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Abstract. We study an extension of the delivery dispatching problem
(DDP) with time windows, applied on LTL orders arriving at an urban
consolidation center. Order properties (e.g., destination, size, dispatch
window) may be highly varying, and directly distributing an incoming
order batch may yield high costs. Instead, the hub operator may wait
to consolidate with future arrivals. A consolidation policy is required to
decide which orders to ship and which orders to hold. We model the
dispatching problem as a Markov decision problem. Dynamic Program-
ming (DP) is applied to solve toy-sized instances to optimality. For larger
instances, we propose an Approximate Dynamic Programming (ADP)
approach. Through numerical experiments, we show that ADP closely
approximates the optimal values for small instances, and outperforms
two myopic benchmark policies for larger instances. We contribute to lit-
erature by (i) formulating a DDP with dispatch windows and (ii) propos-
ing an approach to solve this DDP.

Keywords: Urban distribution · Transportation planning · Consolida-
tion · Approximate dynamic programming

1 Introduction

In the field of urban freight logistics, the need for consolidation centers at the edge
of urban areas is becoming increasingly important [11]. Due to the external costs
of freight transport – such as congestion, air pollution, and noise hindrance – more
efficient goods transport within the city center is necessary. Governments seek to
reduce the negative influence of large trucks in urban areas. Imminent regulations
are, e.g., restricted access areas, and road pricing for heavy vehicles. Such devel-
opments spur the need for transshipments at the edge of urban areas. Transship-
ments allow both for bundling goods – such that vehicle capacity can be used more
efficiently – and dispatching environment-friendly vehicles such as electric vans
on the last mile. However, the introduction of an additional transshipment in the
supply chain also poses new challenges. The challenge we study is inspired by a
project on urban freight logistics, in which various logistics partners participate.
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We adopt the perspective of the party in charge of the consolidation center, to
which we refer as the ‘hub operator’. We focus on the timing of dispatching orders
for delivery, in an environment where the batch arrivals of goods at the hub are
not fully controlled by the hub operator. Hub operators are generally small par-
ties that deploy rules-of-thumb for dispatching orders. They have a certain degree
of knowledge of order arrivals over a relatively short horizon; order arrivals are
usually announced at most 24 hours in advance. The operators also have expec-
tations regarding future order arrivals – e.g., based on historical data – which can
be modeled as stochastic arrivals.

We consider an extension of the Delivery Dispatching Problem (DDP) that
includes dispatch windows as an order characteristic. This extension is particu-
larly relevant in an urban distribution context, where deliveries within specified
time windows are the norm. As opposed to traditional DDPs, we consider a finite
planning horizon, allowing to capture time-dependent arrival processes (e.g., hol-
iday weeks). Commonly studied shipment consolidation policies fall short to aid
decision-making in this context. It does not suffice to determine when to dispatch
the orders in inventory, one also needs to determine which subset of orders to
dispatch. In our DDP, order batches are dynamically revealed to the hub opera-
tor. Some orders may arrive at the consolidation center without advance notice,
others orders may be scheduled to arrive at a future point in time. After orders
have physically arrived at the consolidation center, they can be dispatched to the
customers in the city. An arriving batch may contain orders with dispersed des-
tinations, various dispatch windows, distinct load sizes, etc. Directly distributing
an arriving batch may therefore render poor solutions. Instead, waiting for future
batches to arrive could yield order clusters for which better solutions are avail-
able. This entails waiting for known batches, but also the inclusion of future
orders that may have uncertain properties. Based on both the available knowl-
edge regarding current orders and anticipation of new orders, the operator is
able to make informed waiting decisions.

Due to the dynamic and stochastic nature of our DDP – combined with the
large amount of states – we must deal with various computational challenges.
We consider our study to be part of a two-phase solution approach. In the first
phase – which is the scope of this paper – the hub operator decides which orders
to dispatch at the current decision moment. The dispatch decision is based on
known information and probabilistic arrivals; estimates for the direct costs and
downstream costs are used. In the second phase, the operator solves a detailed
VRP for the selected set of orders. With this paper, we aim to contribute to
existing literature with (i) the formulation of a Markov model for DDPs with
dispatch windows, and (ii) an approach to provide high-quality solutions for
larger-sized DDPs.

2 Literature Review

In this section, we analyze the existing literature on the DDP and related top-
ics. We refer to recent literature studies for overviews of these problems, and
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highlight several studies that address problems comparable to ours. We address
various solution approaches, and discuss their suitability for our problem type.
Finally, we point out the literature gap that we aim to address.

Optimization problems that are both stochastic and dynamic are notoriously
hard to solve [10]. The use of stochastic information in transportation problems
is recognized as an important aspect of optimization, yet its incorporation in
solution methods is still an ongoing development [10,14]. Mathematical pro-
gramming and (meta)heuristics have traditionally been applied to handle high-
dimensional problems in transportation. However, these methods generally do
not cope well with stochastic information being revealed over time [10]. Suitable
solution approaches tend to be either based on stochastic modeling or scenario
sampling [5,8]; the latter is generally applied to fit heuristics and mathemati-
cal programs towards stochastic problems. Incorrect sampling may misrepresent
the stochastic process [5]. Stochastic models represent all possible outcomes,
and therefore in general require more computational effort. As a result, they are
better fit for preprocessed decisions than for online decision-making.

We classify our problem as a DDP. In a DDP, orders arrive according to a
stochastic process and are dispatched in batches [6]. Solving the DDP yields a
shipment consolidation policy, indicating when to dispatch orders held in inven-
tory. We briefly described the DDP in the introduction. For a more elaborate
definition we refer to Minkoff [6], who states that all eligible routes are pre-
defined input for DDPs. The performance of shipment consolidation policies
is generally evaluated based on efficiency (vehicle capacity utilization) and/or
timeliness (time between order arrival and dispatch). Policies are either recurrent
(i.e., dependent on the state of the problem) or non-recurrent [9]; we study a
DDP with a recurrent policy. The stochastic and dynamic nature of such DDPs
gives rise to Markov decision problems [6]. Although a Markov decision model is
a useful framework to describe decision problems with dynamic and stochastic
elements, practical implementations generally suffer from intractably large state
spaces and expected values that cannot be calculated exactly [6,8,9]. Relatively
little work has been done on optimizing consolidation policies; the majority
of DDP literature focuses on testing the performance of existing policies [1,7].
Most DDP literature only considers weight and arrival time as order properties,
while results are valid for a limited set of distributions. A more generic approach
based on a batch Markovian arrival process is presented by Bookbinder et al. [1];
allowing for arrival properties that follow any distribution. Although able to cope
with a variety of arrival processes, enumeration of the transition matrix is still
required. Even when applying techniques to simplify this procedure, complete
enumeration is computationally challenging to describe batch arrivals consisting
of order types with multiple stochastic properties such as dispatch windows.

Although the Vehicle Routing Problem (VRP) addresses routing decisions
rather than dispatching, some characteristics are shared. Unlike the DDP, the
inclusion of time windows is a common property of VRPs. Ritzinger et al. [12]
provide an overview of dynamic and stochastic VRP literature, which generally
considers re-optimization during the execution of routes. A particularly relevant
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class they describe considers dynamic order requests combined with stochas-
tic customer information. For this class, they distinguish between preprocessed
decision support (the sub-class we study) and online decision making. For pre-
processed decision support, a number of stochastic modeling approaches is men-
tioned. Solutions for online decision problems tend to focus more on sampling.

Another subject related to the DDP is the Inventory Routing Problem (IRP)
[6]. The IRP is concerned with repeated stock replenishment from a facility to
a fixed set of delivery locations, the decision when to visit a location, and the
quantity of product to be delivered are the decision of the facility. Each location
consumes the product at a given – possibly stochastic – rate. As such, the IRP
also considers a dispatching decision. However, deliveries in an IRP are not
order-based; goods can be dispatched to any customer at any decision moment.
Furthermore, one or several types of goods have to be distributed along multiple
customers. Coelho et al. [3] provides a recent overview of IRP literature. They
state that for the solution of stochastic IRPs, generally either Markov models
are solved in a heuristic manner, or mathematical programming is applied. For
IRPs with both dynamic and stochastic properties they mention only few works.
Coelho et al. [2] solve a problem in this IRP class heuristically, forecasting a single
scenario based on exponential smoothing of historical data.

Finally, we refer to several Service Network Design (SND) studies mentioned
in SteadiSeifi et al. [14]. SND is concerned with the selection and timing of
transportation services. Known solution approaches make use of mathematical
programming, (meta)heuristics, and graph theory. Most SND studies focus on
deterministic instances. Lium et al. [5] propose a stochastic extension to their
mathematical program, adding scenarios to reflect uncertain future demand. The
authors state that generating a compact yet representative scenario tree is one
of the key challenges in this approach.

We did not encounter existing DDP literature that mathematically formu-
lates a dispatch problem for orders with time windows. We aim to contribute to
literature by formulating our DDP as a Markov decision process that captures
both the stochastic and dynamic nature of the order arrival process. Dynamic
programming (DP) can be used to solve such models to optimality, but instance
sizes quickly grow too large for exact solutions. Topaloglu and Powell [15] present
a stochastic modeling framework for solving dynamic resource-allocation prob-
lems, proposing the application of approximate dynamic programming (ADP).
Various successful ADP applications can be found in transportation literature
[8,14]. Following frameworks such as [9,10,15], we develop an ADP approach to
solve our DDP with dispatch windows.

3 Problem Formulation

This section introduces the planning problem. We describe the problem in a
generic way, making it applicable to a variety of instances. We assume that
the characteristics of arriving orders are stochastic and have a known associ-
ated probability distribution. Our problem formulation allows to include both
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deterministic and stochastic future orders. We consider a finite planning horizon,
during which batches of orders can arrive at the consolidation center. Dispatch-
ing decisions are made at fixed decision moments within the planning horizon,
with constant time intervals separating the decision moments. We model the
arrival rates of order batches, the number of orders in a batch, order sizes, order
destinations, and dispatch times as stochastic variables. When a batch of orders
arrives at the center, the exact properties of the orders are revealed.

The decision problem that we address is the choice of which orders to dispatch
at the current decision moment. To make an informed decision, we require insight
in the effects of postponing the dispatch of orders. Postponed orders may be
combined with future orders against lower costs than when dispatched at the
current decision moment. We therefore consider optimization over a planning
horizon; orders not known at the current decision moment are probabilistic. We
assess all possible realizations of stochastic order arrivals, and plan these arrivals
as if they were actual orders. For both the deterministic and stochastic orders
belonging to a given realization, we compute the costs of dispatching. The costs
of dispatching stochastic orders are required to quantify the expected costs. By
incorporating stochastic order arrivals, we can compute the expected costs of
the various dispatch decisions for the currently known orders.

Consider an urban area with a fixed set of potential order destinations, which
are delivered via a consolidation center at the edge of the area. Our representation
of the urban distribution network is as follows. Let G = {V,A} be a directed and
complete graph with V being the set of vertices and A being the set of arcs. {0} ∈ V
represents the consolidation center in the network. The remaining vertices signify
the subset of order destinations V ′ = {1, 2, . . . , |V ′|}, with V ′ = V \ {0}. The
distances between any pair of vertices in the graph are known.

We consider a planning horizon that contains decision moments with fixed
intermediate time intervals. Let T = {0, 1, . . . , T} be the set containing all deci-
sion moments, and t ∈ T describe any decision moment within the planning hori-
zon. We consider a homogeneous fleet (i.e., a set of identical vehicles), although
our method is able to cope with heterogeneous fleets as well. We distinguish
between sets of primary vehicles Qpr and secondary vehicles Qse. We assume
that the secondary fleet has an infinite size, and is either an actual transport
alternative (e.g., renting an additional vehicle in case of shortage) or a dummy
fleet with infinite costs. A dummy fleet serves as bound on capacity, without
having to explicitly calculate the capacity constraints for each decision. We only
assign vehicles in Qse if no more vehicles in Qpr are available. We assume that
dispatching a secondary vehicle is always more expensive than dispatching a pri-
mary vehicle. To ease the presentation, we assume that every dispatched vehicle
has a fixed route duration of τroute ≥ 1 (this assumption can be easily relaxed).
When dispatching at t, the vehicle will be available again at t + τroute. For
decision-making purposes, we keep track of the availability of primary vehicles
now and in the future. Let r ∈ [0, τroute − 1] be the number of time intervals
before a dispatched vehicle returns. Because all vehicles are available again at
t + τroute, we only keep track of availability up to t + τroute − 1. Let qt,r denote
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the number of primary vehicles available for dispatch at t + r. It follows that
qt,0 vehicles are available for dispatch at t. We record primary fleet availability
in the vector Qt = (qt,0, qt,1, . . . , qt,t+τroute−1).

Every order is characterized by four properties: destination, load size, earliest
dispatch time, and latest dispatch time. The order destination (i.e., the customer
location) is represented by a vertex v ∈ V ′. Let L = { 1

k , 2
k , . . . , 1} be the dis-

cretized set of viable load sizes, with integer k ≥ 1, and 1 representing a full load
for an urban vehicle. The size of an order is given by l ∈ L. The hard dispatch
window of an order is given by earliest dispatch time e ∈ E and latest dispatch
time d ∈ D. Both indices are relative to the decision moment t; at the decision
moment t + 1 all indices of orders in inventory are reduced by 1. Only orders
with e = 0 can be dispatched. Order types with e > 0 describe pre-announced
future orders, that will be delivered to the hub at time t + e. We define a max-
imum length of the dispatch window τwindow, such that d ∈ [e, e + τwindow].
Every unique combination of the four properties represents an order type. Let
It,v,l,e,d ∈ Z+ be the number of a given order type in inventory at t. We denote
the information regarding all known orders at t as It = (It,v,l,e,d)v∈V′,l∈L,e∈E,d∈D.
The state of the system at t, St ∈ S, combines primary fleet availability with
available orders, and is represented by

St = (Qt, It)∀v∈V′,l∈L,e∈E,d∈D ,∀t ∈ T . (1)

For t ≥ 1, let Ot = {0, 1, . . . , omax
t } be the set containing the number of

possible order arrivals between decision moments t − 1 and t. Let ot ∈ Ot be a
realization of the number of orders arriving between t−1 and t. Furthermore, we
set lmax ∈ Z+ as the maximum number of orders that can be held in inventory,
i.e., the maximum inventory remaining after a decision.

For every decision moment t in the planning horizon, we decide which orders
in inventory to dispatch. Orders that are not dispatched remain in inventory,
and are available at the next decision moment. Let the integer variable xt,v,l,e,d

describe the number of a specific order type to be dispatched at t. A feasible
action at decision moment t is given by

xt(St) = (xt,v,l,e,d)∀v∈V′,l∈L,e∈E,d∈D, (2)

where
∑

v∈V′,l∈L,e∈E,d∈D
(It,v,l,e,d − xt,v,l,e,d) ≤ lmax, (3)

xt,v,l,e,d ≤ It,v,l,e,d ,∀v ∈ V ′,∀l ∈ L,∀e ∈ E ,∀d ∈ D , (4)
xt,v,l,e,0 = It,v,l,e,0 ,∀v ∈ V ′,∀l ∈ L,∀e ∈ E , (5)
xt,v,l,e,d = 0 , e > 0 ,∀v ∈ V ′,∀l ∈ L,∀d ∈ D , (6)
xt,v,l,e,d ∈ Z+ ,∀v ∈ V ′,∀l ∈ L,∀e ∈ E ,∀d ∈ D . (7)

Constraint (3) ensures that after dispatching, no more than the maximum
inventory remains at the consolidation center. According to Constraint (4), it is
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not possible to dispatch more orders of a certain type than available at the deci-
sion moment t. Constraint (5) states that all orders that have reached their latest
dispatch time must be dispatched. Constraint (6) prevents orders with an earliest
dispatch time in the future from being dispatched. Constraint (7) states that only
nonnegative integer amounts of orders canbedispatched.The set of feasible actions
in a given state is described by Xt(St).

4 Markov Model

We model the operator’s decision problem as a Markov model. This model con-
siders all possible realizations of orders arrivals during the planning horizon.
With this knowledge, we can make the optimal dispatch decision for the cur-
rent decision moment. In realistic instances, the state space, action space, and
outcome space for such a model will be intractably large. Exactly solving the
Markov model is therefore not possible within a reasonable time. In Section 6,
we solve some toy-sized instances of the Markov model using DP. The ADP
approach as outlined in Section 5 is applied to larger instances.

Every action xt(St) has associated direct costs C(St, xt). The direct costs are
the sum of fixed dispatching costs per vehicle, variable transportation costs, and
handling costs. As the focus of this paper is on the consolidation policy, we do not
explicitly consider routing. Instead, we use the classic approximation of Daganzo
[4] to estimate the transportation costs for a dispatched set of orders. This
approximation is known to provide good estimates of total route distances [13],
given constraints on vehicle capacity, number of destinations, and shape of the
service area. These constraints are likely to be fulfilled in an urban distribution
setting. The approximation is based on the average distances between the depot
and the customers, the number of customer locations visited, the size of the
service area, and the capacity of the vehicles. We consider fixed handling costs
per visited customer; note that this provides an incentive to simultaneously
deliver multiple orders to a customer.

To model the uncertainties with respect to the properties of arriving orders, we
introduce six stochastic variables. These are (i) the number of orders arriving Ot,
(ii) the destination V , (iii) the order size L, (iv) the earliest dispatch time E, (v)
the length of the dispatch window Dwindow, and (vi) the latest dispatch time D =
E+Dwindow.Thecorrespondingprobabilitydistributionsarediscreteandfinite.To
capture all probability distributions into a single variable, we define the exogenous
information variable Ĩt,v,l,e,d ∈ Z+, t ≥ 1, which indicates the number of arrivals of
a specificorder type.Furthermore,we introduceagenericvariableWt thatdescribes
all exogenous information, i.e., all orders arriving between t − 1 and t:

Wt = [Ĩt,v,l,e,d]∀v∈V′,∀l∈L,∀e∈E,∀d∈D , t ≥ 1. (8)

There exists a finite number of realizations of Wt. Let Ωt be the set of possible
batch arrivals between t − 1 and t, and ωt ∈ Ωt be a realization of the random
variables occurring with P (Wt = ωt).
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We proceed to describe the transition from a state St to the next state St+1.
The transition is affected by the action xt and the new arrivals Wt+1. We first
describe the effects of xt. Orders not dispatched at t remain in inventory, hence
must be included in St+1. As indices e and d are adjusted over time, we introduce
two new variables to properly process the conversion. Let e′ = max{0, e−1} and
d′ = d−1. Since e < 0 does not affect our decision making, capping e′ at 0 reduces
the number of possible order types. Let q̄t ∈ {0, . . . , |Qpr|} be the number of
primary vehicles dispatched at t; combined with Qt this information suffices to
compute Qt+1. We represent new arrivals with the information variable Wt+1.
This gives us the transition function

St+1 = SM (St, xt,Wt+1), (9)

where

It+1,v,l,e′,d′ = It,v,l,e,d − xt,v,l,e,d + Ĩt+1,v,l,e′,d′ , (10)
∀t ∈ T ,∀v ∈ V ′,∀l ∈ L,∀e ∈ E ,∀d ∈ D,

qt+1,r =

{
qt,r+1 − q̄t if r < τroute − 1 ,

|Qpr| if r = τroute − 1 ,
∀r ∈ [0, τroute − 1]. (11)

Constraint (10) states that for every order type, we have the amount of the
order type in state St, minus the amount of the order type that was dispatched,
plus the amount of the order type that arrived between t and t + 1. Constraint
(11) ensures that Qt+1 is consistently updated. Having described the transition
function, we now introduce the optimality equation that must be solved:

Vt(St) = min
xt∈Xt(St)

⎛
⎝C(St, xt) +

∑
ωt+1∈Ωt+1

P (Wt+1 = ωt+1)Vt+1(St+1|St, xt, ωt+1)

⎞
⎠ .

(12)

We proceed to describe the state space. Between every two consecutive deci-
sion moments t−1 and t, we can have ot ∈ {0, . . . , |Ot|−1} new orders arriving.
Every arriving order can have any of the unique order types, given the con-
straints on the dispatch window. Before the new arrivals occur, we can have up
to lmax orders in inventory. Hence, we can have at most lmax + |Ot| − 1 orders
at a given decision moment. A state can be any feasible combination of order
types available at t, combined with any vector Qt.

Next, we describe the action space. At every decision moment, we decide
which orders to dispatch. Every combination of orders to dispatch represents a
unique action. Orders that are not dispatched remain in inventory, and may be
dispatched at the next decision moment. As we do not consider routing options,
a unique selection of orders to dispatch equals exactly one action.

The transition from one state to another is determined by the current state,
the used action, and the realization of the random variables. The remaining
inventory before new orders arrive is deterministic. The probability of ot orders
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arriving is given by P (Ot = ot). The probability of an arriving order being of a
certain order type is given by the multivariate distribution P (V,L,E,D). V , L
and E are independent random variables, while D is the sum of the realizations
of E and Dwindow.

The outcome space is dependent on the state St, the action xt, and the real-
ization of new arrivals ωt+1. Orders not shipped at decision moment t are with
certainty included in St+1. As route duration is deterministic, so is the change
in fleet availability. Therefore, only the order arrivals account for stochasticity.
To account for the multiple permutations corresponding to ot order arrivals, we
multiply the probability of ot orders arriving with a multinomial coefficient. We
obtain the following probability function for new arrivals:

P (Wt = ωt) = P (Ot = ot)
ot!∏

Ĩt,v,l,e,d∈ωt

Ĩt,v,l,e,d!

∏

v∈V′,l∈L,e∈E,d∈D
P (V = v, L = l, E = e,D = d)Ĩt,v,l,e,d , t ≥ 1.

(13)

5 Solution Approach

Realistic-sized problems are intractably large for DP. We resolve computational
problems with the state- and outcome space with our ADP approach, while
partially addressing the dimensionality of the action space in this paper. We
retain the full level of detail in the state description, without enumerating the
full state space. By means of Monte Carlo simulation, we approximate the exact
values of the DP method [9]. In our ADP implementation, we use the concept of
the post-decision state [9]. The post-decision state Sx

t is the state immediately
after action xt, but before the arrival of new information ωt+1. Given our action
xt, we have a deterministic transition from St to the so-called post-decision state
Sx

t . We express this transition in the function

Sx
t = SM,x(St), (14)

where

It,v,l,e,d = It,v,l,e,d − xt,v,l,e,d, (15)
∀t ∈ T ,∀v ∈ V ′,∀l ∈ L,∀e ∈ E ,∀d ∈ D,

qt,r = qt,r − q̄t ,∀r ∈ [0, τroute − 1]. (16)

The post-decision state has a corresponding value function

Vt(Sx
t ) = E{Vt+1(St+1)|Sx

t }. (17)

Adopting the concept of the post-decision state allows us to represent our
problem as a deterministic minimization problem. Although this reduces the
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computational effort, Equation (17) still requires to evaluate all states in the out-
come space. We therefore replace this value function with a single value function
approximation V̄ n−1

t (Sx
t ). n is an iteration counter, representing that we use an

estimate from iteration n − 1 at iteration n. At every decision moment, we take
the best action given our value function approximation. Incoming arrivals are
generated according to Equation (13). Utilizing the post-decision state and value
function approximation for future costs, we solve Equation (18) to minimize the
value v̂n

t :

v̂n
t = min

xt∈Xt(St)
(Ct(St, xt) + V̄ n−1

t (Sx
t )). (18)

Once we obtain our estimate v̂n
t , we can update V̄ n−1

t−1 (Sx
t−1). For this, we use

the following function:

V̄ n
t−1(S

x
t−1) ← UV (V̄ n−1

t−1 (Sx
t−1), S

x
t−1, v̂

n
t ). (19)

Table 1 provides an outline of our ADP algorithm.

Table 1. ADP algorithm with post-decision states

Step 0 Initialize
Step 0a: Initialize V̄ 0

t (St), ∀t ∈ T , ∀St ∈ S
Step 0b: Set iteration counter to n = 1, and set

the maximum number of iterations to N .
Step 0c: Select an initial state S0.

Step 1 For t = 0 to T do:
Step 1a: Find the best action x̃n

t by solving Equation (18).
Step 1b: If t > 0, then update V̄ n−1

t (St) using Equation (19).
Step 1c: Obtain the post-decision state Sx

t via Equation (14).
Step 1d: Obtain a sample realization Wt+1, calculate St+1

with Equation (9)
Step 2 Set n := n + 1.

If n ≤ N , then go to Step 1.
Step 3 Return V̄ N

t (Sx
t ), ∀t ∈ T .

We briefly discuss two options for the function UV to update V̄ n
t (Sx

t−1):
lookup and value function approximation (VFA). With the lookup approach,
we store an estimate V̄ n

t (Sx
t ) for every post-decision state, which is updated

based on our observation at the next decision moment. We can speed up this
procedure by first completing a full iteration, and then update all post-decision
values at once (a procedure known as double pass, see [9]). Although the lookup
ADP resolves several computational challenges of dynamic programming, we still
need to visit a state to learn about its value. Instead, we want to learn about
the value of many states with a single observation. To achieve this, we make
use of VFA with the so-called basis function approach, see [9]. Let F be a set
of features, with f ∈ F being some variable that partially explains the costs
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of being in a state. Relevant features for our dispatch problem are, e.g., the
total volume of orders in inventory, the number of orders with d = 0, and the
number of distinct destinations. Let φf (Sx

t ) be a basis function of feature f –
for example, a cross-product or a polynomial of f – that returns a certain value
given Sx

t . Let θn
f be a weight corresponding to feature f . Our value function

approximation becomes

V̄ n
t (Sx

t ) =
∑

f∈F
θn

f φf (Sx
t ),∀t ∈ T . (20)

Following [9], the weights θn
f are updated using recursive least squares for

nonstationary data. Using this procedure, we are able to learn about the value
of many states by sampling just a single state. Using VFA, it is therefore not
necessary to visit all states in the state space to learn about their value, allowing
to handle large state spaces. The key difficulty with VFA is to define basis
functions that closely approximate the exact values of states. Good insight in
the structure of the problem is required to select features that allow to accurately
approximate the true values.

After learning the appropriate weights by completing the procedure in Table 1,
VFA can be applied for practical decision making. By calculating the values for the
post-decision states corresponding to our initial state, we are able to obtain the
best action given the estimate. Only the features of the states, the basis functions,
and the corresponding weights are necessary for decision making.

6 Numerical Experiments

First, we solve a toy-sized instance with dynamic programming. We show how
both the lookup approach and the VFA approach approximate the exact DP
values. Next, we consider larger problems. As these instances are too large to
solve exactly, we cannot show convergence results for these. For all instances, we
compare the ADP-based simulation results to the results of two myopic bench-
mark policies, showing how the inclusion of future information impacts decision
quality. The first benchmark policy (‘Postpone’) we deploy in this paper is given
in Table 2. It aims to postpone as many orders as possible, until a suitable con-
solidation opportunity arises or the latest dispatch time is reached. The second
benchmark policy (‘DirectShipment’) always ships orders as soon as possible, as
long as primary vehicle capacity is available. ‘DirectShipment’ sorts and assigns
orders just as ‘Postpone’ describes, and also dispatches secondary vehicles only
when necessary. We found that in practice, consolidation policies of comparable
complexity are applied by hub operators, followed by manual fine-tuning.

We first describe the properties of our toy problem. We consider a fleet of
two primary vehicles; secondary vehicles are twice as expensive as primary vehi-
cles. We consider three distinct customer locations, a random order size from
{0.2, 0.4, 0.6, 0.8, 1}, a maximum inventory of two orders, and a maximum of
two arrivals per decision moment. We fix the tour length at τroute = 1. We set
e = 0 for all orders, and select d from {0, 1}. All probability distributions are
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Table 2. Benchmark policy – Postpone

Step 0 Sort orders.
Step 0a: Sort available orders based on lowest d.
Step 0b: Sort available orders with same d

based on smallest size.
Step 1 While orders with d = 0

are unassigned do: Assign order with d = 0 to vehicle.
Step 2 While remaining inventory

exceeds lmax do: Assign first order on list to vehicle.
Step 3 While capacity from already

dispatched vehicles remains do: Assign first order on list to vehicle.

uniform. We define a planning horizon with five decision moments. Although an
extremely small problem, the state space already contains about 140,000 states.

The features we use for our VFA are (i) a constant, (ii) the number of vehicles
available at the decision moment, (iii) the number of distinct order destinations,
(iv) the total volume of orders in inventory, and (v) the square of the volume of
orders in inventory. In Figure 1 and Figure 2, we show for two initial states (one
without initial inventory, the other with four orders at the decision moment)
how both the lookup approach and the VFA approach converge to the optimal
values found with DP. In the first number of iterations, the estimates fluctuate
due to the inability to accurately compute expected costs. However, by learning
the values of visited states, ADP starts recognizing good actions.

Fig. 1. Approximation of exact value
with Lookup

Fig. 2. Approximation of exact value
with VFA

From here on, we focus only on ADP with VFA using basis functions. By
completing the algorithm in Table 1, we obtain a set of weights for every decision
moment. When in a given state, with these weights we estimate the values of
all reachable post-decision states. Hence, ADP results in a policy, which we
use to solve a deterministic decision problem. We apply the learned policy in a
Monte Carlo simulation on a variety of initial states, comparing its performance
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Table 3. Comparison between ADP and benchmark policies for small instances

Average Standard Average deviation Lowest deviation Highest deviation
costs deviation from optimal from optimal from optimal

DP 876 – – – –
ADP 881 0.00145 0.60% 0.45% 0.99%
Postpone 908 0.03205 3.76% 1.98% 9.41%
DirectShipment 1033 0.02040 12.23% 8.52% 18.66%

Table 4. Comparison between ADP and benchmark policies for larger instances

Primary Max. Max. Earliest Costs ADP Costs Costs
vehicles arrivals per inventory dispatch (normalized) DirectShipment Postpone

time unit

2 10 20 {0} 100 109.2 109.7
8 10 20 {0} 100 112.3 113.6
3 15 15 {0} 100 111.6 112.1
5 15 30 {0} 100 111.9 113.0
5 15 30 {0, 1} 100 113.5 113.9
5 15 30 {0, 1, 2} 100 114.9 115.8

to both DP and the benchmark policies. For all simulations, we use the same
realizations of order arrivals, and perform 10,000 simulation replications over
the planning horizon. We do this for ten initial states, selected to represent a
variety of properties. Table 3 shows the comparison between DP, ADP, and the
two benchmark policies. The percentages indicate the average difference in costs
between the optimal solution and the simulation results. By applying our ADP
policy, we incur costs that are on average 0.60% higher than the optimal solution,
as such outperforming both benchmark policies. Also, the standard deviation in
solution quality is much lower than for the benchmark policies. With ADP,
we postpone 24% less orders than ‘Postpone’ does. For the initial states where
‘DirectShipment’ actually postpones orders – for some initial states it never will
– ADP postpones 203% more.

Finally, we perform tests on six larger instances, with 10 customers, 10 order
sizes, a maximum dispatch window length of 2, and a time horizon of 10. Tunable
parameters are mentioned in Table 4. The size of the state space follows from
the multinomial coefficients for all possible combinations of order arrivals, and
is � 1030 for all these instances. Clearly, an exact benchmark for such instances
cannot be provided.

Table 4 shows the results of our experiments on the six larger instances. When
the size of the action space exceeds a predefined threshold, we only partially
enumerate the action space based on customer locations. We subsequently apply
the same priority rules as the heuristic to assign orders to a given action. On
average, ADP outperforms the policy ‘DirectShipment’ by 12.23% and the policy
‘Postpone’ by 13.02%. The results show how incorporating future information
(both deterministic and stochastic) improves dispatching decisions. In the case
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of pre-announced orders, the outperformance is stronger due the myopic nature
of the benchmark policies.

7 Conclusions

In this paper, we proposed an ADP approach to make dispatch decisions at
urban consolidation centers. We optimized decisions for a finite planning horizon,
taking into account stochastic order arrivals during this horizon. We have shown
that ADP is able to closely approximate the optimal values obtained by DP
for toy-sized instances of our problem. For larger instances, ADP clearly and
consistently outperforms both myopic benchmark policies, indicating the added
value of considering future information.

The ADP approach as described in this paper resolves the intractability of
the state space and outcome space. However, we have not thoroughly addressed
the size of the action space, which in the worst case increases exponentially with
the number of orders in the system. A possible approach to tackle this problem –
without affecting the quality of decision-making – is to express the single-period,
single-state decision problem as an integer linear program, that can be solved to
optimality with less computational effort. This requires the basis functions in the
VFA to be defined in such a way that they are linear with the decision problem.
Additionally, heuristic approaches to reduce the action space – as touched upon
in this paper – are considered for future research.

Our numerical experiments have shown that even for small instances, simple
consolidation policies that ignore future information are inadequate to capture
the complexity of waiting decisions. Further research will focus on the evaluation
of realistically-sized instances and comparison with more sophisticated bench-
mark policies. The basis functions as proposed in this paper may not work well
on every instance. Insights in appropriate VFAs for a variety of problem struc-
tures will yield a valuable contribution to existing literature. Both the ADP
approach and its benchmarks need to be refined in order to provide an in-depth
analysis of the applicability of ADP on realistic-sized dispatch problems.
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