Skip to main content

Interactive Similarity Analysis and Error Detection in Large Tree Collections

  • Conference paper
  • First Online:
Book cover Visualization in Medicine and Life Sciences III

Abstract

Automatic feature tracking is widely used for the analysis of time-dependent data. If the features exhibit splitting behavior, it is best characterized by tree-like tracks. For a large number of time steps, each with numerous features, these data become increasingly difficult to analyze. In this paper, we focus on the problem of comparing and contrasting hundreds to thousands of trees to support developmental biologists in their study of cell division patterns in embryos. To this end, we propose a new visual analytics method called structure map. This two-dimensional, color-coded map arranges trees into tiles along a Hilbert curve, preserving a tree similarity measure, which we define via graph Laplacians. The structure map supports both global and local analysis based on user-selected tree descriptors. It helps analysts identify similar trees, observe clustering and sizes of clusters within the forest, and detect outliers in a compact and uniform representation. We apply the structure map for analyzing 3D cell tracking from two periods of zebrafish embryogenesis: blastulation to early epiboly and tailbud extension. In both cases, we show how the structure map supported biologists to find systematic differences in the data set as well as detect erroneous cell behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arsić, B., Cvetković, D., Simić, S.K., Škarić, M.: Graph spectral techniques in computer sciences. Appl. Anal. Discrete Math. 6, 1–30 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bille, P.: A survey on tree edit distance and related problems. Theor. Comput. Sci. 337(1), 217–239 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bremm, S., von Landesberger, T., Hess, M., Schreck, T., Weil, P., Hamacherk, K.: Interactive visual comparison of multiple trees. In: IEEE VAST, pp. 31–40 (2011)

    Google Scholar 

  4. Bruls, M., Huizing, K., van Wijk, J.: Squarified treemaps. In: Proceedings of Joint Eurograph and IEEE TCVG Symposium on Visualization, pp. 33–42 (1999)

    Google Scholar 

  5. Buss, S.: Alogtime algorithms for tree isomorphism, comparison, and canonization. In: Computational Logic and Proof Theory, pp. 18–33. Springer, Heidelberg (1997)

    Google Scholar 

  6. Fangerau, J., Höckendorf, B., Rieck, B., Heine, C., Wittbrodt, J., Leitte, H.: Supplemental video. https://vimeo.com/86031849 (2014). Accessed 06 Feb 2014

  7. Graham, M., Kennedy, J.: A survey of multiple tree visualisation. Inf. Vis. 9, 235–252 (2010)

    Article  Google Scholar 

  8. Herman, I., Melançon, G., Marshall, M.S.: Graph visualization and navigation in information visualization: a survey. IEEE Trans. Vis. Comput. Graph. 6, 24–43 (2000)

    Article  Google Scholar 

  9. Huisken, J., Stainier, D.Y.: Selective plane illumination microscopy techniques in developmental biology. Development 136(12), 1963–1975 (2009)

    Article  Google Scholar 

  10. Jolliffe, I.: Principal Component Analysis, 2nd edn. Springer, New York (2002)

    MATH  Google Scholar 

  11. Keller, P.J., Schmidt, A.D., Wittbrodt, J., Stelzer, E.H.: Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322(5904), 1065–1069 (2008)

    Article  Google Scholar 

  12. Kohonen, T.: Self-Organizing Maps. Springer, New York (2001)

    Book  MATH  Google Scholar 

  13. Kubicka, E., Kubicki, G., McMorris, F.: An algorithm to find agreement subtrees. J. Classif. 12, 91–99 (1995)

    Article  MATH  Google Scholar 

  14. Lou, X., Kaster, F.O., Lindner, M.S., Kausler, B.X., Köthe, U., Hockendorf, B., Wittbrodt, J., Jänicke, H., Hamprecht, F.A.: Deltr: digital embryo lineage tree reconstructor. In: Biomedical Imaging: From Nano to Macro, pp. 1557–1560. IEEE, Chicago (2011)

    Google Scholar 

  15. Moreland, K.: Diverging color maps for scientific visualization. In: Proceedings of 5th International Symposium. Advances in Visual Computing: Part II, pp. 92–103. Springer, Heidelberg (2009)

    Google Scholar 

  16. Munzner, T., Guimbretière, F., Tasiran, S., Zhang, L., Zhou, Y.: TreeJuxtaposer: scalable tree comparison using focus+context with guaranteed visibility. ACM Trans. Graph. 22(3), 453–462 (2003)

    Article  Google Scholar 

  17. Navigli, R., Lapata, M.: Graph connectivity measures for unsupervised word sense disambiguation. In: Proceedings of 20th International Joint Conference on Artifical Intelligence, pp. 1683–1688 (2007)

    Google Scholar 

  18. Reingold, E.M., Tilford, J.S.: Tidier drawings of trees. IEEE Trans. Softw. Eng. 7(2), 223–228 (1981)

    Article  Google Scholar 

  19. Schulz, H.: Treevis.net: a tree visualization reference. IEEE Comput. Graph. 31, 11–15 (2011)

    Google Scholar 

  20. Shneiderman, B.: Tree visualization with tree-maps: 2-D space-filling approach. ACM Trans. Graph. 11, 92–99 (1992)

    Article  MATH  Google Scholar 

  21. van Ham, F., van Wijk, J.J.: Beamtrees: compact visualization of large hierarchies. Inf. Vis. 2, 31–39 (2003)

    Article  Google Scholar 

  22. von Landesberger, T., Gorner, M., Schreck, T.: Visual analysis of graphs with multiple connected components. In: IEEE VAST, pp. 155–162. IEEE, Atlantic City (2009)

    Google Scholar 

  23. von Landesberger, T., Kuijper, A., Schreck, T., Kohlhammer, J., Wijk, J.V., Fekete, J.-D., Dieter, W. F.: Visual analysis of large graphs: state-of-the-art and future research challenges. Comput. Graph. Forum 30, 1719–1749 (2011)

    Article  Google Scholar 

  24. Ware, C.: Information Visualization: Perception for Design, 3rd edn. Morgan Kaufmann, San Francisco (2012)

    Google Scholar 

  25. Wilson, R.C., Zhu, P.: A study of graph spectra for comparing graphs and trees. Pattern Recogn. 41(9), 2833–2841 (2008)

    Article  MATH  Google Scholar 

  26. Wong, P.C., Foote, H., Mackey, P., Chin, G., Huang, Z., Thomas, J.: A space-filling visualization technique for multivariate small-world graphs. IEEE Trans. Vis. Comput. Graph. 18, 797–809 (2012)

    Article  Google Scholar 

  27. Zhao, S., McGuffin, M.J., Chignell, M.H.: Elastic hierarchies: combining treemaps and node-link diagrams. In: Proceedings of IEEE Symposium on Information Visualization (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Fangerau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Fangerau, J., Höckendorf, B., Rieck, B., Heine, C., Wittbrodt, J., Leitte, H. (2016). Interactive Similarity Analysis and Error Detection in Large Tree Collections. In: Linsen, L., Hamann, B., Hege, HC. (eds) Visualization in Medicine and Life Sciences III. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-24523-2_13

Download citation

Publish with us

Policies and ethics