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Abstract. In this paper we show that diversity-driven widening, the
parallel exploration of the model space with focus on developing diverse
models, can improve hierarchical agglomerative clustering. Depending on
the selected linkage method, the model that is found through the widened
search achieves a better silhouette coefficient than its sequentially built
counterpart.

1 Introduction

With the rise of multi-processor computer systems and multi-machine clusters,
great efforts have been made to adapt machine learning to the changing par-
adigm of scaling hardware horizontally instead of vertically. Many traditional
learning algorithms have been revised to run in a parallelized environment (eg.
decision trees [18], neural networks [19] and SVMs [5]). These algorithms mostly
focus on making the model building faster, but produce the same models as the
non-parallel algorithms. Another approach that focuses on leveraging parallel
computing resources to improve models generated by a data mining algorithm,
rather than speeding up the computation, has been proposed in [1]. The tech-
nique has already been shown to work well for the set covering problem and
KRIMP [17].

In this paper we describe a widened algorithm for hierarchical agglomerative
clustering [6]. Parallel versions of this algorithm have been described in [14],
however the focus there is again on acceleration rather than improving the model.
Our preliminary results indicate that building multiple, diverse clustering models
in parallel can improve the quality of the clustering for different quality metrics.

2 Widening

The widening technique for algorithms has first been described in [1]. It dis-
cusses an approach that focuses on leveraging parallel computing resources to
improve models generated by a data mining algorithm, rather than speeding up
the computation. Instead of greedily traversing the model space in search of a
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model that is just good enough, widening seeks to explore the space of all pos-
sible models in parallel, focusing on a certain number of best models at a time,
iteratively refining them and selecting the best models again. Formalized, the
standard way of searching the model space can be written as:

m’ = s(r(m)) (1)

where m is the current model and m’ is the next model in the greedy search
step. The function r(-) is the refinement of a model and s(-) the selection of the
best model. The greedy search of the model space is therefore only a sequence of
refinement and selection steps which terminates when a good enough model has
been found. Widening, on the other hand, can be described using the following
formula:

{my,...,my} =s({r(my),...,r(mg)}). (2)

In a widened algorithm we do not deal with a single model, but with sets of
models. The refinement operation produces multiple refinements from a single
model and the selection filters them in order to return a set of best k&’ models. It
can therefore be seen as a beam search through the model space. To avoid the
selection operation choosing very similar models and not converging to a single
solution or multiple very similar solutions, it is beneficial to enforce diversity
within the selected models. Techniques for diversity-driven widening are dis-
cussed in [7]. One of the proposed methods is Diverse Top-k Widening, which
makes use of a fixed diversity threshold 6 that governs how similar the selected
models are allowed to be, given a distance function 6.

3 Related Work

Since this paper focuses on widening a clustering algorithm, we focus here on
work related to diversity-focused clustering and refer the reader to [1,7] for
research into the general notion of enforcing diversity in model learning.

An approach that concentrates on diversity in clustering models is described
in [2]. Here multiple diverse k-means clusterings are created in order to let the
user choose the most applicable. Instead of selecting diverse clusterings after
overproduction, the paper proposes a method whereby diversity is generated by
running the k-means algorithm multiple times with different random initializa-
tions and random feature weighting. The large number of clusterings is then
clustered at a meta level to present the user with a reasonable number of diverse
models. The rationale here is that there are different clusterings for different pur-
poses and the user ultimately knows best which one to choose. This, of course,
is only useful for data sets with a low dimensionality.

Another paper that deals with finding better clustering results is [11]. Here
the hierarchical clustering problem is solved using a genetic algorithm that tries
to optimize the Lo norm between an ultrametric distance matrix associated with
the hierarchical classification and the proximity matrix of the dataset.
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4 Widened Hierachical Agglomerative Clustering

In this paper we describe the widening of hierarchical agglomerative clustering.
This bottom-up algorithm starts with every data point being a single cluster
and subsequently merges the two clusters that are closest to each other. Apart
from the distance function used to build the initial distance matrix, there are
several possible linkage criteria for calculating the distance between newly formed
clusters. Commonly used ones are:

UPGMA. The Unweighted Pair Group Method with Arithmetic Mean calculates
the distance between two merged clusters A and B and another cluster C' as
the mean of the distance between A and C and between B and C.

Complete linkage. This method defines the distance of two clusters as the
distance between those two data points (one from each cluster) that are
farthest away from one another.

Single linkage. Contrary to complete linkage, here the distance of two clusters
is the distance between those two data points that are closest to each other.

Centroid linkage. In this linkage method the distance between two clusters is
the distance of their respective centroids.

Median linkage. Here the distance between two clusters is the Euclidean dis-
tance between their weighted centroids.

Centroid and median linkage are notable because they do not lead to a
monotone distance measure. The resulting clustering dendrograms can have
inversions because the similarity between two clusters increases through a merge
of one of them with another cluster. Even though this makes the dendrogram
harder to interpret, the linkage criterion is often used because the similarity of
two centroids is easy to understand.

The distances calculated with the above linkage methods are used to deter-
mine the two clusters to be merged in the next step. The algorithm continues
to merge clusters until a predefined number of clusters is reached or until only
one cluster is left. Because choosing the closest clusters to be merged is a local
decision, what can occur is that the algorithm makes a merge that has a nega-
tive influence on future merges, where it may be forced to combine two clusters
that do not fit together very well. Due to the greedy nature of the algorithm,
widening can help to find better solutions by exploring a larger portion of the
model space. While [7] also describes the notion of communication-free widening,
we concentrate on the effect diversity has on the model building and allow the
direct comparison of models in the selection step. Even though finding better
models in the same amount of time is the eventual goal of widening, this paper
does not take speed into account and focuses on creating better models than the
sequential algorithm.

An efficient implementation of the hierarchical agglomerative clustering algo-
rithm with a time complexity of ©(N?log N) can be found in [12]. It is based
on priority queues that are used to quickly determine the closest neighbor of
a given cluster. To achieve widening, we can make use of these queues by not
only merging the closest pair, but also the second, third or hundredth closest
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and therefore generating many refinements from a single model. The number of
refined models k, in iteration i can be calculated as follows:

k‘.,-ﬂ‘ =k * (N — Z) (3)

Here N is the total number of data points to be clustered. In each iteration two
clusters are merged into one, (N — ¢) therefore denotes the number of clusters
present in iteration 4.

5 Achieving Diversity

The diversity of the models is enforced in the selection step, where we select k
models from k, refinements. Our goal is to select the most diverse and at the
same time also best models to achieve both exploration and exploitation. This
multi-objective problem is known as Mazimum-Score Diversity Selection [13].

In the following chapters we introduce a distance metric for our models,
which is based on the Robinson Foulds metric. Furthermore we describe how the
quality of our models can be compared with a small extension of the standard
heuristic of hierarchical agglomerative clustering.

5.1 Distance Metric for Hierarchical Clustering Models

To have a notion of (dis-)similarity for our models, we first need to define a
distance metric. Since the clustering process merges clusters in a bottom-up
fashion, the intermediate models are forests, where each tree is either a single
data point or a cluster tree on a subset of all data points. Because the leaves of the
trees in the forests are the original data points, all models have the same leafset.
To calculate a distance between our models, we need a metric that can be applied
to the forests. One such metric, even though originally used for calculating the
distance between phylogenetic trees, is the Robinson Foulds metric [15]. This
metric is based on the number of bipartitions shared by two trees. A bipartition
is a split of the tree at an edge, so that the leaves are divided into two disjoint
sets. Splits at edges that connect a leaf with the rest of the tree are called trivial
bipartitions and are ignored for the calculation of the metric since they are
present in every tree.

When B(T) denotes the set of nontrivial bipartitions of a tree, the number
of bipartitions found in a tree 7} but not in another tree T can be calculated as

|B(T1) — B(13)|. (4)
Using this the Robinson Foulds distance is defined as:
1
drr(T1,Ty) = §(|B(T1) — B(T2)| + |B(T2) — B(T1))). (5)

In order to apply the distance metric to our forests, we define the set of bipar-
titions for a forest F' to be the union of bipartitions of its trees:



88

B(F) = (] B(T). (6)

While the Robinson Foulds metric is originally devised for unrooted trees, these
sets of bipartitions for forests allow us to calculate the distance between our
models as well.

An efficient algorithm for computing the metric on trees has been given in
[4]. As the first step of the algorithm for unrooted trees is to select one of the
leaves as the root node, the fact that the Robinson Foulds distance was meant
for unrooted trees is of no regard for our problem. Day’s algorithm identifies
nontrivial bipartitions by assigning intervals to each inner node of a tree. To
obtain the set of intervals for a number of trees Ti,...,T,, we take 77 and
traverse it in a depth first fashion, labeling the leaves according to the order in
which they are visited. This will be our reference labeling for the leaf nodes of all
trees, which means that if leaf node A has label 1 in the reference labeling, it will
have the same label in all of the trees under comparison. The labels are then used
to calculate unique intervals for each inner node. An inner node’s interval is the
tupel of the largest and smallest label of all its descendant leaf nodes. A tree’s
interval set S; is the set of tupels from all its inner nodes. Figure 1 shows two
trees, where the left has been used to create the reference labeling of the leaves.
The Robinson Foulds distance between those trees is 2, since their interval sets
differ in two tupels.

In order to use Day’s algorithm for our models, the leaf labels have to be
assigned across multiple trees in a forest. For one model, its trees are ordered
arbitrarily, then iterated and traversed depth first, labeling all the leaf nodes
according to the order in which they are visited. Since all models have the
same leaf nodes, the labels can be mapped to the nodes of the other forests as
well. After obtaining a labeling for the leaves, the interval set for each tree is
calculated as described above. To compare two forests F; and F5, we compare
the corresponding interval sets B(F;) and B(F») by counting the intervals that
occur in one set but not the other. Using this count we can create a k. X k.,
distance matrix D for all refined models.

5.2 Selecting Diverse Models

In the next step we need to select k models from the k, refinements, choosing
both good and diverse ones to find an even balance between global exploration
and local exploitation of the model space. In the original algorithm for hierar-
chical agglomerative clustering the next model is the one where the two clusters
that are closest to each other are merged. In the case of multiple models devel-
oped in parallel, we can improve this heuristic by using the aggregated merge
distance as criterion. For each refined model m, the score ¢, ; in the current
iteration i can be calculated as follows:

¢m,i = de,j (7)
j=1
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Fig. 1. Example of two trees and the corresponding intervals used by Day’s algorithm
to compute the Robinson Foulds distance.

where d,, ; denotes the distances of the merged clusters in iteration j. The value
dp,,; depends on the distance metric used to build the initial distance matrix
and the linkage criterion that is used to calculate the distance between a merged
cluster and all other clusters.

After each model has been assigned an associated score, we need to select
models that are not only good according to our scoring function but also diverse
according to our distance metric. While in [7] a Diverse Top-k approach is
described, we propose another way of selecting diverse trees that does not rely
on a diversity threshold 6. Because the trees get larger with each iteration, the
distance between them also increases. A fixed threshold is therefore not suitable
for this problem. Instead, diversity can be achieved by clustering the models
into k clusters and picking the best model of each cluster for the output of
the selection step (see Fig.2). Given the distance matrix D, we use k-medoid
clustering [8] to split the set of models into groups and use ¢, ; to select the best
model in each. The effect the model selection method has on diversity is demon-
strated in Fig. 3. Here 20 models were built in parallel on the seeds dataset from
the UCI repository [10], using k-medoid clustering to enforce diversity. After
200 steps, when 10 clusters were left to be merged, the refinements of the cur-
rent intermediate models were projected into 2D space using multidimensional
scaling [9]. In Fig. 3a the models that are chosen by the k-medoid selector for
the next step are marked in red. Figure 3b shows which models would have been
selected by a top-k selector. It can be seen that top-k focuses on a small area of
the model space while models selected using k-medoid clustering are scattered
across the whole space. The top-k approach also selects duplicates that occur in
our models. The diversity enforcing clustering approach avoids this naturally as
all equal models fall into the same cluster, but only one model is selected from
each cluster.
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Fig. 2. The first step of widened model building using k-medoid with £ = 3. Refined
models are created from the initial model, then they are clustered into 3 groups and
from each group the best model is used for creating the next generation of models.
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Fig. 3. Models projected with multidimensional scaling. In (a) the red squares mark
the models selected using the k-medoid approach and in (b) the top-k models (Color
figure online).

6 Evaluating Clustering Results

A commonly used quality measure for clustering results is the silhouette coef-
ficient [16]. It is a number between -1 and 1, where values close to the lower
bound are a sign of very bad clustering and numbers close to 1 mean that the
found clusters are good. For an individual data point o belonging to cluster A
the silhouette is defined as

_ dist(B, 0) — dist(A, o)
$(0) = o [dist(A, o), dist(B, o)} ®)

where dist(A, o) is the average distance between o and all data points in A, and
dist(B, 0) is the distance between o and all data points in the next closest cluster
B. The silhouette coefficient of a clustering result is the average s(o) over all data
points.

The Davies-Bouldin Index (DBI) [3] is another cluster evaluation measure
that can be used to compare the quality of multiple clustering results. Like the
silhouette coeflicient it is an internal evaluation scheme, where only features of
the dataset itself are taken into account. The index can be determined with the
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following formula:

1
DB =+ ; D; 9)
where D; is defined as: G i
Di = o ) o
with A; being the centroid and S; the scatter within cluster i:
1
Si:fZ||Xd*Ai||p~ (11)
" d=1

Here T; is the size of the cluster and X is a data point in the cluster. The Davies-
Boulding-Index compares the within-cluster scatter to the between-cluster sepa-
ration, represented by the distance between the corresponding centroids. A ratio
close to zero means that the clusters are dense and well separated.

7 Preliminary Results

As our preliminary tests show, the best of multiple, built-in-parallel, diverse
models can have both a better silhouette coefficient and Davies-Bouldin Index
in comparison to the model found by the greedy, sequential algorithm. The
effectiveness depends on the linkage method and the data set used. Tests have
been carried out with the user knowledge modeling data set and the seeds data
set from the UCI Machine Learning Repository. The data sets were chosen due
to their suitability for clustering and their size. The desired number of clusters
to be generated by the algorithms was set to 3 for the seeds data set and to 4
for the user knowledge modeling data set. We used the Euclidean distance as
the distance measure for building the initial distance matrix for the data points
and to calculate the between-cluster separation for the Davies-Bouldin Index.

In our tests clustering the seeds data set with median linkage shows promising
results for the widened version of the algorithm. Figure 4a shows the silhouette
coefficient of the best and worst of 10 widened models and the sequential algo-
rithm’s silhouette coefficient over the iterations of the algorithm. Here we can see
that the widened algorithm generally produces a model with a better silhouette
coefficient than the sequential algorithm.

Notable is the steep drop of the traditional algorithm’s silhouette coefficient
at 5 clusters (iteration 205), clearly visible in Fig. 5a. Here it is forced to make
a bad merge due to preceding greedy behavior. The best widened model also
had a declining silhouette coefficient in previous iterations but has at that point
already recovered with a silhouette coefficient of 0.389. If the data is clustered
into 3 groups, the best widened model has a silhouette coefficient of 0.425. The
sequential algorithm produces a model that has a silhouette coefficient of 0.264.
Similar results can be achieved with centroid clustering. For average, complete
and single linkage the silhouette coefficient could not be improved by widening.
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Fig. 4. The silhouette coefficient for intermediate models of the sequential algorithm
(black) and the best (green) and worst (red) of the widened models for each iteration
(Color figure online).
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Fig. 5. The silhouette coefficients in the last steps of the sequential algorithm (black)
and widened algorithm (best model: green, worst model: red) (Color figure online).

The Davies-Bouldin Index, however, can be improved from 0.76 to 0.74 when
the UPGMA linkage method is used. The best model obtained through widening
the median linkage algorithm also achieves a lower DBI for 3 clusters. The best
of the 10 widened models has a score of 0.65, the sequential algorithm achieves
a DBI of 1.84.

Similar results can be achieved when clustering the user knowledge modeling
data set with complete linkage hierarchical clustering. Figure 4b depicts the sil-
houette coefficient for the best and worst of 10 widened models and the model
generated by the sequential algorithm for each iteration of the algorithm. For
4 clusters the best widened model has a silhouette coefficient of 0.169, for the
model generated by the sequential algorithm this value is 0.124. An interesting
observation can be made in Fig. 5b, where we see that the greedy algorithm’s
silhouette coefficient increases in iteration 384 but drops very low subsequently.
The best widened model does not exhibit such extreme behavior. There the sil-
houette coeflicient changes only slightly before dropping down to around 0.155.
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The Davies-Bouldin Index also shows the improvement that is possible
through widening. Clustering the user knowledge modeling data set with 4
desired clusters the widened algorithm produces a result with a DBI of 1.622
while the sequential algorithm achieves an index of 1.699. It is notable that the
model with the lowest DBI does not also have the highest silhouette coefficient.

Note that the afore-mentioned widened algorithm’s runtime is worse than
the sequential algorithm’s runtime, despite the possible parallelization of the
refinement and selection processes. The reason for this increase in runtime is
that calculating the pair-wise distance of many refined models for the matrix D
is very time consuming, resulting in overhead for the selection step. This paper
focuses on the role diversity plays in the intelligent search of the model space
and performance improvements may be achieved by making the widened algo-
rithm communication-less, avoiding the model-by-model comparisons altogether.
This, however, is a topic of future research and not in the scope of this work.
For an introduction to diverse communication-free widening we refer the reader
to [7], where ideas for avoiding communication between parallel workers are
described.

8 Conclusions and Future Work

In this paper we have shown the application of widening to the hierarchical
agglomerative clustering algorithm. The two main parts of widening are refine-
ment and selection, for both of which we described implementations for hier-
archical clustering. Creating refinements of a model utilizes information that is
already present in the sequential algorithm, namely the priority queues that are
maintained to keep track of the nearest neighbor of each cluster. For the selec-
tion of diverse and good models we described a method that groups models using
k-medoid clustering and subsequently picks the best model from each group. We
visualized how this approach covers the model space better than top-k, which
focuses on a small area only. Our results on two public datasets indicate that
the models obtained through widening can be better than the results of the
sequential algorithm. This is the case for both the Davies-Bouldin Index and the
silhouette coefficient, two widely used clustering evaluation metrics.

Future work includes the evaluation of other diversity facilitating methods
such as p-dispersion-min-sum as well as making the algorithm communication-
free. Removing communication between different branches of refined models
would also increase the runtime performance of the algorithm, as less models
would have to be compared to each other. This paper shows that spending
parallel computing resources on exploring the model space can result in bet-
ter models and widening the hierarchical agglomerative clustering algorithm is
feasible when faster ways of enforcing diversity can be applied.
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