Skip to main content

Short-Term Wind Power Prediction with Combination of Speed and Power Time Series

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9324))

Abstract

The integration of wind power generation into the power grid can only succeed with precise and reliable forecast methods. With different measurements available, machine learning algorithms can yield very good predictions for short-term forecast horizons. In this paper, we compare the use of wind power and wind speed time series as well as differences of subsequent measurements with Random Forests, Support Vector Regression and k-nearest neighbors. While both time series, wind power and speed, are well-suited to train a predictor, the best performance can be achieved by using both together. Further, we propose an ensemble approach combining RF and SVR with a cross-validated weighted average and show that the prediction performance can be substantially improved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  2. Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: a survey and categorisation. Inf. Fusion 6(1), 5–20 (2005)

    Article  Google Scholar 

  3. Chakraborty, P., Marwah, M., Arlitt, M.F., Ramakrishnan, N.: Fine-grained photovoltaic output prediction using a bayesian ensemble. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) (2012)

    Google Scholar 

  4. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15(1), 3133–3181 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Fugon, L., Juban, J., Kariniotakis, G., et al.: Data mining for wind power forecasting. In: Proceedings of the European Wind Energy Conference & Exhibition (EWEC) (2008)

    Google Scholar 

  6. Gneiting, T., Raftery, A.E., Westveld, A.H., Goldman, T.: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Weather Rev. 133(5), 1098–1118 (2005)

    Article  Google Scholar 

  7. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

  8. Heinermann, J., Kramer, O.: On heterogeneous machine learning ensembles for wind power prediction. In: AAAI Workshops (2015)

    Google Scholar 

  9. Kramer, O., Gieseke, F., Satzger, B.: Wind energy prediction and monitoring with neural computation. Neurocomputing 109, 84–93 (2013)

    Article  Google Scholar 

  10. Kusiak, A., Zheng, H., Song, Z.: Short-term prediction of wind farm power: a data mining approach. IEEE Trans. Energy Convers. 24(1), 125–136 (2009)

    Article  Google Scholar 

  11. Rokach, L.: Ensemble-based classifiers. Artif. Intell. Rev. 33(1–2), 1–39 (2010)

    Article  Google Scholar 

  12. Salcedo-Sanz, S., Rojo-Álvarez, J., Martínez-Ramón, M., Camps-Valls, G.: Support vector machines in engineering: an overview. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 4(3), 234–267 (2014)

    Article  Google Scholar 

  13. Soman, S.S., Zareipour, H., Malik, O., Mandal, P.: A review of wind power and wind speed forecasting methods with different time horizons. In: Proceedings of the North American Power Symposium (NAPS). IEEE (2010)

    Google Scholar 

  14. Vapnik, V.: The Nature of Statistical Learning Theory. Information Science and Statistics. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Heinermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Heinermann, J., Kramer, O. (2015). Short-Term Wind Power Prediction with Combination of Speed and Power Time Series. In: Hölldobler, S., , Peñaloza, R., Rudolph, S. (eds) KI 2015: Advances in Artificial Intelligence. KI 2015. Lecture Notes in Computer Science(), vol 9324. Springer, Cham. https://doi.org/10.1007/978-3-319-24489-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24489-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24488-4

  • Online ISBN: 978-3-319-24489-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics