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Abstract. We consider the algorithmic task of computing a maximal
autarky for a clause-set F , i.e., a partial assignment which satisfies every
clause of F it touches, and where this property is destroyed by adding
any non-empty set of further assignments. We employ SAT solvers as
oracles here, and we are especially concerned with minimising the num-
ber of oracle calls. Using the standard SAT oracle, log

2
(n(F )) oracle

calls suffice, where n(F ) is the number of variables, but the drawback
is that (translated) cardinality constraints are employed, which makes
this approach less efficient in practice. Using an extended SAT oracle,
motivated by the capabilities of modern SAT solvers, we show how to
compute maximal autarkies with 2

√

n(F ) simpler oracle calls, by a novel
algorithm, which combines the previous two main approaches, based on
the autarky-resolution duality and on SAT translations.

1 Introduction

A well-known application area of SAT solvers is the analysis of over-constrained
systems, i.e. systems of constraints that are inconsistent. A number of compu-
tational problems can be related with the analysis of over-constrained systems.
These include minimal explanations of inconsistency, and minimal relaxations to
achieve consistency. Pervasive to these computational problems is the problem
of computing a “maximal autarky” of a propositional formula, since clauses sat-
isfied by an autarky cannot be included in minimal explanations of inconsistency
or minimal relaxations to achieve consistency. In the experimental study [26] it
was realised that using as few SAT calls as possible, via cardinality-constraints,
performs much worse than using a linear number of calls. To use only a sublinear
number of calls, without using cardinality constraints, is the goal of this paper.

Given a satisfiable clause-set F and a partial assignment ϕ, in general ϕ ∗F ,
the result of the application (instantiation) of ϕ to F , might be unsatisfiable. ϕ is
an autarky for (arbitrary) F iff every clause C of F touched by ϕ (i.e., var(C)∩
var(ϕ) 6= ∅) is satisfied by ϕ (i.e., ∃x ∈ C : ϕ(x) = 1). Now if F is satisfiable,
then also ϕ∗F is satisfiable, since due to the autarky property holds ϕ∗F = {C ∈
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F : var(C) ∩ var(ϕ) = ∅} ⊆ F . Thus “autarky reduction” F ❀ ϕ ∗ F can take
place (satisfiability-equivalently). An early use of autarkies is [4], for the solution
of 2-SAT. The notion “autarky” was introduced in [30] for faster k-SAT decision,
which can be seen as an extension of [4]. For an overview of such uses of autarkies
for SAT solving see [8]. Besides such incomplete usage (using only autarkies “at
hand”), the complete search for “all” autarkies (or the “strongest” one) is of
interest. Either with (clever) exponential-time algorithms, or for special classes
of clause-sets, where polynomial-time is possible, or considering only restricted
forms of autarkies to enable polynomial-time handling; see [11] for an overview.
In [18,19] autarky theory is generalised to non-boolean clause-sets.

Finitely many autarkies can be composed to yield another autarky, which
satisfies precisely the clauses satisfied by (at least) one of them; this was first
observed in [31]. So complete autarky reduction for a clause-set F , elimination of
clauses satisfied by some autarky as long as possible, yields a unique sub-clause-
set, called the lean kernel Na(F ) ⊆ F , as introduced in [14] and further studied
in [16]; we note that F ∈ SAT ⇔ Na(F ) = ⊤, where ⊤ is the empty clause-set.
Clause-sets without non-trivial autarkies are called lean, and are characterised
by Na(F ) = F ; the set of all lean clause-sets is called LEAN , and was shown
to be coNP-complete in [16]. A maximal autarky for F is one which can not
be extended; note that a maximal autarky ϕ always exist, where ϕ = 〈〉, the
empty partial assignment, iff F is lean. An autarky ϕ is maximal iff var(ϕ) =
var(F ) \ var(Na(F )). Thus var(F ) \ var(Na(F )) is called the largest autarky var-
set. For a maximal autarky ϕ the result of the autarky reduction is Na(F ), while
any autarky which yields Na(F ) is called quasi-maximal.

Algorithmic problems associated with autarkies. The basic algorithmic problems
related to general “autarky systems”, which allow to specialise the notion of
autarky, for example in order to enable polynomial-time computations, are dis-
cussed in [11, Section 11.11.6]. Regarding decision problems, for this paper only
one problem is relevant here, namely AUTARKY EXISTENCE, deciding whether a
clause-set F has a non-trivial autarky; the negation is LEAN, deciding whether
F ∈ LEAN . An early oracle-result is [16, Lemma 8.6], which shows, given an
oracle for LEAN, how to compute LEAN KERNEL with at most n(F ) oracle calls (for
all “normal autarky systems”, using the terminology from [11, Section 11.11]).
We are concerned in this paper with the functional problems, where the four
relevant problems are as follows, also stating the effort for checking a solution:

NON-TRIVIAL AUTARKY: Find some non-trivial autarky (if it exists; otherwise
return the empty autarky). Checking an autarky is in P .

QUASI-MAXIMAL AUTARKY or MAXIMAL AUTARKY: Find a (quasi-)maximal au-
tarky; by a trivial computation, from a quasi-maximal autarky we can compute a
maximal one. Checking that ϕ is a quasi-maximal autarky for F means checking
that ϕ is an autarky (easy), and that ϕ ∗ F is lean, and so checking is in coNP.
A quasi-maximal autarky can be computed by repeated calls to NON-TRIVIAL

AUTARKY (until no non-trivial autarky exists anymore).
NON-TRIVIAL VAR-AUTARKY: Find the var(iable)-set of some non-trivial au-

tarky (if it exists; otherwise return the empty set). Checking that V is the
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variable-set of an autarky means checking that F [V ], the restriction of F to V ,
is satisfiable, thus checking is in NP.

(QUASI-)MAXIMAL VAR-AUTARKY or LEAN KERNEL: Compute the largest au-
tarky var-set (or a quasi-maximal one), or compute the lean kernel; all three tasks
are equivalent by trivial computations. Checking that V is the largest autarky
var-set means checking that F [V ] is satisfiable and that {C ∈ F : var(F )∩V = ∅}
is lean, so checking is in DP ([32]). The solution to MAXIMAL VAR-AUTARKY or
to LEAN KERNEL is unique and always exists. The var-set of a quasi-maximal
autarky can be computed by repeated calls to NON-TRIVIAL VAR-AUTARKY.

Just having the var-set of the autarky ϕ enables us to perform the autarky re-
duction F ❀ ϕ∗F , namely ϕ∗F = {C ∈ F : var(C)∩var(ϕ) = ∅}, but from the
var-set var(ϕ) in general we can not derive the autarky ϕ itself, which is needed
to provide a certificate for the autarky-property. For example, F is satisfiable iff
var(F ) is the largest autarky var-set, and in general without further hard work
it is not possible to obtain the satisfying assignment from (just) the knowledge
that F is satisfiable. An interesting case is discussed in [21, Subsection 4.3] and
(in greater depth) in [22, Section 10], where we can compute a certain autarky
reduction in polynomial-time, but it is not known how to find the autarky (effi-
ciently). So NON-TRIVIAL VAR-AUTARKY is weaker than NON-TRIVIAL AUTARKY,
and MAXIMAL VAR-AUTARKY is weaker than MAXIMAL AUTARKY. We tackle in this
paper the hardest problem, MAXIMAL AUTARKY.

To obtain a complexity calibration, we can consider the computational model
where polynomial-time computation and (only) one oracle call is used. Then
MAXIMAL VAR-AUTARKY is equivalent to PARALLEL SAT, which has as input a list
F1, . . . , Fm of clause-sets, and as output m bits deciding satisfiability of the
inputs: On the one hand, given these F1, . . . , Fm, make them variable-disjoint
and input their union to the MAXIMAL VAR-AUTARKY oracle — Fi is satisfiable iff
var(Fi) is contained in the largest autarky var-set. On the other hand it is an easy
exercise to see, that for example via the translation F ❀ t(F ) used in this paper,
introduced as Γ2 in [26], we can compute the largest autarky var-set by inputting
t(F )∪{{v1}}, . . . , t(F )∪{{vn}} to PARALLEL-SAT, where var(F ) = {v1, . . . , vn}.
Similarly it is easy to see that MAXIMAL AUTARKY is equivalent to PARALLEL FSAT

(here now also the satisfying assignments are computed).

General approaches for the lean kernel. See [11, Section 11.10] for an overview. A
fundamental method for computing a (quasi-)maximal autarky, strengthened in
this paper, uses the autarky-resolution duality ([14, Theorem 3.16]): the variables
in the largest autarky var-set are precisely the variables not usable in any reso-
lution refutation. The basic algorithm, reviewed as algorithm A0 in Definition 6
in this paper (with a refined analysis), was first given in [15] and somewhat gen-
eralised in [11, Theorem 11.10.1]; see [20] for a discussion and some experimental
results. A central concept is, what in this paper we call an extended SAT oracle
O01, which for a satisfiable input outputs a satisfying assignment, while O01 on
an unsatisfiable input outputs the variables used by some resolution refutation.
In order to also accommodate polynomial-time results, the oracle O01 may get
its inputs from a class C of clause-sets, which is stable (closed) under removal
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of variables. However, for the new algorithm of this paper (Algorithm A01 pre-
sented in Theorem 27), we do not consider classes C as for A0, since the input
is first transformed, and then also some clauses are added, which would com-
plicate the requirements on C. The other main method to compute autarkies
uses reduction to SAT problems, denoted by F ❀ t(F ) in this paper, where
the solutions of t(F ) correspond to the autarkies of F . This was started by [25],
and further extended first in [11, Subsection 11.10.4], and then in [26], which
contains a thorough discussion of the various reductions. The basic algorithm
here is A1 (Definition 15), which iteratively extracts autarkies via the transla-
tion until reaching the lean kernel. When combined with cardinality constraints
and binary search, indeed log2 n oracle calls are sufficient; see Algorithm Abs

(Definition 18). But these cardinality constraints make the tasks much harder
for the SAT oracle. The new algorithm A01 of this paper (Definition 23) indeed
combines the two basic approaches A0,A1, by applying the autarky-resolution
duality to the translation and using a more clever choice of “steering clauses” to
search for autarkies. To better understand this combination of approaches, all
four algorithms A0, A1, Abs and A01, are formulated in a unified way, striving
for elegance and precision. One feature is, that the input is updated in-place,
which not only improves efficiency, but also simplifies the analysis considerably.

Related literature. When for C (as above) the extended SAT oracle O01 runs
in polynomial time, then by [11, Theorem 11.10.1] the algorithm A0 computes
a quasi-maximal autarky in polynomial time. The basic applications to 2-CNF,
HORN, and the case that every variable occurs at most twice, are reviewed in [11,
Section 11.10.9]. The other known polytime results regarding computation of the
lean kernel use the deficiency, as introduced in [6], and further studied in [14]).
Here the above algorithm A0 can not be employed, since crossing out variables
can increase this measure (see [18, Section 10] for a discussion). [13, Theorem
4.2] shows that the lean kernel is computable in polynomial time for bounded
(maximal) deficiency. In [5] the weaker result, that SAT is decidable in polyno-
mial time for bounded maximal deficiency, has been shown, and strengthened
later in [36] to fixed-parameter tractability, which is unknown for the computa-
tion of the lean kernel. [18, Theorem 10.3] shows that also a maximal autarky
can be computed in polynomial time for bounded maximal deficiency, and this
for generalised non-boolean clause-sets, connecting to constraint satisfaction.

The connection to the field of hypergraph 2-colouring, the problem of decid-
ing whether one can colour the vertices of a hypergraph with two colours, such
that monochromatic hyperedges are avoided, has been established in [17]; see
[11, Section 11.12.2] and [22, Subsection 1.6] for overviews. Exploiting the solu-
tion of a long-outstanding open problem by [33,29], the lean kernel is computable
in polynomial time by [17] for classes of clause-sets, which by [22, Subsection
1.6], via the translation of SAT problems into hypergraph 2-colourability prob-
lems, strongly generalises the polytime results (discussed above) for maximal
deficiency of clause-sets (partially proven, partially conjectured).

Autarkies have a hidden older history in the field of Qualitative Matrix Anal-
ysis (QMA), which yields potential applications of autarky algorithms in eco-
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nomics and elsewhere. QMA was initiated by [35], based on the insight that
in economics often the magnitude of a quantity is irrelevant, but only the sign
matters. So qualitative solvability of systems of equations and/or inequalities
is considered, a special property of such systems, namely that changes of the
coefficients, which leave their signs invariant, do not change the signs of the
solutions. For a textbook, concentrating on the combinatorial theory, see [2],
while a recent overview is [7]. The very close connections to autarky theory have
been realised in [16, Section 5] (motivated by [3]), and further expanded in [17];
see [11, Subsection 11.12.1] for an overview. While preparing this paper we came
across [9], which introduces “weak satisfiability”, which is precisely the existence
of a non-trivial autarky. It is shown ([9, Theorem 5]), that weak satisfiability is
NP-complete; this is the earliest known proof of LEAN being coNP-complete.
Apparently these connections to SAT have not been pursued further. The central
notions in the early history of QMA were “S-matrix” and “L-matrix”, which by
[16] are essentially the variable-clause matrices of certain sub-classes of LEAN .
Unaware of these connections, [10, Theorem 1.2] showed directly that recognition
of L-matrices is coNP-complete. Lean clause-sets correspond to “L+-matrices”
introduced in [23], and the decomposition of a clause-set into the lean kernel and
the largest autark sub-clause-set now becomes a triangular matrix decomposition
into an L+-matrix and the remainder ([23, Lemma 3.3]).

Applications. See [20] for a general discussion of various redundancy criteria in
clause-sets. Identification of maximal autarkies finds application in the analysis
of over-constrained systems, for example autark clauses cannot be included in
MUSes (minimally unsatisfiable sub-clause-sets) and so, by minimal hitting set
duality, cannot be included in MCSes (minimal corrections sets, whose removal
leads to a satisfiable clause-set). As discussed above, via the computation of a
maximal autarky we can compute basic matrix decompositions of QMA; appar-
ently due to the lack of efficient implementations, at least the related subfield
of QMA (which is concerned with NP-hard problems) had yet little practical
applications, and the efficient algorithms for computing maximal autarkies via
SAT (and extensions) might be a game changer here.

Overview. In Section 2 we provide all background. Section 3 discusses oracles
(O,O1,O0,O01), and reviews the first basic algorithm A0 (Definition 6), anal-
ysed in Lemma 7. Section 4 introduces the basic translation F ❀ t(F ), where
t(F ) expresses autarky-search for F , and proves various properties. The second
basic algorithmA1 is reviewed in Definition 15 and analysed in Lemma 16. Algo-
rithm Abs is given in Definition 18, using cardinality constraints (translated into
CNF). The use of “steering clauses”, collected into a set P of positive clauses, is
discussed in Subsection 4.2, with the main technical result Corollary 22, which
shows that variables involved in a resolution refutation of t(F ) ∪ P can not be
part of the largest autarky var-set of F . The novel algorithm A01 finally is in-
troduced in Section 5, first using an unspecified P (Definition 23), and then
instantiating this scheme in Theorem 27 to obtain at most 2

√

n(F ) many calls
to O01. We conclude in Section 6 by presenting conjectures and open problems.
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2 Preliminaries

We use N = {n ∈ Z : n ≥ 1} and N0 = N ∪ {0}. The powerset of a set X is
denoted by P(X), while Pf(X) := {X ′ ∈ P(X) : X ′ finite }. Maps are sets of
ordered pairs, and so for maps f, g the relation f ⊆ g says, that f(x) = g(x)
holds for each x in the domain of f , which is contained in the domain of g.

We have the set VA of variables, with N ⊆ VA, and the set LIT of literals,
with VA ⊂ LIT . The complementation operation is written x ∈ LIT 7→ x ∈
LIT , and fulfils x = x. On N the complementation is arithmetical negation,
and thus Z \ {0} ⊆ LIT . Every literal is either a variable or a complemented
variable; forgetting the possible complementation is done by the projection var :
LIT → VA. For L ⊆ LIT we use L := {x : x ∈ L} and lit(L) := L ∪ L. A
clause is a finite set C ⊂ LIT of literals with C ∩ C = ∅, while a clause-set is
a finite set of clauses; the set of all clause-sets is denoted by CLS. The empty
clause is denoted by ⊥ := ∅, the empty clause-set by ⊤ := ∅ ∈ CLS. Furthermore
p–CLS := {F ∈ CLS : ∀C ∈ F : |C| ≤ p} for p ∈ N0.

For a clause C we define var(C) := {var(x) : x ∈ C}, while for a clause-set
F we define var(F ) :=

⋃

C∈F var(C). We use the following measures: n(F ) :=
|var(F )| ∈ N0 is the number of variables, c(F ) := |F | ∈ N0 is the number of
clauses, ℓ(F ) :=

∑

C∈F |C| ∈ N0 is the number of literal occurrences.
A partial assignment is a map ϕ : V → {0, 1} for some finite V ⊂ VA, where

we write var(ϕ) := V , while the set of all partial assignments is denoted by PASS.
A special partial assignment is the empty partial assignment 〈〉 := ∅ ∈ PASS.
Furthermore we use lit(ϕ) := lit(var(ϕ)), and extend ϕ to lit(ϕ) via ϕ(v) = 1−
ϕ(v) for v ∈ var(ϕ). For ε ∈ {0, 1} we define ϕ−1(ε) := {x ∈ lit(ϕ) : ϕ(x) = ε}.

The application ϕ ∗ F ∈ CLS of ϕ ∈ PASS to F ∈ CLS is defined as
ϕ ∗ F := {C \ ϕ−1(0) : C ∈ F ∧ C ∩ ϕ−1(1) = ∅}. Then SAT := {F ∈
CLS | ∃ϕ ∈ PASS : ϕ ∗ F = ⊤}, and USAT := CLS \ SAT .

The restriction of F ∈ CLS to V ⊆ VA is defined as F [V ] := {C ∩ lit(V ) :
C ∈ F} \ {⊥} ∈ CLS, i.e., removal of clauses C ∈ F with var(C) ∩ V = ∅, and
restriction of the remaining clauses to variables in V .

Finally we use CLS(V ) := {F ∈ CLS : var(F ) ⊆ V }, PASS(V ) := {ϕ ∈
PASS : var(ϕ) ⊆ V } and TASS(V ) := {ϕ ∈ PASS : var(ϕ) = V } (“total
assignments”) for V ⊆ VA.

Now to autarkies; this paper is essentially self-contained, but if more informa-
tion is desired, see the handbook chapter [11]. A partial assignment ϕ ∈ PASS
is an autarky for F ∈ CLS iff for all C ∈ F with var(ϕ) ∩ var(C) 6= ∅ holds
ϕ ∗ {C} = ⊤ iff ∀C ∈ F : ϕ ∗ {C} ∈ {⊤, {C}}; the set of all autarkies for
F is denoted by Auk(F ) ⊆ PASS. The empty partial assignment 〈〉 is an au-
tarky for every F ∈ CLS, and in general we call an autarky ϕ for F trivial if
var(ϕ) ∩ var(F ) = ∅. For ⊤ as well as {⊥} every partial assignment is a trivial
autarky. Note that every satisfying assignment for F is also an autarky for F ,
and it is a trivial autarky iff F = ⊤. Another simple but useful property is that
ϕ is an autarky for

⋃

i∈I Fi for a finite family (Fi)i∈I of clause-sets iff ϕ is an
autarky for all Fi, i ∈ I. We also note that ϕ is an autarky for F iff ϕ is an au-
tarky for F ∪{⊥} iff ϕ is an autarky for F \ {⊥} (for autarkies the empty clause
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is invisible). In general it is best to allow that autarkies assign non-occurring
variables, but it is also needed to have a notation which disallows this; following
[11, Definition 11.9.1]:

Definition 1. For F ∈ CLS let Aukr(F ) := Auk(F )∩PASS(var(F )) (‘r” like
“restricted” or “relevant”), while by var(Aukr(F )) :=

⋃

ϕ∈Aukr(F ) var(ϕ) we
denote the largest autarky-var-set.

LEAN ⊂ USAT ∪{⊤} is the set of F ∈ CLS such that Aukr(F ) = {〈〉}, while
the lean kernel of F ∈ CLS, denoted by Na(F ) ⊆ F , is the largest element of
LEAN contained in F (it is easy to see that LEAN is closed under finite union).
We have var(Aukr(F ))∪var(Na(F )) = var(F ) and var(Aukr(F ))∩var(Na(F )) =
∅. See [11, Subsection 11.8.3] for various characterisations of the lean kernel.

Definition 2. For F ∈ CLS let nA(F ) := |var(Aukr(F ))| ∈ N0 be the number
of variables in the largest autarky-var-set and nL(F ) := |var(Na(F ))| ∈ N0 be
the number of variables in the lean kernel.

So n(F ) = nA(F ) + nL(F ). On the finite set Aukr(F ) we have a natural partial
order given by inclusion. There is always the smallest element 〈〉 ∈ Aukr(F ),
while the maximal elements of Aukr(F ) are called maximal autarkies for F . For
maximal autarkies ϕ, ψ holds var(ϕ) = var(ψ) = var(Aukr(F )); here we use that
the composition of autarkies is again an autarky, i.e., for autarkies ϕ, ψ for F
there is an autarky θ for F with ϕ ∗ (ψ ∗ F ) = ψ ∗ (ϕ ∗ F ) = θ ∗ F .

Definition 3. Let Auk↑(F ) ⊆ Aukr(F ) be the set of maximal autarkies.

A quasi-maximal autarky for F is an ϕ ∈ Aukr(F ) with ϕ ∗ F = Na(F ).
By supplying arbitrary values for the missing variables we obtain efficiently a
maximal autarky from a quasi-maximal autarky.

3 Oracles

The main computational task considered in this paper is the computation of
some element of Auk↑(F ) for inputs F ∈ CLS. Our emphasis is on the number
of calls to an “oracle”, which solves NP-hard problems, while otherwise the
computations are in polynomial time. The NP (-SAT) oracle O : CLS →
{0, 1} just maps F ∈ CLS to 1 in case of F ∈ SAT , and to 0 otherwise.
As we will see in Example 14, for deciding leanness, one call suffices. For a
(standard) SAT oracle O1 : CLS → {0} ∪ ({1} × PASS), the SAT solver
also returns a satisfying assignment, and then also a non-trivial autarky can
be returned in case of non-leanness. As introduced in [15], we consider here a
strengthened oracleO01, to return something also for unsatisfiable inputs. Recall
that a tree resolution refutation for F ∈ CLS is a binary tree, where the nodes
are labelled with clauses, such that the leaves are labelled by (some) clauses of
F (the “axioms”), while the root is labelled with ⊥, and such that for each inner
node, with children labelled by clauses C,D, we have C ∩ D = {x} for some
x ∈ LIT , while the label of that inner node is (C \ {x}) ∪ (D \ {x}).
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Definition 4. An extended SAT oracle is a map O01 : CLS → {0, 1} ×
(Pf(VA) ∪ PASS), which for input F ∈ USAT returns (0, var(F ′)) for some
F ′ ⊆ F , such that there is a tree refutation using as axioms precisely F ′, and for
F ∈ SAT returns (1, ϕ) for some ϕ ∈ PASS(var(F )) and ϕ∗F = ⊤. If we don’t
need the satisfying assignment, then we use O0 : CLS → {1} ∪ ({0} × Pf(VA)).

In the following we will indicate the type of oracle by using one of O0,O1,O01.
See [11, Subsection 11.10.3] for a short discussion how to efficiently integrate the
computations for O0,O01 into a SAT solver, both look-ahead ([8]) and CDCL
solvers ([28]). It is important to notice here that we do not need a full resolution
refutation, but only the variables involved in it. The above use of tree resolution
is only a convenient way of stating the condition that all axioms are actually
used in the refutation. Furthermore, there is no need for any sort of minimisation
of the refutation, as we see by the following lemma.

Lemma 5. If for F ∈ CLS holds O0(F ) = (0, V ), then V ∩ var(Aukr(F )) = ∅.

Proof: As shown in [14, Lemma 3.13], for any autarky ϕ ∈ Auk(F ) and any
clause C touched by ϕ there is no tree resolution refutation of F using C. �

So the more clauses are involved in the resolution refutation (i.e., the larger
V ), the more variables we can exclude from the largest autarky-var-set, and
thus minimising resolution refutation in general will be counter-productive. One
known approach to compute a maximal autarky of F ∈ CLS, as reviewed in
[11, Subsection 11.10.3] (especially Theorem 11.10.1 there), is based on the full
autarky-resolution duality ([14, Theorem 3.16]): the variables involved in some
autarky of F are altogether, i.e., var(Aukr(F )) = var(F ) \ var(Na(F )), precisely
the variables not usable by some tree resolution refutation of F . So the algo-
rithm, called A0(F ) here, iteratively removes variables not usable in an autarky
and clauses consisting solely of such variables, via Lemma 5, until a satisfying
assignment ϕ is found (which must happen eventually), and ϕ is then a quasi-
maximal (due to autarky-resolution duality):

Definition 6. For input F ∈ CLS, the algorithm A0(F ), using oracle O01 and
computing a partial assignment ϕ, performs the following computation:

1. While var(F ) 6= ∅ do:
(a) Compute O01(F ), obtaining (0, V ) resp. (1, ϕ).
(b) In case of (0, V ), let F := F [var(F ) \ V ].
(c) In case of (1, ϕ), let F := ⊤.

2. Return ϕ.

Lemma 7 ([14]). For F ∈ CLS the algorithm A0(F ) computes a quasi-maximal
autarky for F , using at most min(nL(F ) + 1, n(F )) calls of oracle O01.

The best case for algorithm A0(F ) in terms of the number of oracle calls is
given for F ∈ SAT , where just one call suffices. For the worst-case F ∈ LEAN
on the other hand A0(F ) might use n(F ) oracle calls:

Example 8. Let F :=
{

{1}, {−1}, {2}, {−2}, . . . , {n}, {−n}
}

for n ∈ N0. We
have F ∈ LEAN , and each loop iteration will remove exactly one pair {i}, {−i},
until all clauses are removed.
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4 The basic translation

We now review the translation t : CLS(VA0) → CLS from [26], called Γ2 there,
which represents the search for an autarky ϕ for F ∈ CLS(VA0) as a SAT
problem t(F ); here VA0 is the set of primary variables, while the variables in
VA \ VA0 are used as auxiliary variables. The translation t(F ) uses two types
of variables, the primary variables v ∈ var(F ) themselves, where v 7→ 1 now
means v ∈ var(ϕ), and for every v ∈ var(F ) two auxiliary variables t(v), t(v),
where t(x) 7→ 1 for x ∈ lit(F ) means ϕ(x) = 1. In other words, the three
possible states of a variable v ∈ var(F ) w.r.t. the partial assignment ϕ, namely
“unassigned” (v /∈ var(ϕ)), “set true” (ϕ(v) = 1), “set false” (ϕ(v) = 0), are
represented by three of the four states of assigned variables t(v), t(v), namely
“unassigned” is t(v), t(v) 7→ 0, “set true” is t(v) 7→ 1, t(v) 7→ 0, and “set false”
is t(v) 7→ 0, t(v) 7→ 1. The variable v in the translation t(F ) just acts as an
indicator variable, showing whether v is involved in the autarky or not. We have
then three types of clauses in t(F ): the autarky clauses for C ∈ F and x ∈ C,
stating that if x gets false by the autarky, then some other literal of C must
get true, plus the AMO (at-most-one) clauses for t(v), t(v) and the connection
between v and t(v), t(v). It is useful for argumentation to have the more general
form tV (F ), where only ϕ with var(ϕ) ⊆ V are considered:

Definition 9. We assume a set N ⊆ VA0 ⊂ VA of “primary variables” together
with an injection t : lit(VA0) → VA, yielding the “auxiliary variables”, such
that VA0 ∩ t(lit(VA0)) = ∅ and VA0 ∪ t(lit(VA0)) = VA. For V ⊆ VA0 let
V ′ := V ∪ t(lit(V )). In general we define an equivalence relation on VA, where
every equivalence class contains (precisely) three elements, namely v, t(v), t(v)
for v ∈ VA0. A set V ⊆ VA is saturated, if for v ∈ V and every equivalent v′

holds v′ ∈ V . The saturation V ⊆ V ′ ⊆ VA of V ⊆ VA is the saturation under
this equivalence relation, i.e., addition of all equivalent variables.

Now the translation tV : CLS(VA0) → CLS(V ′) for V ∈ Pf(VA0) has the
following clauses for tV (F ):

I for C ∈ F and x ∈ C with var(x) ∈ V the autarky clause {t(x)} ∪ {t(y) :
y ∈ C \ {x}, var(y) ∈ V } (i.e., t(x) →

∨

y∈C\{x},var(y)∈V t(y));

II for each v ∈ V the AMO-clause {t(v), t(v)};
III for each v ∈ V the clauses of v ↔ (t(v) ∨ t(v)), i.e., the three clauses

{v, t(v), t(v)}, {t(v), v}, {t(v), v} (the indicator clauses).

Especially t(F ) := tvar(F )(F ) for F ∈ CLS(VA0).

For F ∈ CLS(VA0) and V ∈ Pf(VA0) holds var(tV (F )) = V ′ = V ∪ t(lit(V )),
V ∩ t(lit(V )) = ∅, and n(t(F )) = 3n(F ), c(t(F )) = ℓ(F ) + 4n(F ). Due to the
four AMO- and indicator-clauses, every satisfying assignment for tV (F ) must be
total, that is, for ϕ ∈ PASS with ϕ ∗ tV (F ) = ⊤ holds var(tV (F )) ⊆ var(ϕ).

Example 10. For F =
{

{1}, {−1}, . . . , {n}, {−n}
}

as in Example 8, we have 2n

autarky clauses, which are {t(i)} for i ∈ {−n, . . . , n} \ {0}.
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Partial assignments ϕ on the primary variables are translated to assignments
on the primary+auxiliary variables via t0,V (ϕ) (assigning unassigned variables
to 0 in the translation) and t(ϕ) (leaving them unassigned), while the backwards
direction goes via via t−1(ϕ):

Definition 11. For V ∈ Pf(VA0) we define a translation t0,V : PASS(V ) →
TASS(V ′) for ϕ ∈ PASS(V ) by t0,V (ϕ)(v) = 1 ⇔ v ∈ var(ϕ) for v ∈ V , while
t0,V (ϕ)(t(x)) = 1 ⇔ var(x) ∈ var(ϕ) ∧ ϕ(x) = 1 for x ∈ lit(V ).

The translation t : PASS(VA0) → PASS for ϕ ∈ PASS(VA0) is the partial
assignment, where var(t(ϕ)) is the saturation of var(ϕ), while t(ϕ)(v) = 1 for
v ∈ var(ϕ), and t(ϕ)(t(x)) = 1 ⇔ ϕ(x) = 1 for x ∈ lit(ϕ).

In the other direction, any partial assignment ϕ ∈ PASS with var(ϕ) sat-
urated yields a partial assignment t−1(ϕ) ∈ PASS(VA0) with var(t−1(ϕ)) :=
ϕ−1(1) ∩ VA0 and t−1(ϕ)(v) = ϕ(t(v)) for v ∈ var(t−1(ϕ)).

As already stated, t0,V (ϕ) makes explicit which variables are unassigned by ϕ,
namely assigning them with 0, and thus it needs to know V , while t(ϕ) just
leaves them unassigned. We have t−1(t0,V (ϕ)) = t−1(t(ϕ)) = ϕ.

Example 12. tV (F ) ∈ SAT for F ∈ CLS(VA0) and V ∈ Pf(VA0), since for
t0,V (〈〉) = 〈v → 0 : v ∈ V 〉∪〈t(x) → 0 : x ∈ lit(V )〉 we have t0,V (〈〉)∗tV (F ) = ⊤.

t(F ) does its job, i.e., its solutions represent all the autarkies of F :

Lemma 13 ([26]). Consider F ∈ CLS(VA0) and V ∈ Pf(VA0).

1. If O1(tV (F )) = (1, ϕ), then t−1(ϕ) ∈ Aukr(F ) ∩ PASS(V ).
2. t0,V (ϕ) ∗ tV (F ) = ⊤ for ϕ ∈ Aukr(F ) ∩ PASS(V ).

Before discussing the usage of t(F ), we remark that the variables var(F ) ⊆
var(t(F )) are used purely for a more convenient discussion, while for a practical
application they would be dropped, and the translation called Γ3 in [26] would
be used (except possibly for Algorithm Abs defined later, which uses cardinality
constraints): the variables of t(F ) then would be just t(lit(F )), and the clauses
would be the autarky- and AMO-clauses (only). In our applications v ∈ var(F )
occurs in the translations only positively, and would be replaced by the two
positive literals t(v), t(v) (together).

4.1 Basic usages

Example 14. A simple algorithm for finding a non-trivial autarky for var(F ) 6= ∅
evaluates O1(t(F )∪{var(F )}). By Lemma 13 we get, that if the solver returns 0,
then F ∈ LEAN , while if (1, ϕ) is returned, then t−1(ϕ) is a non-trivial autarky
for F (the non-triviality is guaranteed by the additional clause var(F )).

Algorithm A1(F ), computing a maximal autarky, iterates the algorithm from
Example 14; the details are as follows, where we formulate the algorithm in such
a way that it has the same basic structure as A0 (recall Definition 6) and our
novel algorithm A01 (to be given in Definition 23):
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Definition 15. For input F ∈ CLS(VA0) the algorithm A1(F ), using oracle
O1 and computing a partial assignment ϕ, performs the following computation:

1. ϕ := 〈〉, P := {var(F )}, F := t(F ).
2. While var(P ) 6= ∅ do:

(a) Compute O1(F ∪ P ), obtaining 0 resp. (1, ψ).
(b) In case of 0, let P := ⊤ and F := ⊤.
(c) In case of (1, ψ), let ψ′ := t−1(ψ), and update P := P [var(P ) \ var(ψ′)],

F := t(ψ′) ∗ F , and ϕ := ϕ ∪ ψ′.
In words: obtain the autarky ψ′ from ψ, remove the variables of ψ′ from
P and F , and add ψ′ to the result-autarky ϕ.

3. Return ϕ.

Lemma 16. For F ∈ CLS(VA0) the algorithm A1(F ) computes ϕ ∈ Auk↑(F ),
using at most min(nA(F ) + 1, n(F )) calls of oracle O1.

Proof: The algorithm always terminates, and moreover for the number m ≥ 0
of executions of the while-body we havem ≤ min(nA(F )+1, n(F )), since in each
round P gets reduced by some variables from an autarky (due to the choice of P ).
Let F−1 be the input, let F0 := t(F−1), and let Fi for i = 1, . . . ,m be the current
F after execution of i-th iteration; similarly, let P0 be the original value of P ,
and let Pi be the current P after the i-th iteration, and let ϕ0 := 〈〉, and let ϕi be
the value of ϕ after the i-th iteration. Finally, let Vi for i = 1, . . . ,m be var(Pi)
in case of 0 resp. the value of var(ψ′) after round i, and let W0 := var(F−1), and
letWi :=Wi−1\Vi for i = 1, . . . ,m. Inductively we show that Fi = tWi

(ϕi∗F−1)
for i ∈ {0, . . . ,m}, where ϕi is an autarky for F−1 by Lemma 13, Part 1, and
Pi = P0[Wi] for i ∈ {1, . . . ,m}, where Wm = ∅. Variables only vanish as part of
some autarky for F−1, and thus ϕi ∈ Auk↑(F−1[W0 \Wi]) for i ∈ {0, . . . ,m}. �

The best case for algorithm A1(F ) in terms of the number of oracle calls is
given for F ∈ LEAN , where just one call suffices. For the worst-case F ∈ SAT
however, A1(F ) might use n(F ) oracle calls:

Example 17. Let F := {{1}, . . . , {n}} ∈ SAT for n ∈ N0. In the worst case (de-
pending on the answers of O1), in each call only one unit-clause {i} is removed.

The algorithm realising the currently best number of calls to O1 uses SAT-
encodings of cardinality constraints (see [34]); different from the literature, we
follow our general scheme and iteratively apply the autarkies found:

Definition 18. For input F ∈ CLS(VA0) the algorithm Abs(F ), using oracle
O1 and computing a partial assignment ϕ, performs the following computation:

1. ϕ := 〈〉, n := n(F ), V := var(F ), F := t(F ) (n is an upper bound on the
size of a maximal autarky, V is the set of variables potentially used by it).

2. While n 6= 0 do:
(a) m := ⌈n

2 ⌉; let G be a CNF-representation of the cardinality constraint
“
∑

v∈V v ≥ m”; compute O1(F ∪G), obtaining 0 resp. (1, ψ).
(b) In case of 0, let n := m− 1.
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(c) In case of (1, ψ), let ψ′ := t−1(ψ), and update n := n − n(ψ′), V :=
V \ var(ψ′), F := t(ψ′) ∗ F , and ϕ := ϕ ∪ ψ′.

3. Return ϕ.

As it should be obvious by now:

Lemma 19. For F ∈ CLS(VA0) the algorithm Abs(F ) computes ϕ ∈ Auk↑(F ),
using at most ⌈log2(n(F ))⌉ calls of oracle O1 (for n(F ) > 0).

That the upper bound of Lemma 19 is attained, can be seen again with
Example 17 (in the worst case). We remark that if we allow calls to Partial
MaxSAT (see [24] for an overview), then just one call is enough (as used in [25]),
and that without cardinality constraints, namely using t(F ) as the hard clauses
and {v} for v ∈ var(F ) as the soft clauses. Indeed, as shown in [26, Proposition
1], this translation has a unique “minimal correction set” (MCS), i.e., a unique
minimal subset of the soft clauses, whose removal yields a satisfiable clause-set,
and so any MCS-solver can be used (just one call).

4.2 Adding positive “steering” clauses

Generalising the use of P in Algorithm A1, we consider some positive clause-
set P over var(F ) (i.e., P ⊆ P(var(F ))), and use t(F ) ∪ P ∈ CLS to gain larger
autarkies. Note that the elements of P require variables to be in the autarky, and
so in general P should contain several shorter clauses, while for A1 we just used
one full clause (containing all variables). If the oracle then yields unsatisfiability,
this is no longer the end of the search (due to the lean kernel been reached),
since the clauses of P involved in the refutation might not involve all remaining
variables. The extended oracle is now needed to tell us which clauses of P were
used. To do so, we first note that autarkies for F yield autarkies for t(F ) ∪ P
(where for a simpler algorithm we allow P to contain variables not in t(F )):

Lemma 20. Consider F ∈ CLS(VA0) and P ∈ Pf(Pf(VA0)). For ϕ ∈ Aukr(F )
we have t(ϕ) ∈ Aukr(t(F ) ∪ P ).

Proof: t(ϕ) is an autarky for P , since t(ϕ) does not set variables from var(F )
to 0. By Lemma 13, Part 2, we get that t0(ϕ) is a satisfying assignment for t(ϕ);
now t(ϕ) just unsets all triples v, t(v), t(v) with v /∈ var(ϕ), where t0(ϕ) sets these
three variables to 0. Thus obviously t(ϕ) is also an autarky for the AMO-clauses
and the indicator clauses. Assume an autarky clause D for C ∈ F and x ∈ C,
touched by t(ϕ) but not satisfied. Thus there is y ∈ C with var(x) /∈ var(ϕ)
and ϕ(y) = 0; since ϕ is an autarky, there is y′ ∈ C with ϕ(y′) = 1, whence
t(ϕ)(t(y′)) = 1 with t(y′) ∈ C, contradicting the assumption. �

Thus the saturation of the largest autarky-var-set of F is contained in the
largest autarky-var-set for t(F ) ∪ P :

Corollary 21. Consider F ∈ CLS(VA0) and P ∈ Pf(Pf(VA0)). Then the set
var(Aukr(t(F ) ∪ P )) is saturated and contains var(Aukr(F )).
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Proof: It remains to show that var(Aukr(t(F )∪P )) is saturated, and this follows
by just considering the AMO-clauses and the indicator clauses: If v is assigned,
then also t(v), t(v) need to be assigned for an autarky, while if one of t(v), t(v)
is assigned, then also v needs to be assigned. �

Using Lemma 5, we obtain the main insight, that if the oracle yields (0, V )
for t(F ) ∪ P , then none of the elements of V are in the largest autarky-var-set:

Corollary 22. If for F ∈ CLS(VA0) and P ∈ Pf(Pf(VA0)) the oracle yields
O0(t(F ) ∪P ) = (0, V ), then V ′ ∩ var(Aukr(F )) = ∅ (recall Definition 9 for V ′).

5 The new algorithm

We now present the novel algorithm scheme S01(F, P ), combining algorithms
A0 (Definition 6) and A1 (Definition 15), which takes as input F ∈ CLS and
additionally P ⊆ P(var(F )), and computes some autarky ϕ ∈ Aukr(F ); for
our current best generic instantiation we specify P in Theorem 27, obtaining
algorithm A01(F ).

Definition 23. For inputs F ∈ CLS(VA0) and P ⊆ P(var(F )), the algorithm
S01(F, P ), using oracle O01 and computing a partial assignment ϕ, performs
the following computation (using the saturation V ′ as in Definition 9):

1. ϕ := 〈〉, F := t(F ).
2. While var(P ) 6= ∅ do:

(a) Compute O01(F ∪ P ), obtaining (0, V ) resp. (1, ψ).
(b) In case of (0, V ), let V := V ′, P := P [var(P ) \ V ], F := F [var(F ) \ V ].
(c) In case of (1, ψ), let ψ′ := t−1(ψ), and update P := P [var(P ) \ var(ψ′)],

F := t(ψ′) ∗ F , and ϕ := ϕ ∪ ψ′.
3. Return ϕ.

While ⊥ ∈ P is of no real use, it doesn’t cause a problem for the algorithm,
and will be removed from P in the first round by the restriction (whether the
implicit resolution refutation of t(F ) ∪ P chooses ⊥ as the refutation or not).

Lemma 24. For F ∈ CLS(VA0) and P ⊆ P(var(F )) the algorithm S01(F, P )
computes an autarky ϕ ∈ Aukr(F ). If var(P ) = var(F ), then ϕ ∈ Auk↑(F ).

Proof: The proof extends the proof of Lemma 16, by extending the handling
of the case O01(F ∪P ) = (0, V ). The algorithm always terminates, since in each
round P gets reduced. Let m ≥ 0 be the number of executions of the while-
body. Let F−1 be the input, let F0 := t(F−1), and let Fi for i = 1, . . . ,m be the
current F after execution of i-th iteration; similarly, let P0 be the input-value
of P , and let Pi be the current P after the i-th iteration, and let ϕ0 := 〈〉, and
let ϕi be the value of ϕ after the i-th iteration. Finally, let Vi for i = 1, . . . ,m
be the value of V resp. var(ψ′) after round i, and let W0 := var(F−1), and let
Wi :=Wi−1\Vi for i = 1, . . . ,m. Inductively we show that Fi = tWi

(ϕi∗F−1) for
i ∈ {0, . . . ,m}, where ϕi is an autarky for F−1 by Lemma 13, Part 1, and Pi =
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P0[Wi] for i ∈ {1, . . . ,m}. Since variables vanish from P only by restriction, we
have V1∪ . . . Vm ⊇ var(P ), and thus Wm ⊆W0 \var(P ). Variables only vanish, if
either they are realised as not being element of var(Aukr(F−1)) (Corollary 22), or
as part of some autarky for F−1. So ϕi ∈ Auk↑(F−1[W0 \Wi]) for i ∈ {0, . . . ,m},
and if var(P ) = var(F−1), then ϕm is a maximal autarky for F−1. �

If instead of an unrestricted (maximal) autarky ϕ ∈ Aukr(F ) we want to
compute a (maximal) autarky ϕ ∈ Aukr(F ) with var(ϕ) ⊆ V for some given
V ⊆ VA, then we may just replace the input F by F [V ] (or we choose P with
⋃

P = V , and restrict the result).

Example 25. The simplest cases for computing maximal autarkies use (I) P =
{var(F )} or (II) P = {{v} : v ∈ var(F )}. In Case I, we essentially obtain
A1 (Definition 15), and S01(F, P ) produces autarkies until the lean kernel is
reached, so we only have SAT-answers with one final UNSAT-answer. In Case
II, the scheme becomes very similar to A0 (Definition 6), and we remove elements
of P until we obtain the variables of var(Aukr(F )), and so we only have UNSAT-
answers with one final SAT answer. If F ∈ LEAN , then in Case I only one call
of the oracle is needed (as in Example 14), while in Case II, for F as in Example
8 we need n(F ) oracle calls. On the other hand, if F ∈ SAT , then in Case I, for
F as in Example 17 we need n(F ) oracle calls, while in Case II only one call of
the oracle is needed.

A more intelligent use of S01 employs a better P , to mix the SAT- and
UNSAT-answers of the oracle.

Lemma 26. For F ∈ CLS(VA0) and P ⊆ P(var(F )) with P ∈ p–CLS (p ∈ N0),
algorithm S01(F, P ) uses at most min(p, nA(F ))+min(c(P ), nL(F )) oracle calls.

Proof: Every oracle call removes at least one clause from P (in the unsat-case),
since tV (F ) ∈ SAT , or one variable from all clauses of P (in the sat-case). �

So we need to minimise the sum of the number of clauses in P and the
maximal clause-length, which is achieved by using disjoint clauses of size

√

n(F );
by Lemmas 24, 26 we obtain:

Theorem 27. Consider F ∈ CLS(VA0). Choose P
′ ⊆ P(var(F )) such that P ′

is a partitioning of var(F ) (the elements are pairwise disjoint and non-empty,
the union is var(F )) with ∀V ∈ P ′ : |V | ≤ ⌈

√

n(F )⌉ and c(P ′) ≤ ⌈
√

n(F )⌉.

Such a partitioning P ′ can be computed in linear time. Algorithm A01(F ) :=
S01(F, P

′) computes a maximal autarky for F , using at most min(s, nA(F )) +
min(s, nL(F )) ≤ 2s calls of O01, where s := ⌈

√

n(F )⌉ ∈ N0 .

Up to the factor, the upper bound of Theorem 27 is attained:

Example 28. For F as in Example 10 as well as F as in Example 17 we need
now ⌈

√

n(F )⌉ oracle calls (in the worst-case).
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6 Conclusion and outlook

We reviewed the algorithms A0,A1,Abs for computing maximal autarkies, using
a unified scheme, and presented the new algorithm A01. We are employing four
different types of oracles: O is the basic oracle, just indicating satisfiability resp.
unsatisfiability, O0 in the unsatisfiable case yields the set of variables used by
some resolution refutation, O1 in the satisfiable case yields a satisfying assign-
ment, while O01 combines these capabilities. We investigated in some depth the
translation F ❀ t(F ), which encodes the autarky search for F . The complexi-
ties of the four algorithms are summarised as follows (with slight inaccuracies),
stating the number and type of oracle calls and the call-instances:

– A0(F ): nL(F ) calls of O01, subinstances of F .
– A1(F ): nA(F ) calls of O1, subinstances of t(F ) plus one large positive clause.
– A01(F ):

√

n(F ) calls of O01, subinstances of t(F ) plus positive clauses.
– Abs(F ): log2(n(F )) calls of O1, subinstances of t(F ) plus one varying cardi-

nality constraint in CNF-representation.

Question 29. As we can see from Examples 25, 28, the choice P ′ from Theorem
27, instantiating the scheme S01 and yielding A01, can be improved at least
in special cases. Are more intelligent choices of P possible, heuristically, for
special classes, or even in general? The optimal choice (hard to compute) is
P := {var(Na(F ))} ∪ {{v} : v ∈ var(Aukr(F ))}, which needs two oracle calls.

Question 30. We conjecture the number Ω(
√

n(F )) of oracle calls from Theorem
27 to be optimal in general, but the question here is, how to formalise the
restrictions to the input of oracle O01 (so that for example the SAT translations
of cardinality constraints are excluded). With these restrictions in place, we also
conjecture that when only using oracle O1 (as algorithm A1 does (Definition
15)), that then in general Ω(n(F )) many calls are needed.

Question 31. How do A0,A1,A01,Abs compare to each other? Are they pairwise
incomparable? Is their oracle usage optimal under suitable constraints?

Question 32. In this paper we concentrated on the hardest functional task: What
about the complexity of the computation of the lean kernel, when using oracles
O,O0,O1,O01 ? Do we need less calls than for computing maximal autarkies?

Only one precise conjecture on lower bounds for the computation of maximal
autarkies seems possible currently:

Conjecture 33. The computation of a maximal autarky for input F ∈ CLS, when
using a SAT oracle O1, in general needs Ω(log2(n(F ))) many calls; possibly one
can even show that for every (deterministic) algorithm there exists an instance
needing at least log2(n(F )) many calls.

Finally we remark that for the considerations of this paper more fine-grained
complexity notions for function classes and their oracle usage are needed. Func-
tion classes just using NP-oracles (only returning yes/no) have been studied
starting with [12], while a systematic study of “function oracles” has been started
in [27], using “witness oracles”; we note that O0,O01 are not such witness oracles
(we can not easily check the returned var-sets).
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