

Pn
(Γ ) . . .) → µ−1

P1
(. . . (µ−1

Pn
(∆) . . .), P (t) ∈ N fulfills the claim.

Let T (fp(s1, . . . , sn)) ∈ IN ′ and P is a predicate in N . T is monadic and a
predicate in NMO. Hence by Lemma 11, there exists a clause Γ → ∆,T (t) ∈
NMO and a substitution σ such that fp(s1, . . . , sn) = skt(t)σ. Therefore, t =
fp(t1, . . . , tn) with si = skt(ti)σ for all i. Then, µ−1

P1
(. . . (µ−1

Pn
(Γ → ∆,T (fp(t1, . . . , tn)))) . . .) =

µ−1

P1
(. . . (µ−1

Pn
(Γ ) . . .) → µ−1

P1
(. . . (µ−1

Pn
(∆) . . .), P (t1, . . . , tn) ∈ N fulfills the claim.

20


	First-Order Logic Theorem Proving and Model Building via Approximation and Instantiation

