Skip to main content

Learning with Deep Cascades

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9355))

Abstract

We introduce a broad learning model formed by cascades of predictors, Deep Cascades, that is structured as general decision trees in which leaf predictors or node questions may be members of rich function families. We present new data-dependent theoretical guarantees for learning with Deep Cascades with complex leaf predictors and node questions in terms of the Rademacher complexities of the sub-families composing these sets of predictors and the fraction of sample points reaching each leaf that are correctly classified. These guarantees can guide the design of a variety of different algorithms for deep cascade models and we give a detailed description of two such algorithms. Our second algorithm uses as node and leaf classifiers SVM predictors and we report the results of experiments comparing its performance with that of SVM combined with polynomial kernels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arreola, K., Fehr, J., Burkhardt, H.: Fast support vector machine classification using linear SVMs. In: ICPR (2006)

    Google Scholar 

  2. Arreola, K., Fehr, J., Burkhardt, H.: Fast support vector machine classification of very large datasets. In: GfKl Conference (2007)

    Google Scholar 

  3. Bartlett, P., Mendelson, S.: Rademacher and Gaussian complexities: Risk bounds and structural results. JMLR (2002)

    Google Scholar 

  4. Bengio, S., Weston, J., Weston, D.: Label embedding trees for large multi-class tasks. In: NIPS, Vancouver, Canada (2010)

    Google Scholar 

  5. Bennet, K., Blue, J.: A support vector machine approach to decision trees. In: IJCNN, Anchorage, Alaska (1998)

    Google Scholar 

  6. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth and Brooks, Monterey (1984)

    MATH  Google Scholar 

  7. Chang, F., Guo, C., Lin, X., Lu, C.: Tree decomposition for large-scale SVM problems. JMLR (2010)

    Google Scholar 

  8. Chen, M., Xu, Z., Kedem, D., Chapelle, O.: Classifier cascade for minimizing feature evaluation cost. In: AISTATS, La Palma, Canary Islands (2012)

    Google Scholar 

  9. Cortes, C., Mohri, M., Syed, U.: Deep boosting. In: ICML (2014)

    Google Scholar 

  10. Deng, J., Satheesh, S., Berg, A., Fei-Fei, L.: Fast and balanced: efficient label tree learning for large scale object recognition. In: NIPS (2011)

    Google Scholar 

  11. DeSalvo, G., Mohri, M., Syed, U.: Learning with Deep Cascades. arXiv (2015)

    Google Scholar 

  12. Dong, G., Chen, J.: Study on support vector machine based decision tree and application. In: ICNC-FSKD, Jinan, China (2008)

    Google Scholar 

  13. Golea, M., Bartlett, P., Lee, W., Mason, L.: Generalization in decision trees and DNF: does size matter? In: NIPS (1997)

    Google Scholar 

  14. Koltchinskii, V., Panchenko, D.: Empirical margin distributions and bounding the generalization error of combined classifiers. Annals of Statistics 30 (2002)

    Google Scholar 

  15. Kumar, A., Gopal, M.: A hybrid SVM based decision tree. JPR (2010)

    Google Scholar 

  16. Lefakis, L., Fleuret, F.: Joint cascade optimization using a product of boosted classifiers. In: NIPS (2010)

    Google Scholar 

  17. Littman, M., Li, L., Walsh, T.: Knows what it knows: a framework for self-aware learning. In: ICML (2008)

    Google Scholar 

  18. Madjarov, G., Gjorgjevikj, D.: Hybrid decision tree architecture utilizing local SVMs for multi-label classification. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part II. LNCS, vol. 7209, pp. 1–12. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Mansour, Y., McAllester, D.: Generalization bounds for decision trees. In: COLT (2000)

    Google Scholar 

  20. Mohri, M., Rostamizadeh, R., Talwalkar, A.: Foundations of Machine Learning. The MIT Press (2012)

    Google Scholar 

  21. Nobel, A.: Analysis of a complexity based pruning scheme for classification trees. IEEE Trans. Inf. Theory (2002)

    Google Scholar 

  22. Pujara, J., Daume, H., Getoor, L.: Using classifier cascades for scalable e-mail classification. In: CEAS (2011)

    Google Scholar 

  23. Quinlan, J.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)

    Google Scholar 

  24. Rodriguez-Lujan, I., Cruz, C., Huerta, R.: Hierarchical linear SVM. JPR (2012)

    Google Scholar 

  25. Saberian, M., Vasconcelos, N.: Boosting classifier cascades. In: NIPS, Canada (2010)

    Google Scholar 

  26. Scott, C., Nowak, R.: On adaptive properties of decision trees. In: NIPS, Canada (2005)

    Google Scholar 

  27. Takahashi, F., Abe, S.: Decision tree based multiclass SVMs. In: ICONIP (2002)

    Google Scholar 

  28. Viola, P., Jones, M.: Robust real-time face detection. IJCV (2004)

    Google Scholar 

  29. Wang, J., Saligrama, V.: Local supervised learning through space partitioning. In: NIPS (2012)

    Google Scholar 

  30. Xu, Z., Kusner, M., Weinberger, K., Chen, M.: Cost-sensitive tree of classifiers. In: ICML, Altanta, USA (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia DeSalvo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

DeSalvo, G., Mohri, M., Syed, U. (2015). Learning with Deep Cascades. In: Chaudhuri, K., GENTILE, C., Zilles, S. (eds) Algorithmic Learning Theory. ALT 2015. Lecture Notes in Computer Science(), vol 9355. Springer, Cham. https://doi.org/10.1007/978-3-319-24486-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24486-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24485-3

  • Online ISBN: 978-3-319-24486-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics