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Abstract. We study the optimal rates of convergence for estimating a
prior distribution over a VC class from a sequence of independent data
sets respectively labeled by independent target functions sampled from
the prior. We specifically derive upper and lower bounds on the optimal
rates under a smoothness condition on the correct prior, with the num-
ber of samples per data set equal the VC dimension. These results have
implications for the improvements achievable via transfer learning. We
additionally extend this setting to real-valued function, where we estab-
lish consistency of an estimator for the prior, and discuss an additional
application to a preference elicitation problem in algorithmic economics.

1 Introduction

In the transfer learning setting, we are presented with a sequence of learning
problems, each with some respective target concept we are tasked with learning.
The key question in transfer learning is how to leverage our access to past learn-
ing problems in order to improve performance on learning problems we will be
presented with in the future.

Among the several proposed models for transfer learning, one particularly ap-
pealing model supposes the learning problems are independent and identically
distributed, with unknown distribution, and the advantage of transfer learning
then comes from the ability to estimate this shared distribution based on the
data from past learning problems [2,12]. For instance, when customizing a speech
recognition system to a particular speaker’s voice, we might expect the first few
people would need to speak many words or phrases in order for the system to ac-
curately identify the nuances. However, after performing this for many different
people, if the software has access to those past training sessions when customiz-
ing itself to a new user, it should have identified important properties of the
speech patterns, such as the common patterns within each of the major dialects
or accents, and other such information about the distribution of speech patterns
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within the user population. It should then be able to leverage this information
to reduce the number of words or phrases the next user needs to speak in or-
der to train the system, for instance by first trying to identify the individual’s
dialect, then presenting phrases that differentiate common subpatterns within
that dialect, and so forth.

In analyzing the benefits of transfer learning in such a setting, one important
question to ask is how quickly we can estimate the distribution from which
the learning problems are sampled. In recent work, [12] have shown that under
mild conditions on the family of possible distributions, if the target concepts
reside in a known VC class, then it is possible to estimate this distribtion using
only a bounded number of training samples per task: specifically, a number of
samples equal the VC dimension. However, that work left open the question of
quantifying the rate of convergence. This rate of convergence can have a direct
impact on how much benefit we gain from transfer learning when we are faced
with only a finite sequence of learning problems. As such, it is certainly desirable
to derive tight characterizations of this rate of convergence.

The present work continues that of [12], bounding the rate of convergence for
estimating this distribution, under a smoothness condition on the distribution.
We derive a generic upper bound, which holds regardless of the VC class the
target concepts reside in. The proof of this result builds on that earlier work, but
requires several interesting innovations to make the rate of convergence explicit,
and to dramatically improve the upper bound implicit in the proofs of those
earlier results. We further derive a nontrivial lower bound that holds for certain
constructed scenarios, which illustrates a lower limit on how good of a general
upper bound we might hope for in results expressed only in terms of the number
of tasks, the smoothness conditions, and the VC dimension.

We additionally include an extension of the results of [12] to the setting of
real-valued functions, establishing consistency (at a uniform rate) for an esti-
mator of a prior over any VC subgraph class. In addition to the application
to transfer learning, analogous to the original work of [12], we also discuss an
application of this result to a preference elicitation problem in algorithmic eco-
nomics, in which we are tasked with allocating items to a sequence of customers
to approximately maximize the customers’ satisfaction, while permitted access
to the customer valuation functions only via value queries.

2 The Setting

Let (X ,BX ) be a measurable space [8] (where X is called the instance space),
and let D be a distribution on X (called the data distribution). Let C be a VC
class of measurable classifiers h : X → {−1,+1} (called the concept space), and
denote by d the VC dimension of C [10]. We suppose C is equipped with its
Borel σ-algebra B induced by the pseudo-metric ρ(h, g) = D({x ∈ X : h(x) 6=
g(x)}). Though our results can be formulated for general D (with somewhat
more complicated theorem statements), to simplify the statement of results we
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suppose ρ is actually a metric, which would follow from appropriate topological
conditions on C relative to D.

For any two probability measures µ1, µ2 on a measurable space (Ω,F), define
the total variation distance

‖µ1 − µ2‖ = sup
A∈F

µ1(A)− µ2(A).

For a set function µ on a finite measurable space (Ω,F), we abbreviate µ(ω) =
µ({ω}), ∀ω ∈ Ω. Let ΠΘ = {πθ : θ ∈ Θ} be a family of probability measures on
C (called priors), where Θ is an arbitrary index set (called the parameter space).
We suppose there exists a probability measure π0 on C (the reference measure)
such that every πθ is absolutely continuous with respect to π0, and therefore has
a density function fθ given by the Radon-Nikodym derivative dπθ

dπ0
[8].

We consider the following type of estimation problem. There is a collection
of C-valued random variables {h∗

tθ : t ∈ N, θ ∈ Θ}, where for any fixed θ ∈ Θ
the {h∗

tθ}
∞
t=1 variables are i.i.d. with distribution πθ. For each θ ∈ Θ, there is

a sequence Zt(θ) = {(Xt1, Yt1(θ)), (Xt2, Yt2(θ)), . . .}, where {Xti}t,i∈N are i.i.d.
D, and for each t, i ∈ N, Yti(θ) = h∗

tθ(Xti). We additionally denote by Zt
k(θ) =

{(Xt1, Yt1(θ)), . . . , (Xtk, Ytk(θ))} the first k elements of Zt(θ), for any k ∈ N, and
similarly Xtk = {Xt1, . . . , Xtk} and Ytk(θ) = {Yt1(θ), . . . , Ytk(θ)}. Following the
terminology used in the transfer learning literature, we refer to the collection of
variables associated with each t collectively as the tth task. We will be concerned
with sequences of estimators θ̂Tθ = θ̂T (Z1

k(θ), . . . ,Z
T
k (θ)), for T ∈ N, which are

based on only a bounded number k of samples per task, among the first T tasks.
Our main results specifically study the case of d samples per task. For any such

estimator, we measure the risk as E

[

‖πθ̂Tθ⋆
− πθ⋆‖

]

, and will be particularly

interested in upper-bounding the worst-case risk supθ⋆∈Θ E

[

‖πθ̂Tθ⋆
− πθ⋆‖

]

as a

function of T , and lower-bounding the minimum possible value of this worst-case
risk over all possible θ̂T estimators (called the minimax risk).

In previous work, [12] showed that, if ΠΘ is a totally bounded family, then
even with only d number of samples per task, the minimax risk (as a function
of the number of tasks T ) converges to zero. In fact, that work also proved
this is not necessarily the case in general for any number of samples less than
d. However, the actual rates of convergence were not explicitly derived in that
work, and indeed the upper bounds on the rates of convergence implicit in that
analysis may often have fairly complicated dependences on C, ΠΘ, and D, and
furthermore often provide only very slow rates of convergence.

To derive explicit bounds on the rates of convergence, in the present work we
specifically focus on families of smooth densities. The motivation for involving a
notion of smoothness in characterizing rates of convergence is clear if we consider
the extreme case in which ΠΘ contains two priors π1 and π2, with π1({h}) =
π2({g}) = 1, where ρ(h, g) is a very small but nonzero value; in this case, if we
have only a small number of samples per task, we would require many tasks (on
the order of 1/ρ(h, g)) to observe any data points carrying any information that
would distinguish between these two priors (namely, points x with h(x) 6= g(x));
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yet ‖π1−π2‖ = 1, so that we have a slow rate of convergence (at least initially). A
total boundedness condition on ΠΘ would limit the number of such pairs present
in ΠΘ, so that for instance we cannot have arbitrarily close h and g, but less
extreme variants of this can lead to slow asymptotic rates of convergence as well.
Specifically, in the present work we consider the following notion of smoothness.
For L ∈ (0,∞) and α ∈ (0, 1], a function f : C → R is (L, α)-Hölder smooth if

∀h, g ∈ C, |f(h)− f(g)| ≤ Lρ(h, g)α.

3 An Upper Bound

We now have the following theorem, holding for an arbitrary VC class C and
data distribution D; it is the main result of this work.

Theorem 1. For ΠΘ any class of priors on C having (L, α)-Hölder smooth

densities {fθ : θ ∈ Θ}, for any T ∈ N, there exists an estimator θ̂Tθ =

θ̂T (Z1
d (θ), . . . ,Z

T
d (θ)) such that

sup
θ⋆∈Θ

E‖πθ̂T
− πθ⋆‖ = Õ

(

LT− α2

2(d+2α)(α+2(d+1))

)

.

Proof. By the standard PAC analysis [9,3], for any γ > 0, with probability
greater than 1 − γ, a sample of k = O((d/γ) log(1/γ)) random points will par-
tition C into regions of width less than γ (under L1(D)). For brevity, we omit
the t subscripts and superscripts on quantities such as Zt

k(θ) throughout the
following analysis, since the claims hold for any arbitrary value of t.

For any θ ∈ Θ, let π′
θ denote a (conditional on X1, . . . , Xk) distribution de-

fined as follows. Let f ′
θ denote the (conditional onX1, . . . , Xk) density function of

π′
θ with respect to π0, and for any g ∈ C, let f ′

θ(g) =
πθ({h∈C:∀i≤k,h(Xi)=g(Xi)})
π0({h∈C:∀i≤k,h(Xi)=g(Xi)})

(or 0 if π0({h ∈ C : ∀i ≤ k, h(Xi) = g(Xi)}) = 0). In other words, π′
θ has

the same probability mass as πθ for each of the equivalence classes induced by
X1, . . . , Xk, but conditioned on the equivalence class, simply has a constant-
density distribution over that equivalence class. Note that every h ∈ C has
f ′
θ(h) between the smallest and largest values of fθ(g) among g ∈ C with
∀i ≤ k, g(Xi) = h(Xi); therefore, by the smoothness condition, on the event
(of probability greater than 1 − γ) that each of these regions has diameter less
than γ, we have ∀h ∈ C, |fθ(h)− f ′

θ(h)| < Lγα. On this event, for any θ, θ′ ∈ Θ,

‖πθ − πθ′‖ = (1/2)

∫

|fθ − fθ′ |dπ0 < Lγα + (1/2)

∫

|f ′
θ − f ′

θ′ |dπ0.

Furthermore, since the regions that define f ′
θ and f ′

θ′ are the same (namely, the
partition induced by X1, . . . , Xk), we have

(1/2)

∫

|f ′
θ − f ′

θ′ |dπ0 = (1/2)
∑

y1,...,yk∈{−1,+1}

|πθ({h ∈ C : ∀i ≤ k, h(Xi) = yi})

− πθ′({h ∈ C : ∀i ≤ k, h(Xi) = yi})|

= ‖PYk(θ)|Xk
− PYk(θ′)|Xk

‖.
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Thus, we have that with probability at least 1− γ,

‖πθ − πθ′‖ < Lγα + ‖PYk(θ)|Xk
− PYk(θ′)|Xk

‖.

Following analogous to the inductive argument of [12], suppose I ⊆ {1, . . . , k},
fix x̄I ∈ X |I| and ȳI ∈ {−1,+1}|I|. Then the ỹI ∈ {−1,+1}|I| for which
‖ȳI − ỹI‖1 is minimal, subject to the constraint that no h ∈ C has h(x̄I) = ỹI ,
has (1/2)‖ȳI − ỹI‖1 ≤ d+ 1; also, for any i ∈ I with ȳi 6= ỹi, letting ȳ′j = ȳj for
j ∈ I \ {i} and ȳ′i = ỹi, we have

PYI(θ)|XI
(ȳI |x̄I) = PYI\{i}(θ)|XI\{i}

(ȳI\{i}|x̄I\{i})− PYI(θ)|XI
(ȳ′I |x̄I),

and similarly for θ′, so that

|PYI(θ)|XI
(ȳI |x̄I)− PYI(θ′)|XI

(ȳI |x̄I)|

≤ |PYI\{i}(θ)|XI\{i}
(ȳI\{i}|x̄I\{i})− PYI\{i}(θ′)|XI\{i}

(ȳI\{i}|x̄I\{i})|

+ |PYI (θ)|XI
(ȳ′I |x̄I)− PYI(θ′)|XI

(ȳ′I |x̄I)|.

Now consider that these two terms inductively define a binary tree. Every time
the tree branches left once, it arrives at a difference of probabilities for a set I
of one less element than that of its parent. Every time the tree branches right
once, it arrives at a difference of probabilities for a ȳI one closer to an unrealized
ỹI than that of its parent. Say we stop branching the tree upon reaching a set
I and a ȳI such that either ȳI is an unrealized labeling, or |I| = d. Thus, we
can bound the original (root node) difference of probabilities by the sum of the
differences of probabilities for the leaf nodes with |I| = d. Any path in the tree
can branch left at most k − d times (total) before reaching a set I with only d
elements, and can branch right at most d+1 times in a row before reaching a ȳI
such that both probabilities are zero, so that the difference is zero. So the depth
of any leaf node with |I| = d is at most (k−d)d. Furthermore, at any level of the
tree, from left to right the nodes have strictly decreasing |I| values, so that the
maximum width of the tree is at most k − d. So the total number of leaf nodes
with |I| = d is at most (k − d)2d. Thus, for any ȳ ∈ {−1,+1}k and x̄ ∈ X k,

|PYk(θ)|Xk
(ȳ|x̄)− PYk(θ′)|Xk

(ȳ|x̄)|

≤ (k − d)2d · max
ȳd∈{−1,+1}d

max
D∈{1,...,k}d

|PYd(θ)|Xd
(ȳd|x̄D)− PYd(θ′)|Xd

(ȳd|x̄D)|.

Since

‖PYk(θ)|Xk
− PYk(θ′)|Xk

‖ = (1/2)
∑

ȳk∈{−1,+1}k

|PYk(θ)|Xk
(ȳk)− PYk(θ′)|Xk

(ȳk)|,

and by Sauer’s Lemma this is at most

(ek)d max
ȳk∈{−1,+1}k

|PYk(θ)|Xk
(ȳk)− PYk(θ′)|Xk

(ȳk)|,
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we have that

‖PYk(θ)|Xk
− PYk(θ′)|Xk

‖

≤ (ek)dk2d max
ȳd∈{−1,+1}d

max
D∈{1,...,k}d

|PYd(θ)|XD
(ȳd)− PYd(θ′)|XD

(ȳd)|.

Thus, we have that

‖πθ − πθ′‖ = E‖πθ − πθ′‖

< γ+Lγα+(ek)dk2dE

[

max
ȳd∈{−1,+1}d

max
D∈{1,...,k}d

PYd(θ)|XD
(ȳd)− PYd(θ′)|XD

(ȳd)|

]

.

Note that

E

[

max
ȳd∈{−1,+1}d

max
D∈{1,...,k}d

|PYd(θ)|XD
(ȳd)− PYd(θ′)|XD

(ȳd)|

]

≤
∑

ȳd∈{−1,+1}d

∑

D∈{1,...,k}d

E
[

|PYd(θ)|XD
(ȳd)− PYd(θ′)|XD

(ȳd)|
]

≤ (2k)d max
ȳd∈{−1,+1}d

max
D∈{1,...,k}d

E
[

|PYd(θ)|XD
(ȳd)− PYd(θ′)|XD

(ȳd)|
]

,

and by exchangeability, this last line equals

(2k)d max
ȳd∈{−1,+1}d

E
[

|PYd(θ)|Xd
(ȳd)− PYd(θ′)|Xd

(ȳd)|
]

.

[12] showed that E
[

|PYd(θ)|Xd
(ȳd)− PYd(θ′)|Xd

(ȳd)|
]

≤ 4
√

‖PZd(θ) − PZd(θ′)‖, so

that in total we have ‖πθ − πθ′‖ < (L+1)γα+4(2ek)2d+2
√

‖PZd(θ)−PZd(θ′)‖.
Plugging in the value of k = c(d/γ) log(1/γ), this is

(L+1)γα + 4

(

2ec
d

γ
log

(

1

γ

))2d+2√

‖PZd(θ)−PZd(θ′)‖.

Thus, it suffices to bound the rate of convergence (in total variation distance)
of some estimator of PZd(θ⋆). IfN(ε) is the ε-covering number of {PZd(θ) : θ ∈ Θ},

then taking θ̂Tθ⋆ as the minimum distance skeleton estimate of [13,5] achieves ex-
pected total variation distance ε from PZd(θ⋆), for some T = O((1/ε2) logN(ε/4)).

We can partition C into O((L/ε)d/α) cells of diameter O((ε/L)1/α), and set a
constant density value within each cell, on an O(ε)-grid of density values, and
every prior with (L, α)-Hölder smooth density will have density within ε of some

density so-constructed; there are then at most (1/ε)O((L/ε)d/α) such densities, so
this bounds the covering numbers of ΠΘ. Furthermore, the covering number of

ΠΘ upper bounds N(ε) [12], so that N(ε) ≤ (1/ε)O((L/ε)d/α).

Solving T =O(ε−2(L/ε)d/α log(1/ε)) for ε, we have ε=O

(

L
(

log(TL)
T

)
α

d+2α

)

.

So this bounds the rate of convergence for E‖PZd(θ̂T ) − PZd(θ⋆)‖, for θ̂T the
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minimum distance skeleton estimate. Plugging this rate into the bound on the
priors, combined with Jensen’s inequality, we have

E‖πθ̂T
− πθ⋆‖ < (L+ 1)γα + 4

(

2ec
d

γ
log

(

1

γ

))2d+2

×O

(

L

(

log(TL)

T

)
α

2d+4α

)

.

This holds for any γ > 0, so minimizing this expression over γ > 0 yields a

bound on the rate. For instance, with γ = Õ
(

T− α
2(d+2α)(α+2(d+1))

)

, we have

E‖πθ̂T
− πθ⋆‖ = Õ

(

LT− α2

2(d+2α)(α+2(d+1))

)

.

⊓⊔

4 A Minimax Lower Bound

One natural quesiton is whether Theorem 1 can generally be improved. While
we expect this to be true for some fixed VC classes (e.g., those of finite size),
and in any case we expect that some of the constant factors in the exponent
may be improvable, it is not at this time clear whether the general form of
T−Θ(α2/(d+α)2) is sometimes optimal. One way to investigate this question is to
construct specific spaces C and distributions D for which a lower bound can be
obtained. In particular, we are generally interested in exhibiting lower bounds
that are worse than those that apply to the usual problem of density estimation
based on direct access to the h∗

tθ⋆
values (see Theorem 3 below).

Here we present a lower bound that is interesting for this reason. However,
although larger than the optimal rate for methods with direct access to the
target concepts, it is still far from matching the upper bound above, so that the
question of tightness remains open. Specifically, we have the following result.

Theorem 2. For any integer d ≥ 1, any L > 0, α ∈ (0, 1], there is a value
C(d, L, α) ∈ (0,∞) such that, for any T ∈ N, there exists an instance space
X , a concept space C of VC dimension d, a distribution D over X , and a
distribution π0 over C such that, for ΠΘ a set of distributions over C with
(L, α)-Hölder smooth density functions with respect to π0, any estimator θ̂T =

θ̂T (Z1
d (θ⋆), . . . ,Z

T
d (θ⋆)) has

sup
θ⋆∈Θ

E

[

‖πθ̂T
− πθ⋆‖

]

≥ C(d, L, α)T− α
2(d+α) .

Proof. (Sketch) We proceed by a reduction from the task of determining the bias
of a coin from among two given possibilities. Specifically, fix any γ ∈ (0, 1/2),
n ∈ N, and let B1(p), . . . , Bn(p) be i.i.d Bernoulli(p) random variables, for each
p ∈ [0, 1]; then it is known that, for any (possibly nondeterministic) decision rule
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p̂n : {0, 1}n → {(1 + γ)/2, (1− γ)/2},

1

2

∑

p∈{(1+γ)/2,(1−γ)/2}

P(p̂n(B1(p), . . . , Bn(p)) 6= p)

≥ (1/32) · exp
{

−128γ2n/3
}

. (1)

This easily follows from the results of [1], combined with a result of [7] bounding
the KL divergence (see also [11])

To use this result, we construct a learning problem as follows. Fix some
m ∈ N with m ≥ d, let X = {1, . . . ,m}, and let C be the space of all classifiers
h : X → {−1,+1} such that |{x ∈ X : h(x) = +1}| ≤ d. Clearly the VC dimen-
sion of C is d. Define the distribution D as uniform over X . Finally, we specify

a family of (L, α)-Hölder smooth priors, parameterized by Θ = {−1,+1}(
m
d),

as follows. Let γm = (L/2)(1/m)α. First, enumerate the
(

m
d

)

distinct d-sized
subsets of {1, . . . ,m} as X1,X2, . . . ,X(md )

. Define the reference distribution π0

by the property that, for any h ∈ C, letting q = |{x : h(x) = +1}|, π0({h}) =

(12 )
d
(

m−q
d−q

)

/
(

m
d

)

. For any b = (b1, . . . , b(md )
) ∈ {−1, 1}(

m
d ), define the prior πb as

the distribution of a random variable hb specified by the following generative
model. Let i∗ ∼ Uniform({1, . . . ,

(

m
d

)

}), let Cb(i
∗) ∼ Bernoulli((1 + γmbi∗)/2);

finally, hb ∼ Uniform({h ∈ C : {x : h(x) = +1} ⊆ Xi∗ ,Parity(|{x : h(x) =
+1}|) = Cb(i

∗)}), where Parity(n) is 1 if n is odd, or 0 if n is even. We
will refer to the variables in this generative model below. For any h ∈ C,
letting H = {x : h(x) = +1} and q = |H |, we can equivalently express

πb({h}) = (12 )
d
(

m
d

)−1∑(md)
i=1 1[H ⊆ Xi](1 + γmbi)

Parity(q)(1 − γmbi)
1−Parity(q).

From this explicit representation, it is clear that, letting fb = dπb

dπ0
, we have

fb(h) ∈ [1− γm, 1+ γm] for all h ∈ C. The fact that fb is Hölder smooth follows
from this, since every distinct h, g ∈ C have D({x : h(x) 6= g(x)}) ≥ 1/m =
(2γm/L)1/α.

Next we set up the reduction as follows. For any estimator π̂T = π̂T (Z1
d(θ⋆),

. . . ,ZT
d (θ⋆)), and each i ∈ {1, . . . ,

(

m
d

)

}, let hi be the classifier with {x : hi(x) =

+1} = Xi; also, if π̂T ({hi}) > (12 )
d/
(

m
d

)

, let b̂i = 2Parity(d) − 1, and otherwise

b̂i = 1 − 2Parity(d). We use these b̂i values to estimate the original bi values.

Specifically, let p̂i = (1 + γmb̂i)/2 and pi = (1 + γmbi)/2, where b = θ⋆. Then

‖π̂T − πθ⋆‖ ≥ (1/2)

(md )
∑

i=1

|π̂T ({hi})− πθ⋆({hi})|

≥ (1/2)

(md )
∑

i=1

γm

2d
(

m
d

) |b̂i − bi|/2 = (1/2)

(md )
∑

i=1

1

2d
(

m
d

) |p̂i − pi|.

Thus, we have reduced from the problem of deciding the biases of these
(

m
d

)

independent Bernoulli random variables. To complete the proof, it suffices to
lower bound the expectation of the right side for an arbitrary estimator.
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Toward this end, we in fact study an even easier problem. Specifically, con-
sider an estimator q̂i = q̂i(Z1

d(θ⋆), . . . ,Z
T
d (θ⋆), i

∗
1, . . . , i

∗
T ), where i

∗
t is the i∗ ran-

dom variable in the generative model that defines h∗
tθ⋆

; that is, i∗t ∼ Uniform({1,

. . . ,
(

m
d

)

}), Ct ∼ Bernoulli((1 + γmbi∗t )/2), and h∗
tθ⋆

∼ Uniform({h ∈ C : {x :
h(x) = +1} ⊆ Xi∗t ,Parity(|{x : h(x) = +1}|) = Ct}), where the i∗t are indepen-
dent across t, as are the Ct and h∗

tθ⋆
. Clearly the p̂i from above can be viewed as

an estimator of this type, which simply ignores the knowledge of i∗t . The knowl-
edge of these i∗t variables simplifies the analysis, since given {i∗t : t ≤ T }, the data
can be partitioned into

(

m
d

)

disjoint sets, {{Zt
d(θ⋆) : i∗t = i} : i = 1, . . . ,

(

m
d

)

},
and we can use only the set {Zt

d(θ⋆) : i
∗
t = i} to estimate pi. Furthermore, we

can use only the subset of these for which Xtd = Xi, since otherwise we have
zero information about the value of Parity(|{x : h∗

tθ⋆
(x) = +1}|). That is, given

i∗t = i, any Zt
d(θ⋆) is conditionally independent from every bj for j 6= i, and is

even conditionally independent from bi when Xtd is not completely contained
in Xi; specifically, in this case, regardless of bi, the conditional distribution of
Ytd(θ⋆) given i∗t = i and given Xtd is a product distribution, which determin-
istically assigns label −1 to those Ytk(θ⋆) with Xtk /∈ Xi, and gives uniform
random values to the subset of Ytd(θ⋆) with their respective Xtk ∈ Xi. Finally,
letting rt = Parity(|{k ≤ d : Ytk(θ⋆) = +1}|), we note that given i∗t = i,
Xtd = Xi, and the value rt, bi is conditionally independent from Zt

d(θ⋆). Thus,
the set of values CiT (θ⋆) = {rt : i∗t = i,Xtd = Xi} is a sufficient statistic for
bi (hence for pi). Recall that, when i∗t = i and Xtd = Xi, the value of rt is
equal to Ct, a Bernoulli(pi) random variable. Thus, we neither lose nor gain
anything (in terms of risk) by restricting ourselves to estimators q̂i of the type
q̂i = q̂i(Z1

d(θ⋆), . . . ,Z
T
d (θ⋆), i

∗
1, . . . , i

∗
T ) = q̂′i(CiT (θ⋆)), for some q̂′i [8]: that is,

estimators that are a function of the NiT (θ⋆) = |CiT (θ⋆)| Bernoulli(pi) random
variables, which we should note are conditionally i.i.d. given NiT (θ⋆).

Thus, by (1), for any n ≤ T ,

1

2

∑

bi∈{−1,+1}

E

[

|q̂i − pi|
∣

∣

∣
NiT (θ⋆) = n

]

=
1

2

∑

bi∈{−1,+1}

γmP

(

q̂i 6= pi

∣

∣

∣
NiT (θ⋆) = n

)

≥ (γm/32) · exp
{

−128γ2
mNi/3

}

.

Also note that, for each i, E[Ni] =
d!(1/m)d

(md )
T ≤ (d/m)2dT = d2d(2γm/L)2d/αT .

Thus, Jensen’s inequality, linearity of expectation, and the law of total expecta-
tion imply

1

2

∑

bi∈{−1,+1}

E [|q̂i − pi|] ≥ (γm/32) · exp
{

−43(2/L)2d/αd2dγ2+2d/α
m T

}

.
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Thus, by linearity of the expectation,

(

1

2

)(md ) ∑

b∈{−1,+1}(
m
d )

E







(md )
∑

i=1

1

2d
(

m
d

) |q̂i − pi|






=

(md )
∑

i=1

1

2d
(

m
d

)

1

2

∑

bi∈{−1,+1}

E [|q̂i − pi|]

≥ (γm/(32 · 2d)) · exp
{

−43(2/L)2d/αd2dγ2+2d/α
m T

}

.

In particular, taking m =
⌈

(L/2)1/α
(

43(2/L)2d/αd2dT
)

1
2(d+α)

⌉

, we have γm =

Θ
(

(

43(2/L)2d/αd2dT
)− α

2(d+α)

)

, so that

(

1

2

)(md ) ∑

b∈{−1,+1}(
m
d )

E







(md )
∑

i=1

1

2d
(

m
d

) |q̂i − pi|







= Ω

(

2−d
(

43(2/L)2d/αd2dT
)− α

2(d+α)

)

.

In particular, this implies there exists some b for which

E







(md)
∑

i=1

1

2d
(

m
d

) |q̂i − pi|






= Ω

(

2−d
(

43(2/L)2d/αd2dT
)− α

2(d+α)

)

.

Applying this lower bound to the estimator p̂i above yields the result. ⊓⊔

It is natural to wonder how these rates might potentially improve if we allow
θ̂T to depend on more than d samples per data set. To establish limits on such
improvements, we note that in the extreme case of allowing the estimator to
depend on the full Zt(θ⋆) data sets, we may recover the known results lower
bounding the risk of density estimation from i.i.d. samples from a smooth density,
as indicated by the following result.

Theorem 3. For any integer d ≥ 1, there exists an instance space X , a concept
space C of VC dimension d, a distribution D over X , and a distribution π0

over C such that, for ΠΘ the set of distributions over C with (L, α)-Hölder

smooth density functions with respect to π0, any sequence of estimators, θ̂T =
θ̂T (Z1(θ⋆), . . . ,ZT (θ⋆)) (T = 1, 2, . . .), has

sup
θ⋆∈Θ

E

[

‖πθ̂T
− πθ⋆‖

]

= Ω
(

T− α
d+2α

)

.

The proof is a simple reduction from the problem of estimating πθ⋆ based on
direct access to h∗

1θ⋆
, . . . , h∗

Tθ⋆
, which is essentially equivalent to the standard

model of density estimation, and indeed the lower bound in Theorem 3 is a well-
known result for density estimation from T i.i.d. samples from a Hölder smooth
density in a d-dimensional space [5].
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5 Real-Valued Functions and an Application in

Algorithmic Economics

In this section, we present results generalizing the analysis of [12] to classes of
real-valued functions. We also present an application of this generalization to a
preference elicitation problem.

5.1 Consistent Estimation of Priors over Real-Valued Functions at

a Bounded Rate

In this section, we let B denote a σ-algebra on X × R, and again let BX denote
the corresponding σ-algebra on X . Also, for measurable functions h, g : X → R,
let ρ(h, g) =

∫

|h − g|dPX , where PX is a distribution over X . Let F be a
class of functions X → R with Borel σ-algebra BF induced by ρ. Let Θ be a
set, and for each θ ∈ Θ, let πθ denote a probability measure on (F ,BF ). We
suppose {πθ : θ ∈ Θ} is totally bounded in total variation distance, and that
F is a uniformly bounded VC subgraph class with pseudodimension d. We also
suppose ρ is a metric when restricted to F .

As above, let {Xti}t,i∈N be i.i.d. PX random variables. For each θ ∈ Θ,
let {h∗

tθ}t∈N be i.i.d. πθ random variables, independent from {Xti}t,i∈N. For
each t ∈ N and θ ∈ Θ, let Yti(θ) = h∗

tθ(Xti) for i ∈ N, and let Zt(θ) =
{(Xt1, Yt1(θ)), (Xt2, Yt2(θ)), . . .}; for each k ∈ N, define Zt

k(θ) = {(Xt1, Yt1(θ)),
. . . , (Xtk, Ytk(θ))}, Xtk = {Xt1, . . . , Xtk}, and Ytk(θ) = {Yt1(θ), . . . , Ytk(θ)}.

We have the following result. The proof parallels that of [12] (who studied
the special case of binary functions), with a few important twists (in particular,
a significantly different approach in the analogue of their Lemma 3). The details
are included in Appendix A.

Theorem 4. There exists an estimator θ̂Tθ⋆ = θ̂T (Z1
d(θ⋆), . . . ,Z

T
d (θ⋆)), and

functions R : N0 × (0, 1] → [0,∞) and δ : N0 × (0, 1] → [0, 1] such that, for any
α > 0, lim

T→∞
R(T, α) = lim

T→∞
δ(T, α) = 0 and for any T ∈ N0 and θ⋆ ∈ Θ,

P

(

‖πθ̂Tθ⋆
− πθ⋆‖ > R(T, α)

)

≤ δ(T, α) ≤ α.

5.2 Maximizing Customer Satisfaction in Combinatorial Auctions

Theorem 4 has a clear application in the context of transfer learning, following
analogous arguments to those given in the special case of binary classification by
[12]. In addition to that application, we can also use Theorem 4 in the context of
the following problem in algorithmic economics, where the objective is to serve
a sequence of customers so as to maximize their satisfaction.

Consider an online travel agency, where customers go to the site with some
idea of what type of travel they are interested in; the site then poses a series
of questions to each customer, and identifies a travel package that best suits
their desires, budget, and dates. There are many options of travel packages, with
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options on location, site-seeing tours, hotel and room quality, etc. Because of this,
serving the needs of an arbitrary customer might be a lengthy process, requiring
many detailed questions. Fortunately, the stream of customers is typically not
a worst-case sequence, and in particular obeys many statistical regularities: in
particular, it is not too far from reality to think of the customers as being
independent and identically distributed samples. With this assumption in mind,
it becomes desirable to identify some of these statistical regularities so that we
can pose the questions that are typically most relevant, and thereby more quickly
identify the travel package that best suits the needs of the typical customer. One
straightforward way to do this is to directly estimate the distribution of customer
value functions, and optimize the questioning system to minimize the expected
number of questions needed to find a suitable travel package.

One can model this problem in the style of Bayesian combinatorial auctions,
in which each customer has a value function for each possible bundle of items.
However, it is slightly different, in that we do not assume the distribution of
customers is known, but rather are interested in estimating this distribution;
the obtained estimate can then be used in combination with methods based
on Bayesian decision theory. In contrast to the literature on Bayesian auctions
(and subjectivist Bayesian decision theory in general), this technique is able to
maintain general guarantees on performance that hold under an objective in-
terpretation of the problem, rather than merely guarantees holding under an
arbitrary assumed prior belief. This general idea is sometimes referred to as
Empirical Bayesian decision theory in the machine learning and statistics litera-
tures. The ideal result for an Empirical Bayesian algorithm is to be competitive
with the corresponding Bayesian methods based on the actual distribution of
the data (assuming the data are random, with an unknown distribution); that
is, although the Empirical Bayesian methods only operate with a data-based
estimate of the distribution, the aim is to perform nearly as well as methods
based on the true (unobservable) distribution. In this work, we present results
of this type, in the context of an abstraction of the aforementioned online travel
agency problem, where the measure of performance is the expected number of
questions to find a suitable package.

The specific application we are interested in here may be expressed abstractly
as a kind of combinatorial auction with preference elicitation. Specifically, we
suppose there is a collection of items on a menu, and each possible bundle of
items has an associated fixed price. There is a stream of customers, each with a
valuation function that provides a value for each possible bundle of items. The
objective is to serve each customer a bundle of items that nearly-maximizes his
or her surplus value (value minus price). However, we are not permitted direct
observation of the customer valuation functions; rather, we may query for the
value of any given bundle of items; this is referred to as a value query in the
literature on preference elicitation in combinatorial auctions (see Chapter 14
of [4], [14]). The objective is to achieve this near-maximal surplus guarantee,
while making only a small number of queries per customer. We suppose the
customer valuation function are sampled i.i.d. according to an unknown distri-
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bution over a known (but arbitrary) class of real-valued functions having finite
pseudo-dimension. Reasoning that knowledge of this distribution should allow
one to make a smaller number of value queries per customer, we are interested
in estimating this unknown distribution, so that as we serve more and more cus-
tomers, the number of queries per customer required to identify a near-optimal
bundle should decrease. In this context, we in fact prove that in the limit, the
expected number of queries per customer converges to the number required of a
method having direct knowledge of the true distribution of valuation functions.

Formally, suppose there is a menu of n items [n] = {1, . . . , n}, and each
bundle B ⊆ [n] has an associated price p(B) ≥ 0. Suppose also there is a sequence
of customers, each with a valuation function vt : 2

[n] → R. We suppose these vt
functions are i.i.d. samples. We can then calculate the satisfaction function for
each customer as st(x), where x ∈ {0, 1}n, and st(x) = vt(Bx) − p(Bx), where
Bx ⊆ [n] contains element i ∈ [n] iff xi = 1.

Now suppose we are able to ask each customer a number of questions before
serving up a bundle Bx̂t to that customer. More specifically, we are able to ask
for the value st(x) for any x ∈ {0, 1}n. This is referred to as a value query in
the literature on preference elicitation in combinatorial auctions (see Chapter
14 of [4], [14]). We are interested in asking as few questions as possible, while
satisfying the guarantee that E[st(x̂t)−maxx st(x)] ≤ ε.

Now suppose, for every π and ε, we have a method A(π, ε) such that, given
that π is the actual distribution of the st functions, A(π, ε) guarantees that
the x̂t value it selects has E[maxx st(x) − st(x̂t)] ≤ ε; also let N̂t(π, ε) denote
the actual (random) number of queries the method A(π, ε) would ask for the st
function, and let Q(π, ε) = E[N̂t(π, ε)]. We suppose the method never queries
any st(x) value twice for a given t, so that its number of queries for any given t
is bounded.

Also suppose F is a VC subgraph class of functions mapping X = {0, 1}n

into [−1, 1] with pseudodimension d, and that {πθ : θ ∈ Θ} is a known to-
tally bounded family of distributions over F such that the st functions have
distribution πθ⋆ for some unknown θ⋆ ∈ Θ. For any θ ∈ Θ and γ > 0, let
B(θ, γ) = {θ′ ∈ Θ : ‖πθ − πθ′‖ ≤ γ}.

Suppose, in addition to A, we have another method A′(ε) that is not π-
dependent, but still provides the ε-correctness guarantee, and makes a bounded
number of queries (e.g., in the worst case, we could consider querying all 2n

points, but in most cases there are more clever π-independent methods that use
far fewer queries, such as O(1/ε2)). Consider the following method; the quantities

θ̂Tθ⋆ , R(T, α), and δ(T, α) from Theorem 4 are here considered with respect PX

taken as the uniform distribution on {0, 1}n.

The following theorem indicates that this method is correct, and furthermore
that the long-run average number of queries is not much worse than that of a
method that has direct knowledge of πθ⋆ . The proof of this result parallels that
of [12] for the transfer learning setting, but is included here for completeness.
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Algorithm 1 An algorithm for sequentially maximizing expected customer sat-
isfaction.

for t = 1, 2, . . . , T do

Pick points Xt1, Xt2, . . . , Xtd uniformly at random from {0, 1}n

if R(t− 1, ε/2) > ε/8 then

Run A′(ε)
Take x̂t as the returned value

else

Let θ̌tθ⋆ ∈ B
(

θ̂(t−1)θ⋆ , R(t− 1, ε/2)
)

be such that

Q(πθ̌tθ⋆
, ε/4) ≤ min

θ∈B(θ̂(t−1)θ⋆
,R(t−1,ε/2))

Q(πθ, ε/4) +
1
t

Run A(πθ̌tθ⋆
, ε/4) and let x̂t be its return value

end if

end for

Theorem 5. For the above method, ∀t ≤ T,E[maxx st(x) − st(x̂t)] ≤ ε. Fur-
thermore, if ST (ε) is the total number of queries made by the method, then

lim sup
T→∞

E[ST (ε)]

T
≤ Q(πθ⋆ , ε/4) + d.

Proof. By Theorem 4, for any t ≤ T , if R(t−1, ε/2) ≤ ε/8, then with probability
at least 1 − ε/2, ‖πθ⋆ − πθ̂(t−1)θ⋆

‖ ≤ R(t − 1, ε/2), so that a triangle inequality

implies ‖πθ⋆ − πθ̌tθ⋆
‖ ≤ 2R(t− 1, ε/2) ≤ ε/4. Thus,

E

[

max
x

st(x)− st(x̂t)
]

≤ ε/2 + E

[

E

[

max
x

st(x) − st(x̂t)
∣

∣

∣θ̌tθ⋆

]

1

[

‖πθ̌tθ⋆
− πθ⋆‖ ≤ ε/2

]]

.

For θ ∈ Θ, let x̂tθ denote the point x that would be returned by A(πθ̌tθ⋆
, ε/4)

when queries are answered by some stθ ∼ πθ instead of st (and supposing st =
stθ⋆). If ‖πθ̌tθ⋆

− πθ⋆‖ ≤ ε/4, then

E

[

max
x

st(x)− st(x̂t)
∣

∣

∣θ̌tθ⋆

]

= E

[

max
x

stθ⋆(x)− stθ⋆(x̂t)
∣

∣

∣θ̌tθ⋆

]

≤ E

[

max
x

stθ̌tθ⋆ (x) − stθ̌tθ⋆ (x̂tθ̌tθ⋆
)
∣

∣

∣θ̌tθ⋆

]

+ ‖πθ̌tθ⋆
− πθ⋆‖ ≤ ε/4 + ε/4 = ε/2.

Plugging into the above bound, we have E [maxx st(x)− st(x̂t)] ≤ ε.
For the result on ST (ε), first note that R(t−1, ε/2) > ε/8 only finitely many

times (due to R(t, α) = o(1)), so that we can ignore those values of t in the
asymptotic calculation (as the number of queries is always bounded), and rely
on the correctness guarantee of A′. For the remaining values t, let Nt denote the
number of queries made by A(πθ̌tθ⋆

, ε/4). Then

lim sup
T→∞

E[ST (ε)]

T
≤ d+ lim sup

T→∞

T
∑

t=1

E [Nt]

T
.



Prior Estimation 15

Since

lim
T→∞

1

T

T
∑

t=1

E

[

Nt1[‖πθ̂(t−1)θ⋆
− πθ⋆‖ > R(t− 1, ε/2)]

]

≤ lim
T→∞

1

T

T
∑

t=1

2nP
(

‖πθ̂(t−1)θ⋆
− πθ⋆‖ > R(t− 1, ε/2)

)

≤ 2n lim
T→∞

1

T

T
∑

t=1

δ(t− 1, ε/2) = 0,

we have

lim sup
T→∞

T
∑

t=1

E [Nt]

T
= lim sup

T→∞

1

T

T
∑

t=1

E

[

Nt1[‖πθ̂(t−1)θ⋆
− πθ⋆‖ ≤ R(t− 1, ε/2)]

]

.

For t ≤ T , let Nt(θ̌tθ⋆) denote the number of queries A(πθ̌tθ⋆
, ε/4) would make if

queries were answered with stθ̌tθ⋆ instead of st. On the event ‖πθ̂(t−1)θ⋆
− πθ⋆‖ ≤

R(t− 1, ε/2), we have

E

[

Nt

∣

∣

∣
θ̌tθ⋆

]

≤ E

[

Nt(θ̌tθ⋆)
∣

∣

∣
θ̌tθ⋆

]

+ 2R(t− 1, ε/2)

= Q(πθ̌tθ⋆
, ε/4) + 2R(t−1, ε/2) ≤ Q(πθ⋆ , ε/4) + 2R(t−1, ε/2)+ 1/t.

Therefore,

lim sup
T→∞

1

T

T
∑

t=1

E

[

Nt1[‖πθ̂(t−1)θ⋆
− πθ⋆‖ ≤ R(t− 1, ε/2)]

]

≤ Q(πθ⋆ , ε/4) + lim sup
T→∞

1

T

T
∑

t=1

2R(t− 1, ε/2) + 1/t = Q(πθ⋆ , ε/4).

⊓⊔

In many cases, this result will even continue to hold with an infinite number
of goods (n = ∞), since Theorem 4 has no dependence on the cardinality of the
space X .

6 Open Problems

There are several interesting questions that remain open at this time. Can either
the lower bound or upper bound be improved in general? If, instead of d samples
per task, we instead use m ≥ d samples, how does the minimax risk vary with
m? Related to this, what is the optimal value of m to optimize the rate of
convergence as a function of mT , the total number of samples? More generally,
if an estimator is permitted to use N total samples, taken from however many
tasks it wishes, what is the optimal rate of convergence as a function of N?
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A Proofs for Section 5

The proof of Theorem 4 is based on the following sequence of lemmas, which
parallel those used by [12] for establishing the analogous result for consistent
estimation of priors over binary functions. The last of these lemmas (namely,
Lemma 3) requires substantial modifications to the original argument of [12];
the others use arguments more-directly based on those of [12].

Lemma 1. For any θ, θ′ ∈ Θ and t ∈ N,

‖πθ − πθ′‖ = ‖PZt(θ) − PZt(θ′)‖.

Proof. Fix θ, θ′ ∈ Θ, t ∈ N. Let X = {Xt1, Xt2, . . .}, Y(θ) = {Yt1(θ), Yt2(θ), . . .},
and for k ∈ N let Xk = {Xt1, . . . , Xtk}. and Yk(θ) = {Yt1(θ), . . . , Ytk(θ)}. For
h ∈ F , let cX(h) = {(Xt1, h(Xt1)), (Xt2, h(Xt2)), . . .}.

For h, g ∈ F , define ρX(h, g) = lim
m→∞

1
m

∑m
i=1 |h(Xti) − g(Xti)| (if the limit

exists), and ρXk
(h, g) = 1

k

∑k
i=1 |h(Xti)−g(Xti)|. Note that since F is a uniformly

bounded VC subgraph class, so is the collection of functions {|h− g| : h, g ∈ F},
so that the uniform strong law of large numbers implies that with probability
one, ∀h, g ∈ F , ρX(h, g) exists and has ρX(h, g) = ρ(h, g) [10].

Consider any θ, θ′ ∈ Θ, and any A ∈ BF . Then any h /∈ A has ∀g ∈ A,
ρ(h, g) > 0 (by the metric assumption). Thus, if ρX(h, g) = ρ(h, g) for all h, g ∈
F , then ∀h /∈ A,

∀g ∈ A, ρX(h, g) = ρ(h, g) > 0 =⇒

∀g ∈ A, cX(h) 6= cX(g) =⇒ cX(h) /∈ cX(A).

This implies c−1
X

(cX(A)) = A. Under these conditions,

PZt(θ)|X(cX(A)) = πθ(c
−1
X

(cX(A))) = πθ(A),

and similarly for θ′.
Any measurable set C for the range of Zt(θ) can be expressed as C = {cx̄(h) :

(h, x̄) ∈ C′} for some appropriate C′ ∈ BF⊗B∞
X . Letting C′

x̄ = {h : (h, x̄) ∈ C′},
we have

PZt(θ)(C) =

∫

πθ(c
−1
x̄ (cx̄(C

′
x̄)))PX(dx̄) =

∫

πθ(C
′
x̄)PX(dx̄) = P(h∗

tθ,X)
(C′).

Likewise, this reasoning holds for θ′. Then

‖PZt(θ) − PZt(θ′)‖ = ‖P(h∗
tθ,X)

− P(h∗
tθ′

,X)‖

= sup
C′∈BF⊗B∞

X

∣

∣

∣

∣

∫

(πθ(C
′
x̄)− πθ′(C′

x̄))PX(dx̄)

∣

∣

∣

∣

≤

∫

sup
A∈BF

|πθ(A)− πθ′(A)|PX(dx̄) = ‖πθ − πθ′‖.
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Since h∗
tθ and X are independent, ∀A ∈ BF , πθ(A) = Ph∗

tθ
(A) = Ph∗

tθ
(A)PX(X∞)

= P(h∗
tθ,X)

(A×X∞). Analogous reasoning holds for h∗
tθ′ . Thus, we have

‖πθ − πθ′‖ = ‖P(h∗
tθ,X)

(· × X∞)− P(h∗
tθ′

,X)(· × X∞)‖

≤ ‖P(h∗
tθ,X)

− P(h∗
tθ′

,X)‖ = ‖PZt(θ) − PZt(θ′)‖.

Altogether, we have ‖PZt(θ) − PZt(θ′)‖ = ‖πθ − πθ′‖. ⊓⊔

Lemma 2. There exists a sequence rk = o(1) such that, ∀t, k ∈ N, ∀θ, θ′ ∈ Θ,

‖PZt
k(θ)

− PZt
k(θ

′)‖ ≤ ‖πθ − πθ′‖ ≤ ‖PZt
k(θ)

− PZt
k(θ

′)‖+ rk.

Proof. This proof follows identically to a proof of [12], but is included here
for completeness. Since PZt

k(θ)
(A) = PZt(θ)(A × (X × R)∞) for all measurable

A ⊆ (X × R)k, and similarly for θ′, we have

‖PZt
k
(θ) − PZt

k
(θ′)‖ = sup

A∈Bk

PZt
k
(θ)(A)− PZt

k
(θ′)(A)

= sup
A∈Bk

PZt(θ)(A× (X × R)∞)− PZt(θ′)(A× (X × R)∞)

≤ sup
A∈B∞

PZt(θ)(A)− PZt(θ′)(A) = ‖PZt(θ) − PZt(θ′)‖,

which implies the left inequality when combined with Lemma 1.
Next, we focus on the right inequality. Fix θ, θ′ ∈ Θ and γ > 0, and let

B ∈ B∞ be such that

‖πθ − πθ′‖ = ‖PZt(θ) − PZt(θ′)‖ < PZt(θ)(B)− PZt(θ′)(B) + γ.

Let A = {A × (X × R)∞ : A ∈ Bk, k ∈ N}. Note that A is an algebra that
generates B∞. Thus, Carathéodory’s extension theorem (specifically, the version
presented by [8]) implies that there exist disjoint sets {Ai}i∈N in A such that
B ⊆

⋃

i∈N
Ai and

PZt(θ)(B) − PZt(θ′)(B) <
∑

i∈N

PZt(θ)(Ai)−
∑

i∈N

PZt(θ′)(Ai) + γ.

Since these Ai sets are disjoint, each of these sums is bounded by a probability
value, which implies that there exists some n ∈ N such that

∑

i∈N

PZt(θ)(Ai) < γ +

n
∑

i=1

PZt(θ)(Ai),

which implies

∑

i∈N

PZt(θ)(Ai)−
∑

i∈N

PZt(θ′)(Ai) < γ +
n
∑

i=1

PZt(θ)(Ai)−
n
∑

i=1

PZt(θ′)(Ai)

= γ + PZt(θ)

(

n
⋃

i=1

Ai

)

− PZt(θ′)

(

n
⋃

i=1

Ai

)

.
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As
⋃n

i=1 Ai ∈ A, there exists m ∈ N and measurable Bm ∈ Bm such that
⋃n

i=1 Ai = Bm × (X × R)∞, and therefore

PZt(θ)

(

n
⋃

i=1

Ai

)

− PZt(θ′)

(

n
⋃

i=1

Ai

)

= PZt
m(θ)(Bm)− PZt

m(θ′)(Bm)

≤ ‖PZt
m(θ) − PZt

m(θ′)‖ ≤ lim
k→∞

‖PZt
k(θ)

− PZt
k(θ

′)‖.

Combining the above, we have ‖πθ − πθ′‖ ≤ limk→∞ ‖PZt
k(θ)

−PZt
k(θ

′)‖+3γ. By
letting γ approach 0, we have

‖πθ − πθ′‖ ≤ lim
k→∞

‖PZt
k(θ)

− PZt
k(θ

′)‖.

So there exists a sequence rk(θ, θ
′) = o(1) such that

∀k ∈ N, ‖πθ − πθ′‖ ≤ ‖PZt
k(θ)

− PZt
k(θ

′)‖+ rk(θ, θ
′).

Now let γ > 0 and let Θγ be a minimal γ-cover of Θ. Define the quantity rk(γ) =
maxθ,θ′∈Θγ rk(θ, θ

′). Then for any θ, θ′ ∈ Θ, let θγ = argminθ′′∈Θγ
‖πθ−πθ′′‖ and

θ′γ = argminθ′′∈Θγ
‖πθ′ − πθ′′‖. Then a triangle inequality implies that ∀k ∈ N,

‖πθ − πθ′‖ ≤ ‖πθ − πθγ‖+ ‖πθγ − πθ′
γ
‖+ ‖πθ′

γ
− πθ′‖

< 2γ + rk(θγ , θ
′
γ) + ‖PZt

k
(θγ) − PZt

k
(θ′

γ)
‖ ≤ 2γ + rk(γ) + ‖PZt

k
(θγ) − PZt

k
(θ′

γ)
‖.

Triangle inequalities and the left inequality from the lemma statement (already
established) imply

‖PZt
k(θγ)

−PZt
k(θ

′
γ)
‖ ≤ ‖PZt

k(θγ)
−PZt

k(θ)
‖+ ‖PZt

k(θ)
−PZt

k(θ
′)‖+ ‖PZt

k(θ
′
γ)
−PZt

k(θ
′)‖

≤ ‖πθγ − πθ‖+ ‖PZt
k
(θ) − PZt

k
(θ′)‖+ ‖πθ′

γ
− πθ′‖ < 2γ + ‖PZt

k
(θ) − PZt

k
(θ′)‖.

So in total we have

‖πθ − πθ′‖ ≤ 4γ + rk(γ) + ‖PZt
k(θ)

− PZt
k(θ

′)‖.

Since this holds for all γ > 0, defining rk = infγ>0(4γ+rk(γ)), we have the right
inequality of the lemma statement. Furthermore, since each rk(θ, θ

′) = o(1), and
|Θγ | < ∞, we have rk(γ) = o(1) for each γ > 0, and thus we also have rk = o(1).

⊓⊔

Lemma 3. ∀t, k ∈ N, there exists a monotone function Mk(x) = o(1) such that,
∀θ, θ′ ∈ Θ,

‖PZt
k(θ)

− PZt
k(θ

′)‖ ≤ Mk

(

‖PZt
d(θ)

− PZt
d(θ

′)‖
)

.

Proof. Fix any t ∈ N, and let X = {Xt1, Xt2, . . .} andY(θ) = {Yt1(θ), Yt2(θ), . . .},
and for k ∈ N let Xk = {Xt1, . . . , Xtk} and Yk(θ) = {Yt1(θ), . . . , Ytk(θ)}.

If k ≤ d, then PZt
k(θ)

(·) = PZt
d(θ)

(· × (X × {−1,+1})d−k), so that

‖PZt
k(θ)

− PZt
k(θ

′)‖ ≤ ‖PZt
d(θ)

− PZt
d(θ

′)‖,
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and therefore the result trivially holds.
Now suppose k > d. Fix any γ > 0, and let Bθ,θ′ ⊆ (X ×R)k be a measurable

set such that

PZt
k(θ)

(Bθ,θ′)− PZt
k(θ

′)(Bθ,θ′) ≤ ‖PZt
k(θ)

− PZt
k(θ

′)‖

≤ PZt
k(θ)

(Bθ,θ′)− PZt
k(θ

′)(Bθ,θ′) + γ.

By Carathéodory’s extension theorem (specifically, the version presented by [8]),
there exists a disjoint sequence of sets {Bi(θ, θ

′)}∞i=1 such that

PZt
k
(θ)(Bθ,θ′)− PZt

k
(θ′)(Bθ,θ′) < γ +

∞
∑

i=1

PZt
k
(θ)(Bi(θ, θ

′))−
∞
∑

i=1

PZt
k
(θ′)(Bi(θ, θ

′)),

and such that each Bi(θ, θ
′) is representable as follows; for some ℓi(θ, θ

′) ∈ N, and
sets Cij = (Aij1 × (−∞, tij1])× · · · × (Aijk × (−∞, tijk]), for j ≤ ℓi(θ, θ

′), where

each Aijp ∈ BX , the set Bi(θ, θ
′) is representable as

⋃

s∈Si

⋂ℓi(θ,θ
′)

j=1 Dijs, where

Si ⊆ {0, . . . , 2ℓi(θ,θ
′) − 1}, each Dijs ∈ {Cij , C

c
ij}, and s 6= s′ ⇒

⋂ℓi(θ,θ
′)

j=1 Dijs ∩
⋂ℓi(θ,θ

′)
j=1 Dijs′ = ∅. Since the Bi(θ, θ

′) are disjoint, the above sums are bounded,
so that there exists mk(θ, θ

′, γ) ∈ N such that every m ≥ mk(θ, θ
′, γ) has

PZt
k(θ)

(Bθ,θ′)− PZt
k(θ

′)(Bθ,θ′) < 2γ+

m
∑

i=1

PZt
k(θ)

(Bi(θ, θ
′))−

m
∑

i=1

PZt
k(θ

′)(Bi(θ, θ
′)),

Now define M̃k(γ) = maxθ,θ′∈Θγ mk(θ, θ
′, γ). Then for any θ, θ′ ∈ Θ, let θγ , θ

′
γ ∈

Θγ be such that ‖πθ − πθγ‖ < γ and ‖πθ′ − πθ′
γ
‖ < γ, which implies ‖PZt

k(θ)
−

PZt
k(θγ)

‖ < γ and ‖PZt
k(θ

′) − PZt
k(θ

′
γ)
‖ < γ by Lemma 2. Then

‖PZt
k(θ)

− PZt
k(θ

′)‖ < ‖PZt
k(θγ)

− PZt
k(θ

′
γ)
‖+ 2γ

≤ PZt
k(θγ)

(Bθγ ,θ′
γ
)− PZt

k(θ
′
γ)
(Bθγ ,θ′

γ
) + 3γ

≤

M̃k(γ)
∑

i=1

PZt
k(θγ)

(Bi(θγ , θ
′
γ))− PZt

k(θ
′
γ)
(Bi(θγ , θ

′
γ)) + 5γ.

Again, since the Bi(θγ , θ
′
γ) are disjoint, this equals

5γ + PZt
k(θγ)





M̃k(γ)
⋃

i=1

Bi(θγ , θ
′
γ)



 − PZt
k(θ

′
γ)





M̃k(γ)
⋃

i=1

Bi(θγ , θ
′
γ)





≤ 7γ + PZt
k(θ)





M̃k(γ)
⋃

i=1

Bi(θγ , θ
′
γ)



− PZt
k(θ

′)





M̃k(γ)
⋃

i=1

Bi(θγ , θ
′
γ)





= 7γ +

M̃k(γ)
∑

i=1

PZt
k(θ)

(Bi(θγ , θ
′
γ))− PZt

k(θ
′)(Bi(θγ , θ

′
γ))

≤ 7γ + M̃k(γ) max
i≤M̃k(γ)

∣

∣

∣PZt
k(θ)

(Bi(θγ , θ
′
γ))− PZt

k(θ
′)(Bi(θγ , θ

′
γ))
∣

∣

∣ .
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Thus, if we can show that each term
∣

∣

∣PZt
k(θ)

(Bi(θγ , θ
′
γ))− PZt

k(θ
′)(Bi(θγ , θ

′
γ))
∣

∣

∣

is bounded by a o(1) function of ‖PZt
d(θ)

− PZt
d(θ

′)‖, then the result will follow
by substituting this relaxation into the above expression and defining Mk by
minimizing the resulting expression over γ > 0.

Toward this end, let Cij be as above from the definition of Bi(θγ , θ
′
γ), and

note that IBi(θγ ,θ′
γ)

is representable as a function of the ICij indicators, so that

∣

∣

∣
PZt

k
(θ)(Bi(θγ , θ

′
γ))−PZt

k
(θ′)(Bi(θγ , θ

′
γ))
∣

∣

∣
= ‖PIBi(θγ,θ′γ )(Z

t
k
(θ))−PIBi(θγ,θ′γ )(Z

t
k
(θ′))‖

≤ ‖P(ICi1
(Zt

k(θ)),...,ICiℓi(θγ,θ′γ )
(Zt

k(θ)))
− P(ICi1

(Zt
k(θ

′)),...,IC
iℓi(θγ,θ′γ )

(Zt
k(θ

′)))‖

≤ 2ℓi(θγ ,θ
′
γ) max

J⊆{1,...,ℓi(θγ ,θ′
γ)}

E

[(

∏

j∈J

ICij (Z
t
k(θ))

)

∏

j /∈J

(

1− ICij (Z
t
k(θ))

)

−

(

∏

j∈J

ICij (Z
t
k(θ

′))

)

∏

j /∈J

(

1− ICij (Z
t
k(θ

′))

)]

≤ 2ℓi(θγ ,θ
′
γ)

∑

J⊆
{

1,...,2
ℓi(θγ ,θ′γ )

}

∣

∣

∣

∣

∣

∣

E





∏

j∈J

ICij (Z
t
k(θ)) −

∏

j∈J

ICij (Z
t
k(θ

′))





∣

∣

∣

∣

∣

∣

≤ 4ℓi(θγ ,θ
′
γ) max

J⊆
{

1,...,2
ℓi(θγ ,θ′γ )

}

∣

∣

∣

∣

∣

∣

E





∏

j∈J

ICij (Z
t
k(θ)) −

∏

j∈J

ICij (Z
t
k(θ

′))





∣

∣

∣

∣

∣

∣

= 4ℓi(θγ ,θ
′
γ) max

J⊆
{

1,...,2
ℓi(θγ ,θ′γ )

}

∣

∣

∣

∣

∣

∣

PZt
k(θ)





⋂

j∈J

Cij



− PZt
k(θ

′)





⋂

j∈J

Cij





∣

∣

∣

∣

∣

∣

.

Note that
⋂

j∈J Cij can be expressed as some (A1×(−∞, t1])×· · ·×(Ak×(−∞, tk]),

where each Ap ∈ BX and tp ∈ R, so that, for ℓ̂ = maxθ,θ′∈Θγ maxi≤M̃k(γ)
ℓi(θ, θ

′)

and Ck = {(A1 × (−∞, t1])× · · · × (Ak × (−∞, tk]) : ∀j ≤ k,Aj ∈ BX , tk ∈ R},
this last expression is at most

4ℓ̂ sup
C∈Ck

∣

∣

∣PZt
k(θ)

(C)− PZt
k(θ

′)(C)
∣

∣

∣ .

Next note that for any C = (A1× (−∞, t1])×· · ·× (Ak × (−∞, tk]) ∈ Ck, letting
C1 = A1 × · · · ×Ak and C2 = (−∞, t1]× · · · × (−∞, tk],

PZt
k(θ)

(C)− PZt
k(θ

′)(C) = E
[(

PYtk(θ)|Xtk
(C2)− PYtk(θ′)|Xtk

(C2)
)

IC1(Xtk)
]

≤ E
[∣

∣PYtk(θ)|Xtk
(C2)− PYtk(θ′)|Xtk

(C2)
∣

∣

]

.

For p ∈ {1, . . . , k}, let C2p = (−∞, tp]. Then note that, by definition of d, for
any given x = (x1, . . . , xk), the class Hx = {xp 7→ IC2p(h(xp)) : h ∈ F} is a VC
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class over {x1, . . . , xk} with VC dimension at most d. Furthremore, we have

∣

∣PYtk(θ)|Xtk
(C2)− PYtk(θ′)|Xtk

(C2)
∣

∣

=
∣

∣

∣
P(IC21 (h

∗
tθ(Xt1)),...,IC2k

(h∗
tθ(Xtk)))|Xtk

({(1, . . . , 1)})

− P(IC21 (h
∗
tθ′

(Xt1)),...,IC2k
(h∗

tθ′
(Xtk)))|Xtk

({(1, . . . , 1)})
∣

∣

∣.

Therefore, the results of [12] (in the proof of their Lemma 3) imply that

∣

∣PYtk(θ)|Xtk
(C2)− PYtk(θ′)|Xtk

(C2)
∣

∣

≤ 2k max
y∈{0,1}d

max
D∈{1,...,k}d

∣

∣

∣P{IC2j
(h∗

tθ(Xtj))}j∈D |{Xtj}j∈D
({y})

− P{IC2j
(h∗

tθ′
(Xtj))}j∈D |{Xtj}j∈D

({y})
∣

∣

∣
.

Thus, we have

E
[∣

∣PYtk(θ)|Xtk
(C2)− PYtk(θ′)|Xtk

(C2)
∣

∣

]

≤ 2kE

[

max
y∈{0,1}d

max
D∈{1,...,k}d

∣

∣

∣P{IC2j
(h∗

tθ(Xtj))}j∈D |{Xtj}j∈D
({y})

− P{IC2j
(h∗

tθ′
(Xtj))}j∈D |{Xtj}j∈D

({y})
∣

∣

∣

]

≤ 2k
∑

y∈{0,1}d

∑

D∈{1,...,k}d

E

[

∣

∣

∣P{IC2j
(h∗

tθ(Xtj))}j∈D |{Xtj}j∈D
({y})

− P{IC2j
(h∗

tθ′
(Xtj))}j∈D |{Xtj}j∈D

({y})
∣

∣

∣

]

≤ 2d+kkd max
y∈{0,1}d

max
D∈{1,...,k}d

E

[

∣

∣

∣P{IC2j
(h∗

tθ(Xtj))}j∈D |{Xtj}j∈D
({y})

− P{IC2j
(h∗

tθ′
(Xtj))}j∈D |{Xtj}j∈D

({y})
∣

∣

∣

]

.
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Exchangeability implies this is at most

2d+kkd max
y∈{0,1}d

sup
t1,...,td∈R

E

[

∣

∣

∣P{I(−∞,tj ]
(h∗

tθ(Xtj))}d
j=1|Xtd

({y})

− P{I(−∞,tj ]
(h∗

tθ′
(Xtj))}d

j=1|Xtd
({y})

∣

∣

∣

]

= 2d+kkd max
y∈{0,1}d

sup
t1,...,td∈R

E

[

∣

∣

∣P{I(−∞,tj ](Ytj(θ))}d
j=1|Xtd

({y})

− P{I(−∞,tj ]
(Ytj(θ′))}d

j=1|Xtd
({y})

∣

∣

∣

]

.

[12] argue that for all y ∈ {0, 1}d and t1, . . . , td ∈ R,

E

[∣

∣

∣P{I(−∞,tj ](Ytj(θ))}d
j=1|Xtd

({y})− P{I(−∞,tj ](Ytj(θ′))}d
j=1|Xtd

({y})
∣

∣

∣

]

≤ 4
√

‖P{I(−∞,tj ]
(Ytj(θ))}d

j=1,Xtd
− P{I(−∞,tj ](Ytj(θ′))}d

j=1,Xtd
‖.

Noting that

‖P{I(−∞,tj ]
(Ytj(θ))}d

j=1,Xtd
− P{I(−∞,tj ]

(Ytj(θ′))}d
j=1,Xtd

‖ ≤ ‖PZt
d(θ)

− PZt
d(θ

′)‖

completes the proof. ⊓⊔

We are now ready for the proof of Theorem 4.

Proof (Proof of Theorem 4). The estimator θ̂Tθ⋆ we will use is precisely the
minimum-distance skeleton estimate of PZt

d(θ⋆)
[13,5]. [13] proved that if N(ε)

is the ε-covering number of {PZt
d(θ⋆)

: θ ∈ Θ}, then taking this θ̂Tθ⋆ estimator,

then for some Tε = O((1/ε2) logN(ε/4)), any T ≥ Tε has

E

[

‖PZt
d(θ̂Tθ⋆ )

− PZt
d(θ⋆)

‖
]

< ε.

Thus, taking GT = inf{ε > 0 : T ≥ Tε}, we have

E

[

‖PZt
d(θ̂Tθ⋆ )

− PZt
d(θ⋆)

‖
]

≤ GT = o(1).

Letting R′(T, α) be any positive sequence withGT ≪ R′(T, α) ≪ 1 and R′(T, α) ≥
GT /α, and letting δ(T, α) = GT /R

′(T, α) = o(1), Markov’s inequality implies

P

(

‖PZt
d(θ̂Tθ⋆ )

− PZt
d(θ⋆)

‖ > R′(T, α)
)

≤ δ(T, α) ≤ α. (2)

Letting R(T, α) = mink (Mk (R
′(T, α)) + rk), since R′(T, α) = o(1) and rk =

o(1), we have R(T, α) = o(1). Furthermore, composing (2) with Lemmas 1, 2,
and 3, we have

P

(

‖πθ̂Tθ⋆
− πθ⋆‖ > R(T, α)

)

≤ δ(T, α) ≤ α.

⊓⊔
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Remark: Although the above proof makes use of the minimum-distance skeleton
estimator, which is typically not computationally efficient, it is often possible
to achieve this same result (for certain families of distributions) using a simpler
estimator, such as the maximum likelihood estimator. All we require is that the
risk of the estimator converges to 0 at a known rate that is independent of θ⋆.
For instance, see [6] for conditions on the family of distributions sufficient for
this to be true of the maximum likelihood estimator.
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