Skip to main content

Approach for Demonstrating Safety for a Collision Avoidance System

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9338))

Abstract

For many years, the Digital Safety and Security Department of the Austrian Institute of Technology has been developing stereo vision algorithms for various application purposes. Recently, these algorithms have been adapted for use in a collision avoidance system for tramways. The safety validation of such a system is a specific challenge as - like in the automotive domain - the rate of false positives cannot be lowered to zero. While automotive suppliers typically tackle with this problem by reducing the sensitivity of the system and validating it in hundreds of thousands of test kilometres, this paper presents an approach how it is possible to demonstrate safety with a carefully chosen functionality and less field test kilometres.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.wienerlinien.at/eportal2/.

  2. 2.

    http://www.wienerlinien.at/media/files/2015/betriebsangaben_2014_151135.pdf.

  3. 3.

    http://www.statistik.at/web_de/statistiken/energie_umwelt_innovation_mobilitaet/verkehr/strasse/kraftfahrzeuge_-_bestand/index.html.

  4. 4.

    Electrical / Electronic / Programmable Electronic.

  5. 5.

    The Automotive domain accepts quite high deceleration values for automatic braking. The standard for Adaptive Cruise Control (ACC) systems [20], for instance, proposes a deceleration limit of 3.5 ms−2 and a limit of 2.5 ms−3 for the jerk.

References

  1. Verband Deutscher Verkehrsunternehmen e.V. (VDV): State of the art of driver assistance systems for collision avoidance for tramcars and light rail vehicles. VDV Report 1520, Köln (2015)

    Google Scholar 

  2. Katz, R., Schulz, R.: Towards the development of a laser scanner-based collision avoidance system for trams. In: IEEE proceedings of the Intelligent Vehicles Symposium (IV), pp. 725–729 (2013)

    Google Scholar 

  3. Lages, U., Katz, R., Schultz, R., Krähling, M.: Collision avoidance system for trams using laserscanners. In: Proceedings of the 20th ITS World Congress; Tokyo (2014)

    Google Scholar 

  4. Österreichischer Automobil-, Motorrad- und Touring-Club (ÖAMTC): Sicher ganz sicher?. In: Auto Touring November 2013, pp. 28–30, Vienna (2013)

    Google Scholar 

  5. ISO 26262 Road vehicles - Functional safety, Part 1-10. International Organization for Standardization (ISO) (2011)

    Google Scholar 

  6. Winner, H., Wachenfeld, W.: Absicherung automatischen Fahrens, 6. FAS Tagung, Munich (2013)

    Google Scholar 

  7. Humenberger, M., Zinner, Ch., Weber, M., Kubinger, W., Vincze, M.: A fast stereo matching algorithm suitable for embedded real-time systems. Comput. Vis. Image Underst. 114(11), 1180–1202 (2010)

    Article  Google Scholar 

  8. Ambrosch, K., Zinner, Ch., Leopold, H.: A miniature embedded stereo vision system for automotive applications. In: Vortrag: IEEE 26th Convention of Electrical and Electronics Engineers, Eilat, Israel; 17.11.2010 - 20.11.2010. In: Proceedings of the IEEEI 2010, pp. 786–789, IEEE, Israel (2010). ISBN: 978-1-4244-8680-9

    Google Scholar 

  9. Weichselbaum, J., Zinner, Ch., Gebauer, O., Pree, W.: Accurate 3D-vision-based obstacle detection for an autonomous train. Comput. Ind. 64(9), 1209–1220 (2013)

    Article  Google Scholar 

  10. Kadiofsky, T., Rößler, R., Zinner, Ch.: Visual 3D environment reconstruction for auto-nomous vehicles. ERCIM News 95, 29–30 (2013)

    Google Scholar 

  11. Lechleitner, C., Newesely, G., Zinner, Ch.: Die Straßenbahn lernt Sehen - Innovationen im Bereich Straßen- und Stadtbahnen; Vortrag: Schienenfahrzeugtagung, Graz; 07.09.2014 - 10.09.2014. In: ZEVrail Sonderheft Tagungsband 42. Tagung Moderne Schienenfahrzeuge, Georg Siemens Verlag, pp. 105–111 (2014). ISSN: 1618-8330

    Google Scholar 

  12. ISO 13849-1:2006 Safety of machinery – Safety-related parts of control systems – Part 1: General principles for design. In: International Organization for Standardization (ISO) (2006)

    Google Scholar 

  13. ISO/IEC 27001:2013: Information technology – Security techniques – Information security management systems - Requirements (2013)

    Google Scholar 

  14. IEC 62061:2005 Safety of machinery – Functional safety of safety-related electrical, electronic and programmable electronic control systems. In: International Electrotechnical Commission (2005)

    Google Scholar 

  15. Federal regulation of the Federal Republic of Germany: Verordnung über den Bau und Betrieb der Straßenbahnen (Straßenbahn-Bau- und Betriebsordnung - BOStrab) (1987, latest update 2007)

    Google Scholar 

  16. EN_50126-1: Railway application - The specification and demonstration of Reliability, Availability, Maintainability and Safety (RAMS). Part 1: Basic requirements and generic process. Comité Européen de Normalisation Électrotechnique (CENELEC) (1999/corr. 2010)

    Google Scholar 

  17. EN_50128: Railway applications – Communication, signalling and processing systems. Software for railway control and protection systems, Comité Européen de Normalisation Électrotechnique (CENELEC) (2011)

    Google Scholar 

  18. EN_50129: Railway applications - Communication, signalling and processing systems 002D. Safety related electronic systems for signalling. Comité Européen de Normalisation Électrotechnique (CENELEC) (2003 / corr. 2010)

    Google Scholar 

  19. EN 13452-1:2003: Railway applications - Braking - Mass transit brake systems - Part 1: Performance requirements, Comité Européen de Normalisation (CEN) (2003)

    Google Scholar 

  20. ISO 15622:2010: Intelligent transport systems - Adaptive Cruise Control systems - Performance requirements and test procedures, International Organization for Standardization (ISO) (2010)

    Google Scholar 

  21. Zendel, O., Herzner, W., Murschitz, M.: VITRO - Model Based Vision Testing for Robustness. Poster: ISR 2013, Seoul/Korea; 24.10.2013 - 26.10.2013. In: ISR 2013, IFR, Seoul (2013)

    Google Scholar 

  22. Zendel, O., Herzner, W., Murschitz, M.: VITRO - Vision Testing for Robustness, ERCIM News 97, 58–59 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Gruber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gruber, T., Zinner, C. (2015). Approach for Demonstrating Safety for a Collision Avoidance System. In: Koornneef, F., van Gulijk, C. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2014. Lecture Notes in Computer Science(), vol 9338. Springer, Cham. https://doi.org/10.1007/978-3-319-24249-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24249-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24248-4

  • Online ISBN: 978-3-319-24249-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics