
Polynomial Interrupt Timed Automata

Béatrice Bérard1, Serge Haddad2, Claudine Picaronny2, Mohab Safey El Din1,
and Mathieu Sassolas3

1 Sorbonne Université, Université P. & M. Curie, LIP6, CNRS UMR 7606, Paris,
France

2 École Normale Supérieure de Cachan, LSV, CNRS UMR 8643, INRIA, Cachan,
France

3 Université Paris-Est, LACL, Créteil, France

Abstract. Interrupt Timed Automata (ITA) form a subclass of stop-
watch automata where reachability and some variants of timed model
checking are decidable even in presence of parameters. They are well
suited to model and analyze real-time operating systems. Here we ex-
tend ITA with polynomial guards and updates, leading to the class of
polynomial ITA (PolITA). We prove the decidability of the reachabil-
ity and model checking of a timed version of CTL by an adaptation of
the cylindrical decomposition method for the first-order theory of reals.
Compared to previous approaches, our procedure handles parameters
and clocks in a unified way. Moreover, we show that PolITA are in-
comparable with stopwatch automata. Finally additional features are
introduced while preserving decidability.

1 Introduction

Hybrid Automata. Hybrid systems [16] combine continuous evolution of variables
according to flow functions (described by differential inclusions) in control nodes,
and discrete jumps between these nodes, where the variables can be tested by
guards and updated. This class of models is very expressive and all relevant ver-
ification questions (e.g. reachability) are undecidable. For the last twenty years,
a large amount of research was devoted to identifying subclasses with decidable
properties, by restricting the continuous dynamics and/or the discrete behav-
ior of the systems. Among these classes lie the well known Timed Automata
(TA) [3], where all variables are clocks (with derivative ẋ = 1), guards are com-
parisons of clocks with rational constants, and updates are resets. It is proved
in [17] that reachability becomes undecidable when adding one stopwatch (with
ẋ = 1 or ẋ = 0) to timed automata. Decidability results were also obtained for
larger classes (see [5,2,17,20,4]), usually by building from the associated tran-
sition system (with uncountable state space) a finite abstraction preserving a
specific class of properties, like reachability or those expressed by temporal logic
formulas. In all these abstractions, a state is a pair composed of a control node
and a polyhedron of variable values. Examples of such classes include initial-
ized rectangular automata [17] where ẋ ∈ [a, b] or o-minimal hybrid systems [20]

ar
X

iv
:1

50
4.

04
54

1v
1

 [
cs

.F
L

]
 1

7
A

pr
 2

01
5

where the flow is more general, for instance of the form ẋ = Ax over Rn for some
matrix A. In both cases, the variables must be (possibly non deterministically)
reinitialized at discrete jumps.

Interrupt Timed Automata. The class of Interrupt Timed Automata (ITA), in-
comparable with TA, was introduced in [8,10] as another subclass of hybrid
automata with a (time-abstract) bisimulation providing a finite quotient, thus
leading to decidability of reachability and some variants of timed model check-
ing. In a basic n-dimensional ITA, control nodes are organized along n levels,
with n stopwatches (also called clocks hereafter), one per level. At a given level,
the associated clock is active, while clocks from lower levels are frozen and clocks
from higher levels are irrelevant. Guards are linear constraints and the clocks
can be updated by linear expressions (using only clocks from lower levels). The
particular hierarchical structure of ITA makes them particularly well suited for
modeling systems with interruptions, like real-time operating systems. ITA were
extended with parameters in [9] while preserving decidability by combining the
finite abstraction of original ITA with a finite partition of parameter values.

Contribution. We define the class PolITA, of polynomial ITA, where linear
expressions on clocks are replaced by polynomials with rational coefficients both
for guards and updates. For instance, a guard at level 2 with clock x2 can be of
the form P1(x1)x22 + P2(x1) ≥ 0, where P1 and P2 are polynomials with single
variable x1, the clock of level 1. Thus, guards are more expressive than in the
whole class of linear hybrid automata. Such guards can be useful for instance
if some objects are produced at given levels, and operations on higher levels
on these objects require polynomial-time computations w.r.t. the size of these
objects. In addition, such guards can simulate irrational (algebraic) constraints,
a case that becomes undecidable in the setting of timed automata [21].

We establish that model checking of a timed extension of CTL (which con-
tains reachability) is decidable in 2EXPTIME for PolITA by adapting the
cylindrical decomposition [13,6] related to the first order theory of reals. This
decomposition produces a finite partition of the state space, which is the basis
for the construction of a finite bisimulation quotient. The first order theory of
reals has already been used in several works on hybrid automata [20,4] but it
was restricted to the dynamical part, with discrete jumps that must reinitial-
ize the variables (like in o-minimal hybrid systems). Our adaptation consists
in an on-the-fly construction avoiding in the favorable cases to build the whole
decomposition.

From an expressiveness point of view, we show that (contrary to ITA) PolITA
are incomparable with stopwatch automata (SWA). Finally, we prove that the
decidability result still holds with several extensions: adding auxiliary clocks and
parameters, and enriching the possible updates. In particular, parametric ITA [9]
can be seen as a subclass of PolITA, and the complexity of our reachability
algorithm is better than [9] (2EXPSPACE).

Outline. We describe the model of polynomial ITA in Section 2, with an example
and the presentation of the model checking problem. In Section 3, we revisit and
adapt in this context the cylindrical decomposition for the first theory of reals,
with a special focus on the related algorithmic questions. The decision proce-
dure for the model checking problem in PolITA is then presented in Section 4,
with an example of the construction. Finally, we describe several extensions in
Section 5 and conclude in Section 6.

2 Polynomial ITA

2.1 Definition

Let N denote the set of natural numbers, Z the set of integers, Q the set of
rationals, and R the set of real numbers, with R≥0 the set of non negative real
numbers.

Let X = {x1, . . . , xn} be a finite set of n variables called clocks. We write
Q[x1, . . . , xn] for the set of polynomials with n variables and rational coefficients.
A polynomial constraint is a conjunction of constraints of the form P ./ 0 where
P ∈ Q[x1, . . . , xn] and ./∈ {<,≤,=,≥, >}, and we denote by C(X) the set of
polynomial constraints. We also define U(X), the set of polynomial updates over
X as:

U(X) =

{ ∧
x∈X

x := Px

∣∣∣∣∣ ∀x, Px ∈ Q[x1, . . . , xn]

}
.

A valuation for X is a mapping v ∈ RX , sometimes also identified to the
vector (v(x1), . . . , v(xn)) ∈ Rn. The valuation where v(x) = 0 for all x ∈ X is
denoted by 0. For P ∈ Q[x1, . . . , xn] and v a valuation, the value of P at v is
P (v) = P (v(x1), . . . , v(xn)). A valuation v satisfies the constraint P ./ 0, written
v |= P ./ 0, if P (v) ./ 0. The notation is naturally extended to a polynomial
constraint: v |= ϕ with ϕ =

∧
i Pi ./i 0 if v |= Pi ./i 0 for every i.

An update of valuation v by u = ∧x∈Xx := Px ∈ U(X) is the valuation
v[u] defined by v[u](x) = Px(v) for every x ∈ X. Hence an update is atomic in
the sense that all variables are set at the same time: the new value of variables
depend on the old values of v.

For a valuation v and a delay d ∈ R≥0, the valuation v′ = v +k d, corre-
sponding to time elapsing for clock xk, is defined by v′(xk) = v(xk) + d and
v′(x) = v(x) for any other clock x.

Definition 2.1 (PolITA). A polynomial interrupt timed automaton (PolITA)
is a tuple A = 〈Σ,Q, q0, F,X, λ,∆〉, where:

– Σ is a finite alphabet,
– Q is a finite set of states, q0 is the initial state, F ⊆ Q is the set of final

states,
– X = {x1, . . . , xn} consists of n interrupt clocks,

– the mapping λ : Q→ {1, . . . , n} associates with each state its level and xλ(q)
is called the active clock in state q.

– ∆ ⊆ Q×C(X)×(Σ∪{ε})×U(X)×Q is the set of transitions. Let q
ϕ,a,u−−−→ q′ in

∆ be a transition with k = λ(q) and k′ = λ(q′). The guard ϕ is a conjunction
of constraints P ./ 0 with P ∈ Q[x1, . . . , xk] (P is a polynomial over clocks
from levels less than or equal to k). The update u is of the form ∧ni=1xi := Ci
with:
• if k > k′, i.e. the transition decreases the level, then for 1 ≤ i ≤ k′,
Ci = xi and for i > k′, Ci = 0;

• if k ≤ k′ then for 1 ≤ i < k, Ci = xi, Ck = P for P ∈ Q[x1, . . . , xk−1]
or Ck = xk, and for i > k, Ci = 0.

Remark that although it is possible to compare an active clock in a non-
polynomial way, e.g. x2 >

√
x1 (which can be translated as x22 > x1 ∧ x1 ≥ 0),

it cannot be updated in such a fashion.

Example 2.2. PolITA A0 of Fig. 1 has two levels, with q0 at level 1 and q1 and
q2 at level 2, with q2 the single final state. At level 1, only x1 appears in guards
and updates (here the only update is the resetting of x1 by action a′), while at
level 2 guards use polynomials in both x1 and x2.

q0, 1

q1, 2 q2, 2

x21 ≤ x1 + 1, a

x21 > x1 + 1, a′, x1 := 0

(2x1 − 1)x22 > 1, b

x2 ≤ 5− x21, c

Fig. 1. A sample PolITA A0.

A configuration (q, v) consists of a state q of A and a clock valuation v.

Definition 2.3. The semantics of a PolITA A is defined by the (timed) tran-
sition system TA = (S, s0,→), where S =

{
(q, v) | q ∈ Q, v ∈ RX

}
is the set

of configurations, with initial configuration s0 = (q0,0). The relation → on S
consists of two types of steps:

Time steps: Only the active clock in a state can evolve, all other clocks are
frozen. For a state q with active clock xλ(q), a time step of duration d ∈ R≥0
is defined by (q, v)

d−→ (q, v′) with v′ = v +λ(q) d. A time step of duration 0
leaves the system TA in the same configuration.

Discrete steps: There is a discrete step (q, v)
a−→ (q′, v′) whenever there exists

a transition q
ϕ,a,u−−−→ q′ in ∆ such that v |= ϕ and v′ = v[u].

An run of a PolITA A is a path in TA. The trace of a run is the sequence
of letters (or word) appearing in the path. The timed word is the sequence
of letters along with the absolute time of the occurrence, i.e. the sum of all
delays appearing before the letter. Given a subset F ⊆ Q of final states, a run
is accepting if it ends in a state of F . This defines the language (resp. timed
language) as the set of traces (resp. timed words) of accepting runs.

Example 2.4. The PolITA A0 can only take the transition from q0 to q1 before

x1 reaches 1+
√
5

2 , i.e. at the point where the red curve crosses the x1 axis on
Fig. 2. Then, transition b from q1 to q2 can only be taken once x2 reaches
the grey areas. Transition c cannot however be taken once the green curve has
been crossed. Hence the loop bc can be taken as long as the clocks remain in
the dark gray zone. In the sequel, we show how to symbolically compute these
zones. Since q2 is a final state, the run depicted in Fig. 2 is accepted by A. The
associated timed word is (a, 1.2)(b, 2.3)(c, 2.6)(b, 3.3)(c, 3.9)(b, 5.1), and the trace
is the word abcbcb.

x1

x2

(2x1 − 1)x22 − 1 = 0

x2 + x21 − 5 = 0

x21 − x1 − 1 = 0

a

b
c

b

c

b

Fig. 2. A trajectory of clocks of A0 in the 2-dimensional plane.

2.2 Verification problems for PolITA

Given a PolITA A, natural questions arise regarding its behavior. The most
standard one is the reachability problem which is the decision problem asking
whether a given state can be reached from the initial configuration. This allows in

particular to decide whether the timed language is nonempty, which is equivalent
to testing the reachability of a final state.

More elaborate queries regarding the behavior of a PolITA can be expressed
through temporal logics like CTL [15,22] or timed extensions of such logics like
TCTL [1,18]. Here we use a timed extension of CTL which allows to reason over
the values of clocks of the PolITA.

Let AP be a set of atomic propositions, we equip the states of A with a label-
ing lab : Q→ 2AP of propositions that hold in the given state. For convenience,
we assume that Q ⊆ AP with for all q, q′ ∈ Q, q′ ∈ lab(q) iff q = q′.

Definition 2.5. Formulas of the timed logic TCTLint are defined by the follow-
ing grammar:

ψ ::= p | ψ ∧ ψ | ¬ψ | P ./ 0 | AψUψ | EψUψ

where p ∈ AP , P is a polynomial of Q[x1, . . . , xn], and ./∈ {>,≥,=,≤, <}.

We use the classical shorthands Fp = trueU p, Gp = ¬F¬p, and boolean opera-
tors. The reachability problem of a state q is simply the satisfaction of EFq.

The formulas of TCTLint are interpreted over configurations of A, hence the
semantics of TCTLint is defined as follows on the transition system TA associated
with A. Let Run(s) denote all runs starting from configuration s = (q, v). For

ρ = (q, v)
d1−→ (q, v +λ(q) d1)

a1−→ (q2, v2) · · · ∈ Run(s), a position in ρ is a pair
π = (i, δ) where 1 ≤ i and 0 ≤ δ ≤ di. The configuration corresponding to π
is sπ = (qi, vi +λ(qi) δ) (with q1 = q and v1 = v). We denote by <ρ the strict
lexicographical order over positions of ρ.
For basic formulas:

s |= p iff p ∈ lab(s)
s |= P ./ 0 iff v |= P ./ 0

and inductively:

s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ
s |= ¬ϕ iff s 6|= ϕ
s |= AϕUψ iff for all ρ ∈ Run(s), ρ |= ϕUψ
s |= EϕUψ iff there exists ρ ∈ Run(s) s. t. ρ |= ϕUψ
with ρ |= ϕUψ iff there is a position π ∈ ρ s. t. sπ |= ψ

and ∀π′ <ρ π, sπ′ |= ϕ ∨ ψ.

The automaton A satisfies ψ (written A |= ψ) if the initial configuration s0
of TA satisfies ψ. The model checking problem asks, given A and ψ, whether
A |= ψ.

As mentioned in the introduction, an exhaustive traversal of the (uncount-
able) transition system TA is not possible, and the model checking algorithm
relies on an abstraction of said transition system. This abstraction needs to be
refined enough to capture both time elapsing and discrete jumps through the
crossing of a transition. Namely, two configurations in the same abstraction class
should reach the same successor classes when time elapses or when an update is

applied. Moreover, the truth value of subformulas P ./ 0 should be invariant in
each abstraction class.

The previous works of [8,10,9] on ITA built such an abstraction by relying on
a set of expressions with rational coefficients. These expressions contained linear
forms involved in guards and updates, along with the active clock of the level.
Moreover, since the ordering of two expressions at a given level could rely on the
value of lower-level clocks, some expressions were required at inferior levels. The
classes were then defined as subsets of Rn where the ordering of expressions was
constant.

In the sequel, we adapt the above process in the context of PolITA, where
the constraints are polynomial rather than linear, and hence yield regions that
are not polyhedra, but cells defined by a so called cylindrical decomposition.

3 Cylindrical algebraic decomposition for first-order
theory of reals

Cylindrical algebraic decomposition is introduced by Collins in [13] for solving
quantifier elimination problems of first-order formulas over the reals. The first
algorithm for solving this problem was given by Tarski in [23] but its complexity
was non elementary recursive. Cylindrical algebraic decomposition is doubly ex-
ponential in the number of variables and is now a popular technique for solving
polynomial systems over the reals. Given a polynomial family, it essentially par-
tionates the ambient space into cells which are homeomorphic to]0, 1[i over which
the input is sign-invariant. These cells are also intrinsically arranged together
with a nice cylindrical structure which we explain further. Later on, a procedure
in EXPSPACE was established [7]. The best lower bound currently known for
this problem is STA(∗, 2nO(1), n) (a complexity class defined by machines with
limited alternations and located between EXPTIME and EXPSPACE) and it
already holds without the multiplication [11].

We consider formulas that express properties of reals. There are inductively
defined as follows. An arithmetic expression is:

– either an integer constant, a variable;
– or e1 + e2, e1 ∗ e2 where e1 and e2 are arithmetic expressions.

A formula is:

– a basic formula: e ∼ 0 where ∼∈ {<,=} and e is an arithmetic expression;
– or ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ¬ϕ1, ∀xϕ1, ∃xϕ1 where ϕ1 and ϕ2 are formulas and x

is a variable.

A sentence is a formula without free variables. A sentence has a truth value when
interpreted over R and we are looking for deciding the truth of a formula.

For our purposes, we will adapt the cylindrical algebraic decomposition. So
we develop in the section all the required machinery. Here we only describe the
general principles and we explain how it can be used for deciding the truth of a
formula. The first concept that we introduce is the one of cell.

Definition 3.1. A cell of level n is a subset of Rn inductively defined as follows.

– When n = 1, it is either a point or an open interval.
– A cell C of level n + 1 is based on a cell C ′ of level n. It has one of the

following shapes.
1. C = {(x, f(x)) | x ∈ C ′} with f a continuous function from C ′ to R;
2. C = {(x, y) | x ∈ C ′ ∧ l(x) < y < u(x)} with l < u continuous functions

from C ′ to R, possibly with l = −∞ and/or u = +∞.

By convention the single cell of level 0 is R0.
Let P = {Pi}1≤i≤n be a family of subsets of polynomials such that for all

P ∈ Pi, P ∈ R[X1, . . . , Xi]. By convention, we extend P with P0 = ∅. The
second concept that we introduce is the sign invariance of a cell w.r.t. P.

Definition 3.2. Let P = {Pi}i≤n. A cell C of level i is P-invariant if:

– For all j ≤ i, for all P ∈ Pj, for all x, y ∈ C sign(P (x)) = sign(P (y)).
– When i < n,

1. either C × R is P-invariant;
2. or there exists f1 < . . . < fr continuous functions from C to R such that

all the following cells are P-invariant:

• for all 1 ≤ i ≤ r, {(x, fi(x)) | x ∈ C};
• for all 0 ≤ i ≤ r, {(x, y) | x ∈ C ∧ fi(x) < y < fi+1(x)} with the

convention that f0 = −∞ and fr+1 = +∞.

Observe that R0 is P-invariant, and that one can inductively define a tree of
P-invariant cells as follows.

– The root of the tree is R0;
– Let C be a P-invariant cell of level i < n belonging to the tree. Then de-

pending on the kind of invariance,
1. either C has a single child C × R;
2. or for some r ∈ N\{0}, C has 2r+1 ordered children {(x, y) | x ∈ C∧y <
f1(x)}, {(x, f1(x)) | x ∈ C}, {(x, y) | x ∈ C ∧ f1(x) < y < f2(x)}, . . . ,
{(x, y) | x ∈ C ∧ y > fr(x)}.

This tree is also called a cylindrical decomposition.

Example 3.3 ([6]). Consider the single polynomial Ps = X2
1 +X2

2 +X2
3 −1, with

Ps = 0 representing a sphere of radius 1 in R3, as shown in Fig. 3. At level 1, R
is partitioned into 5 cells:

C−∞ =]−∞,−1[C−1 = {−1} C0 =]− 1, 1[

C1 = {1} C+∞ =]1,+∞[

At level 2, R2 is partitioned above the previous cells. There is a single cell
C−∞ × R above C−∞ (and similarly C+∞ × R above C+∞). Above C−1 are
three cells, its children in the tree:

{−1}×]−∞, 0[{(−1, 0)} {−1}×]0,+∞[

x

z

y

Fig. 3. Cylindrical decomposition of a sphere.

The cells above C1 are similar.

And above C0 are 5 cells: the interior of the disc C0,0, its lower and upper
edges C0,−1 and C0,1 and the exterior of the circle (the lower and upper parts)
C0,−∞ and C0,+∞:

C0,1 :

{
−1 < x1 < 1

x2 =
√

1− x21
C0,−1 :

{
−1 < x1 < 1

x2 = −
√

1− x21

C0,+∞ :

{
−1 < x1 < 1

x2 >
√

1− x21
C0,−∞ :

{
−1 < x1 < 1

x2 < −
√

1− x21

C0,0 :

{
−1 < x1 < 1

−
√

1− x21 < x2 <
√

1− x21

At level 3, cell C0,−1 is further lifted in three cells where C0,−1,0 is half the
equator circle of the sphere:

C0,−1,−∞ :

−1 < x1 < 1

x2 = −
√

1− x21
x3 < 0

C0,−1,0 :

−1 < x1 < 1

x2 = −
√

1− x21
x3 = 0

C0,−1,+∞ :

−1 < x1 < 1

x2 = −
√

1− x21
x3 > 0

And C0,0 is lifted into 5 cells: below (and above) the inferior (resp. superior) half
of the sphere, said inferior (resp. superior) half, and the interior of the sphere.
These cells are determined by two functions f1(x1, x2) = −

√
1− x21 − x22 and

f2(x1, x2) =
√

1− x21 − x22.

Algorithm 1: Checking the truth of a formula

Data: A cylindrical decomposition having parameter C as an element.
Check(ϕ, i, C,S): a boolean
Input: ϕ, a prenex sentence with n variables, C, a P-invariant cell of level i
Input: S, a set of pairs of polynomials and signs
Output: the truth value of ϕ
Data: j, k, some indices
// The expression sign(P (C)) uses the sign invariance of C
S ← S ∪ {(P, sign(P (C)) | P ∈ Pi}
// When i = n, all atomic formulas of ψ are determined by S
if i = n then return ψ(S)
// Let C1, . . . , Ck be the children of C
if Qi+1 = ∃ then

for j from 1 to k do
if Check(ϕ, i+ 1, Cj ,S) then return true

end
return false

else
for j from 1 to k do

if ¬Check(ϕ, i+ 1, Cj ,S) then return false
end
return true

end

Let us explain how a cylindrical decomposition is useful for first-order theory
of reals. Any sentence can be transformed into an equivalent prenex formula
ϕ = Q1x1 . . . Qnxnψ such that Qi ∈ {∀,∃} and ψ is a quantifier free formula that
checks signs of polynomials evaluated on some of the xi’s. Thus by syntactical

examination, we first build the family P from the polynomials occurring in ψ.
Assume that we produce a cylindrical decomposition for P. Then Algorithm 1
solves the decision problem with the call Check(ϕ, 0,R0, ∅). The correctness of
the algorithm is proved by (1) the sign invariance of the cells, (2) the partition
of C×R between the children of a cell C and (3) a backward inductive property:
given a cell C of level i, the truth of Qi+1xi+1 . . . Qnxnψ does not depend on the
point (x1, . . . , xi) ∈ C.

The section is organized as follows. In subsection 3.1 we develop algorithms
for rings with some additional assumptions that depend on the algorithms (also
presented in [6]). The main hypothesis is that we consider subrings of R for which
there is a decision procedure for evaluation of the sign of an item. In Subsec-
tion 3.2, we introduce triangular systems which are representations of algebraic
reals and domains of R and we establish that they are sign-effective. Subsec-
tion 3.3 is devoted to the building of a cylindrical decomposition. It consists in
two stages: the elimination stage that enlarges P and the lifting stage that builds
the cylindrical decomposition. In this decomposition a cell is represented by an
algebraic real (i.e. a triangular system) belonging to it.

3.1 Algorithms in sign-effective subrings of reals

Preliminary remarks. Let us denote by A a domain i.e., a ring with no di-
visors of zero. FA denotes the field of fractions of A. Whenever we will describe
algorithms involving a domain A, we assume a representation of an item of A.
For instance, the representation of pq ∈ Q could be the pair of integers (p, q). We
do not require that the representation is unique but that the following opera-
tions are effective: addition, multiplication and zero-test. We denote multiplica-
tion and addition as usual. The function that performs the zero-test is denoted
Null(A, d) with d, a representation of some item of A.

The goal of this section is to exhibit some problems that can be solved in
A[X] (for A ⊆ R) when, in addition to the previous operations, the sign of an
element of A can be determined. The sign is defined by sign(0) = 0 and for
x ∈ A \ {0}, sign(x) = 1 if x > 0, sign(x) = −1 if x < 0. The function that
computes the sign is denoted Sign(A, d) with d, a representation of some item
of A. Since the procedures we describe may depend on additional properties like
this one, we will indicate which properties are assumed for the algorithms.
Notations. The sign of a permutation that reverts the order of i items is denoted

by εi = (−1)
i(i−1)

2 . We denote by Rem the remainder of the Euclidean division
in A[X]: for polynomials P,Q ∈ A[X] with respective degrees p, q, Rem(P,Q) ∈
FA[X] is the unique polynomial of degree less than q such that there exists
C ∈ FA[X] with P = QC +Rem(P,Q).

Computing the degree of a gcd. We start with a characterization of the degree
of the gcd of two polynomials that holds in any domain. The interest of this
characterization is that it only involves whether some determinants in A are
null and thus can be computed by additions, multiplications and zero-tests.
Furthermore, subresultants will also be useful later on.

Definition 3.4 (Sylvester-Habicht matrices and subresultants). Let A
be a domain. Let P,Q ∈ A[X] with P =

∑
i≤p aiX

i and Q =
∑
i≤q biX

i such
that ap 6= 0, bq 6= 0 and q ≤ p. Then the Sylvester-Habicht matrix of order j for
0 ≤ j ≤ min(p− 1, q) is the (p+ q− 2j)× (p+ q− j) matrix SyHaj(P,Q) whose
rows are Xq−j−1P, . . . , P,Q, . . . ,Xp−j−1Q considered as vectors with respect to
the basis Xp+q−j−1, . . . , X, 1.
The j-th subresultant denoted sResj(P,Q) is the determinant of the square ma-
trix SyHaj,j(P,Q) obtained by taking the first p+q−2j columns of SyHaj(P,Q).
When q < p, this definition is extended for q < j ≤ p by: sResp(P,Q) = ap, and
sResj(P,Q) = 0 for q < j ≤ p− 1.

Remark 3.5. Observe that when q < p, SyHaq(P,Q) consists ofQ, . . . ,Xp−q−1Q
(without any occurrence of P). Hence sResq(P,Q) is the determinant of a matrix
obtained by reverting the rows of bqIdp−q, which yields sResq(P,Q) = εp−qb

p−q
q .

Example 3.6. Consider polynomials P = αX2 − 1 and Q = X + β, obtained
from the PolITA of Fig. 1 when the value of X1 has been fixed. By definition,
we have sRes2(P,Q) = α, and by the above remark, sRes1(P,Q) = 1. Precisely
SyHa1(P,Q) is the one row matrix (1, β) and SyHa1,1(P,Q) = (1). For j = 0,
one must compute the determinant of the matrix whose rows are P,Q,XQ,
namely

SyHa0(P,Q) =

α 0 −1
0 1 β
1 β 0

whose determinant is 1− αβ2.

Proposition 3.7. Let A be a domain and P,Q ∈ A[X] with P =
∑
i≤p aiX

i and

Q =
∑
i≤q biX

i such that ap 6= 0, bq 6= 0 and q ≤ p. Let 0 ≤ j ≤ min(p − 1, q).
Then deg(gcd(P,Q)) = j if and only if sRes0(P,Q) = · · · = sResj−1(P,Q) = 0
and sResj(P,Q) 6= 0. Consequently when p = q, deg(gcd(P,Q)) = p if and only
if sRes0(P,Q) = · · · = sResp−1(P,Q) = 0.

Proof. Observe that sResj(P,Q) = 0 if and only if there is a non trivially null
linear combination of polynomials αq−j−1X

q−j−1P + · · · + α0P + β0Q + · · · +
βp−j−1X

p−j−1Q of degree strictly less than j. This is equivalent to the existence
of two non null polynomials U =

∑
i≤q−j−1 αiX

i and V =
∑
i≤p−j−1 βiX

i such
that deg(UP + V Q) < j.
We claim that sRes0(P,Q) = · · · = sResj−1(P,Q) = 0 if, and only if, it is the
case that deg(gcd(P,Q)) ≥ j, which will yield the desired conclusion. Assume
that deg(gcd(P,Q)) ≥ j which is equivalent to deg(lcm(P,Q)) ≤ p+ q− j which
is equivalent to the existence of polynomials U, V with deg(U) ≤ q−j, deg(V) ≤
p − j and UP = −V Q. Our previous observation implies that sRes0(P,Q) =
· · · = sResj−1(P,Q) = 0.
The reverse implication is established by induction on j. When sRes0(P,Q) = 0,
the existence of U and V such that UP+V Q = 0 with deg(U) < q and deg(V) <
p implies deg(gcd(P,Q)) ≥ 1. When sRes0(P,Q) = · · · = sResj(P,Q) = 0,

the inductive hypothesis applied to j − 1 implies deg(gcd(P,Q)) ≥ j. From
sResj(P,Q) = 0, we again obtain U, V such that with deg(U) < q− j, deg(V) <
p−j and deg(UP +V Q) < j. Since gcd(P,Q) divides UP +V Q this implies that
UP+V Q = 0 and so deg(lcm(P,Q)) < p+q−j and finally deg(gcd(P,Q)) ≥ j+1.

ut

Due to the importance of the subresultant notion, we want a way to com-
pute them efficiently. To this aim, we introduce the “polynomial” matrices and
determinants. Let us introduce additional notations.

Definition 3.8. Let P1, . . . , Pm be polynomials in A[X]of degrees less than n
with m ≤ n and Pi =

∑
j<n pi,jX

j. Then pmatn(P1, . . . , Pm) is the m × m
matrix whose items are defined by:

– For all i ≤ m, j < m, pmatn(P1, . . . , Pm)[i, j] = pi,n−j.
– For all i ≤ m, pmatn(P1, . . . , Pm)[i,m] = Pi.

Additionally, let pdetn(P1, . . . , Pm) = det(pmatn(P1, . . . , Pm)).

Otherwise stated, the ith row of matrix pmatn(P1, . . . , Pm) consists of coeffi-
cients of Pi in descending order down to n − m + 1 ended by polynomial Pi
itself.

Definition 3.9. Consider P,Q polynomials with respective degrees p > q. We
define, for 0 ≤ j ≤ p,

– for 0 ≤ j ≤ q, sResPj(P,Q)pdetp+q−j(X
q−j−1P, . . . , P,Q, . . . ,Xp−j−1Q),

that is det(SyHaPj(P,Q)), where
SyHaPj(P,Q) = pmatp+q−j(X

q−j−1P, . . . , P,Q, . . . ,Xp−j−1Q).
– for q < j < p− 1, sResPj(P,Q) = 0;
– for j = p − 1, sResPj(P,Q) = Q (which is consistent with the original

definition in case q = p− 1);
– for j = p, sResPj(P,Q) = P .

From the above definition, one can straightforwardly see:

Proposition 3.10. sResPj(P,Q) is a polynomial of degree at most j and the
coefficient of degree j of this polynomial is sResj(P,Q).

Additional assumption. We assume here that the integral division is effective
in A: given a, b ∈ A, there is an algorithm that answers whether there exists
c ∈ A with a = bc and returns c in the positive case. This is the case in particular
in any ring over Z[X1, . . . , Xk] = Z[X1] · · · [Xk−1][Xk] or Q[X1, . . . , Xk] where
the algorithm consists in trying to perform a (recursive) Euclidean division,
stopping and answering negatively when a coefficient of the quotient is not in
the corresponding ring or there is a non null remainder. We denote the integral
division by the usual fraction symbol since we will only use it when the result is
defined.

Algorithm 2: Computing the subresultants for P,Q.

Subresultants(A, P, p,Q, q): a vector
Input: P,Q, non null polynomials in A[X] with respective degrees p > q
Output: the vector of subresultants (sResi(P,Q))0≤i≤p
Data: SresP a vector over A[X] indexed by [0, p]
Data: s, t vectors over A indexed by [0, p]; i, j, k, `, some indices
SresP [p]← P ; s[p]← 1; t[p]← 1; SresP [p− 1]← Q; t[p− 1]← Q[q]
if q = p− 1 then s[p− 1]← t[p− 1] else s[p− 1]← 0
for ` from q + 1 to p− 2 do s[`]← 0
SresP [q]← εp−qt[p− 1]p−q−1Q; t[q]← SresP [q][q]; s[q]← t[q]
i← p+ 1; j ← p
while Degree(A, SresP [j − 1]) 6= −∞ do

k ← Degree(A, SresP [j − 1]); t[j − 1]← SresP [j − 1][k]
if k = j − 1 then s[j − 1]← t[j − 1]
else

for ` from k + 1 to j − 1 do s[`]← 0

t[k]← εj−k(t[j−1]
s[j]

)j−k−1t[j − 1]; s[k]← t[k]

SresP [k]← s[k]sResP [j−1])
t[j−1]

end

SresP [k − 1]← −Rem(t[j−1]s[k]sResP [i−1],sResP [j−1])
s[j]t[i−1]

; i← j; j ← k;

end
for ` from 0 to j − 2 do s[`]← 0
return s

Our goal is to compute sResj(P,Q) by decreasing values of j and only relying
on Euclidean divisions that remain in A[X]. For sake of clarity, we denote sj =
sResj(P,Q) and tj the leading coefficient of sResPj(P,Q) except for sp = tp = 1.
When sResPj(P,Q) has degree j, we have sj = tj . Developing the last column
w.r.t. the degrees of X and observing that for degrees > j the corresponding
vector of reals already occurs in a former column, we can safely substitute to
the polynomials their truncation up to degree j. Then it is immediate that
sResPj(P,Q) = 0 iff there exist polynomials U, V with deg(U) < q−j, deg(V) <
p− j and UP + V Q = 0. As a consequence, for all j′ ≤ j, sResPj′(P,Q) = 0.

The next proposition is the basis of Algorithm 2 for the efficient computa-
tion of subresultants. As can be deduced from this proposition, the computation
consists in taking successive remainders of Euclidean divisions (up to some con-
stant) in order to get sResPij−1(P,Q) and then some scalar multiplications and
divisions to get sResPij+1

(P,Q). Function Degree returns the degree of a poly-
nomial in N ∪ {−∞} by looking at the first non null coefficient (using Null

function).

Proposition 3.11. Let P,Q be non null polynomials of A[X] with p = deg(P) >
deg(Q) = q. There exists a sequence of strictly decreasing indices i1, i2, . . . , iJ
with i1 = p+ 1, i2 = p, i3 = q that fulfills the following properties:

– for all 1 < j ≤ J , sResPij (P,Q) has degree ij (and so sij = tij), for all
j < J , sResPij−1(P,Q) has degree ij+1 and if iJ > 0 then for all k < iJ ,
sResPk(P,Q) = 0 and sResPiJ−1−1(P,Q) = gcd(P,Q);

– for all j < J , when ij−1 > ij+1, for all ij+1 < k < ij−1, sResPk(P,Q) = 0
and tij−1sResPij+1(P,Q) = sij+1sResPij−1(P,Q) with

sij+1 = εij−ij+1

(tij−1)
ij−ij+1

(sij)
ij−ij+1−1 ;

– for all 1 < j < J , sij tij−1−1sResPij+1−1(P,Q) =
−Rem(sij+1tij−1sResPij−1−1(P,Q), sResPij−1(P,Q)).

Substituting in the equation of the third item sResPij−1−1(P,Q) by
tij−1−1

sij
sResPij (P,Q) (justified by the equation of the second item) and then

multiplying by
tij−1−1

sij
one also obtains:

s2ijsResPij+1−1(P,Q) = −Rem(sij+1tij−1sResPij (P,Q), sResPij−1(P,Q)).

Proof. Let R = Rem(P,Q). Let us look at SyHaPj(P,Q) for j ≤ q − 1. Write
C =

∑
i≤p−q ciX

i (the quotient of Euclidean division of P by Q). We have

R = P−
∑
i≤p−q ciX

iQ. Due to this equality, changing the rows Xq−j−1P, . . . , P

by Xq−j−1R, . . . , R does not modify the determinant sResPj(P,Q). We define
the determinant Dj of the matrix obtained by reverting the order of the rows
and replacing R by −R. The first operation amounts to multiplying by εp+q−2j
and the second one by (−1)q−j . Since εp+q−2j(−1)q−j = εp−q, we have:
Dj = εp−qsResPj(P,Q).

We first prove the properties related to indexes between p and q − 1. Let us
look at the second item. For the first part by convention for all q < j < p − 1,

sResPj(P,Q) = 0. The second part of the second item corresponds to the case
j = 2 with sp = ap, tp−1 = sq = bq. So the equation can be written as:

bqsResPq(P,Q) = sqQ with sq = εp−q
bp−qq

1p−q−1

which is equivalent to:

sResPq(P,Q) = εp−qb
p−q−1
q Q.

Since sResPq(P,Q) = pdetp(Q, . . . ,X
p−q−1Q), the result is immediate. Let us

look at the third item: Dq−1 = −bp−q+1R. So

sResPq−1(P,Q) = −Rem(εp−qb
p−q+1P,Q).

By convention, sp = tp = 1, sResPp(P,Q) = P and sResPp−1(P,Q) = Q im-
plying tp−1 = bq. Furthermore we have shown that sq = εp−qb

p−q. Substituting
in the previous equation establishes the third item.

We prove the remaining properties by induction on J . Let R = Rem(P,Q) = 0
which implies that Q = gcd(P,Q) and sResPq−1(P,Q) = 0. So the base case
(J = 3) is established.

Let R = Rem(P,Q) 6= 0. Let r be the degree of R, we claim that:

∀j < q − 1 sResPj(P,Q) = εp−qb
p−r
q sResPj(Q,−R) (1)

When j ≤ r = deg(R), Dj can be obtained starting from SyHaPj(Q,−R) by
adding the rows Xp−j−1Q, . . . ,Xr−jQ and taking the determinant. Thus Dj =
bp−rq sResPj(Q,−R) and so sResPj(P,Q) = bp−rq εp−qsResPj(Q,−R). When r <
j < q − 1 by definition sResPj(Q,−R) = 0 but sResPj(P,Q) = Dj = 0 since
the polynomial matrix pmatp+q−j(X

p−j−1Q, . . . , Q,Xq−j−1R, . . . , R) is upper
triangular up to its p − j + 1th column and since the degree Xq−j−1R is less
than q − 1, the diagonal term of this column is null.

Due to this proportionality between sResPj(P,Q) and sResPj(Q,−R) with
factor εp−qb

p−r
q and the inductive hypothesis, it only remains to prove that the

two following equalities hold:

sqtp−1sResPr−1(P,Q) = −Rem(srtq−1sResPp−1(P,Q), sResPq−1(P,Q)) (2)

and

sr = εq−r
(tq−1)q−r

(sq)q−r−1
(3)

For Equation (2), using the inductive hypothesis for the pair (Q,−R), the
following equation holds:

s′q
2sResPr−1(Q,−R) = −Rem(s′rt

′
q−1sResPq(Q,−R), sResPq−1(Q,−R))

where the primed version of si and ti are related to the pair (Q,−R). By con-
vention, s′q = 1. So:

sqtp−1sResPr−1(P,Q) = sqtp−1εp−qb
p−r
q sResPr−1(Q,−R)

= (εp−qb
p−q
q)(bq)εp−qb

p−r
q sResPr−1(Q,−R)

= −Rem((εp−qb
p−r
q s′r)(εp−qb

p−q+1
q t′q−1)sResPq(Q,−R), sResPq−1(Q,−R)).

Observe that the factor of proportionality established above implies that
sr = εp−qb

p−q+1
q s′r.

Since sResPq−1(P,Q) = −εp−qbp−q+1
q R and sResPq−1(Q,−R) = −R, one ob-

tains tq−1 = εp−qb
p−q+1
q . So:

sqtp−1sResPr−1(P,Q) = −Rem(srtq−1sResPq(Q,−R), sResPq−1(Q,−R))

= −Rem(srtq−1Q,−R) = −Rem(srtq−1Q,−εp−qbp−q+1
q R)

= −Rem(srtq−1sResPp−1(P,Q), sResPq−1(P,Q))

For Equation (3), let us look at the following matrices.
bq bq−1 X

p−q−1Q
0 bq Xp−q−2Q
.
0 0 . . . bq XQ
0 0 . . . 0 Q

bq bq−1 Xp−qQ
0 bq Xp−q−1Q
.
0 0 . . . bq Q
0 0 . . . 0 −R

The left matrix that we define Dq has been obtained by reverting the p − q
rows of SyHaPq(P,Q). So its determinant is equal to εp−qsResPq(P,Q). The
right matrix is Dq−1. As we have already seen, its determinant is equal to
εp−qsResPq−1(P,Q). Denoting −R =

∑
i≤r αiX

i, it is now obvious that bqαr =
tq−1

sq
. As a consequence, we obtain that:

sResPq−1(P,Q) = −εp−qbp−q+1
q R (4)

Let us look at the following matrices.

bq bq−1 Xp−r−1Q

0 bq Xp−r−2Q
. .
0 0 . . . bq Q
0 0 . . . 0 0 0 . . . 0 −R
0 0 . . . 0 . . . αr −XR
. .

0 0 0 αr −Xq−r−2R

0 0 αr αr−1 −Xq−r−1R

bq bq−1 Xp−r−1Q

0 bq Xp−r−2Q
. .
0 0 . . . bq Q

0 0 αr αr−1 −Xq−r−1R

0 0 0 αr −Xq−r−2R
. .
0 0 . . . 0 . . . αr −XR
0 0 . . . 0 0 0 . . . 0 −R

The left matrix is Dr and the right matrix has been obtained by reverting
its last q − r columns. So the determinant of the latter matrix is proportional
to the determinant of the former with factor εq−r. On the other hand, the de-
terminant of the right matrix is equal to the determinant of Dj−1 multiplied by
(bqαr)

q−r−1. Combining the different equalities, we obtain that: sResr(P,Q) =

εq−r(
tq−1

sq
)q−r−1sResq−1(P,Q) and consequently sr = tr = εq−r

tq−rq−1

sq−r−1
q

.

This concludes the proof. ut

Computing sign realizations at roots of a polynomial

Now we consider the special case of A = D, D being a sign-effective subring
of R. The main ingredient for analyzing real roots of a univariate polynomial is
the Cauchy index. We denote by Zer(P) = {z ∈ R | P (z) = 0}, mult(P, z) =
max{n | (X − z)n|P} and Pole(Q/P) = {z ∈ R | mult(Q, z) < mult(P, z)}.
For z in Pole(Q/P), remark that Q/P (w) goes to +∞ or −∞ as w tends to z
on the right (respectively on the left), therefore the sign of Q/P keeps constant
sufficiently close on the right (respectively on the left) of z.

Definition 3.12. Let P,Q ∈ D[X]. Then the Cauchy index of Q/P is defined
by:

Ind(Q/P) = 1
2

∑
z∈Pole(Q/P) sign((Q/P)(z+))− sign((Q/P)(z−))

where sign((Q/P)(z+)) and sign((Q/P)(z−))) denote respectively the sign of the
rational function Q/P at the right and at the left of z.

For z ∈ Pole(Q/P), the value sign((Q/P)(z+))− sign((Q/P)(z−)) in {−2, 0, 2}
depends on the parity of the difference µP − µQ of respective multiplicities of z
as root of P and Q, when µP ≥ µQ (and µQ = 0 if z is not a root of Q).

Example 3.13. Recall polynomials P = αX2− 1 and Q = X +β of example 3.6.
Let us compute the Cauchy index of Q/P for several values of α and β.

– Let P1, Q1 be the above polynomials with α =
√

5 and β =
√
5−7
2 . These

values were obtained by setting X1 to 1+
√
5

2 . The poles of Q1/P1 are z1 =
− 1

4√5
and z2 = 1

4√5
. One can see that X + β remains negative between those

poles. Hence

Ind(Q1/P1) =
1

2
(sign(Q1/P1)(z+1)− sign(Q1/P1)(z−1)

+sign(Q1/P1)(z+2)− sign(Q1/P1)(z−2))

=
1

2
(1− (−1) + (−1)− 1) = 0.

– Let P2, Q2 be the above polynomials with α = 2
√

5−1 and β = 0, which can
be obtained by setting X1 to

√
5. The poles of Q2/P2 are z1 = − 1√

2
√
5−1

and z2 = 1√
2
√
5−1

. Now since Q2 has a root between z1 and z2, hence

Ind(Q2/P2) =
1

2
(sign(Q2/P2)(z+1)− sign(Q2/P2)(z−1)

+sign(Q2/P2)(z+2)− sign(Q2/P2)(z−2))

=
1

2
(1− (−1) + 1− (−1)) = 2.

The Cauchy index can be computed in several ways. First we observe that
we can assume q = deg(Q) < deg(P) = p. Otherwise, let ap be the lead-

ing coefficient of P and compute the Euclidean division of a
2d q−p+1

2 e
p Q by P :

a
2d q−p+1

2 e
p Q = PC + R with deg(R) < deg(P). Then Ind(Q/P) = Ind(R/P).

The multiplication by an even power of ap preserves the signs. Furthermore R is
obtained by multiplications, additions and zero-tests so that it can be performed
in a general domain D as indicated in Algorithm 3.

Algorithm 3: Computing a polynomial positively proportional to
Rem(Q,P)

IntRem(D, Q, q, P, p): a polynomial with its degree
Input: P 6= 0, Q, polynomials in D[X] with respective degrees p, q
Output: a polynomial positively proportional to Rem(Q,P)
Data: i, j, some indices

if q < p then return Q, q
for i from q − p downto 0 do

for j from 0 to p− 1 do Q[i+ j]← P [p]Q[i+ j]− P [j]Q[i+ p]
for j from 0 to i− 1 do Q[j]← P [p]Q[j]

end
for i from p to q do Q[i]← 0
if q − p mod 2 = 0 then

for j from 0 to p− 1 do Q[j]← P [p]Q[j]
end
return Q, Degree(D, Q)

Here we use again the subresultants. Let s = (sp, . . . , s0) be a list of reals
such that sp 6= 0. Define s′ as the shortest list such that s = (sp, 0, . . . , 0) · s′.
Then we inductively define:

PmV (s) =

0 if s′ = ∅
PmV (s′) + εp−qsign(spsq) if s′ = (sq, . . . , s0) and p− q is odd
PmV (s′) otherwise

Here acronym PmV means (generalized) permanence minus variations and as
can be observed from the definition is related to the sign variations of the se-
quence s. An immediate property of the PmV is the following one. Let xp, . . . , x0
be such that sign(xp) = · · · = sign(x0) 6= 0, then PmV (xpsp, . . . , x0s0) =
PmV (sp, . . . , s0).

Our approach consists in computing the PmV applied on subresultants.

Notations. If p = deg(P) > q = deg(Q) ≥ 0, we denote by sRes the tuple
(sResp, . . . , sRes0).

Example 3.14. For the polynomials of example 3.13, we have sRes(P,Q) =
(α, 1,−αβ2 + 1).

– In the first case, sRes(P1, Q1) = (
√

5, 1, 37−27
√
5

2). Then

PmV (sRes(P1, Q1)) = PmV

(
1,

37− 27
√

5

2

)
+ sign(

√
5)

= PmV

(
37− 27

√
5

2

)
+ sign

(
37− 27

√
5

2

)
+ sign(

√
5)

= 0 + sign

(
37− 27

√
5

2

)
+ sign(

√
5) = 0 + (−1) + 1 = 0.

– In the second case, sRes(P2, Q2) = (2
√

5− 1, 1, 0). Then

PmV (sRes(P2, Q2)) = PmV (1, 1) + sign(2
√

5− 1)

= PmV (1) + sign(1) + sign(2
√

5− 1)

= 0 + 1 + 1 = 2.

Theorem 3.15. Let P,Q ∈ D[X] with p = deg(P) > q = deg(Q). Then:
PmV (sRes(P,Q)) = Ind(Q/P)

Proof. Let P =
∑
i≤p aiX

i, Q =
∑
i≤q biX

i and let R be the remainder of the
euclidean division of P by Q: P = QC +R. We consider two cases, according to
whether R = 0 or not.

If R = 0 then Q/P = 1/C with ap/bq the leading coefficient of C denoted
by cp−q, hence sign(cp−q) = sign(apbq). Observe first that the sign of 1/C is
unchanged between two consecutive poles. So the Cauchy index of 1/C will be
half the sign of C at +∞ minus the sign of C at −∞. If p − q is even then
C(x) will go to the same sign when x goes either to +∞ or −∞ entailing that
Ind(Q/P) = 0. Otherwise it will go to opposite signs with the sign at +∞ being
sign(apbq), thus entailing that Ind(Q/P) = sign(apbq).

On the other hand, sResp(P,Q) = ap, sResj(P,Q) = 0 for q < j < p and
sResq(P,Q) = εp−qb

p−q
q from Remark 3.5. By Proposition 3.7, sResj(P,Q) = 0

for j < q. When p − q is even, PmV (sRes(P,Q)) = 0 and when p − q is odd,
PmV (sRes(P,Q)) = εp−qsign(apεp−qb

p−q
q) = sign(apbq).

When R 6= 0, we claim that (1) Ind(Q/P) = Ind(−R/Q)+sign(apbq) when p−q
is odd and Ind(Q/P) = Ind(−R/Q) otherwise and (2) PmV (sRes(P,Q)) =
PmV (sRes(Q,−R)) + sign(apbq) when p− q is odd and PmV (sRes(P,Q)) =
PmV (sRes(Q,−R)) otherwise. This will imply the theorem by induction on the
degree of P .

Let G be the gcd of P and Q and write P = P1G, Q = Q1G and R = R1G.
Obviously Ind(Q/P) = Ind(Q1/P1) and Ind(P/Q) = Ind(P1/Q1). In addition
the signs of PQ(x) and P1Q1(x) coincide on every point which is not a root of
PQ. Since the roots of P1 and Q1 are distinct:

1

2
(sign(PQ(+∞))−sign(PQ(−∞))) =

1

2
(sign(P1Q1(+∞))−sign(P1Q1(−∞)))

=
1

2

∑
z∈Zer(P1Q1)

sign((P1Q1)(z+))− sign((P1Q1)(z−))

=
1

2

∑
z∈Zer(P1)

sign((Q1/P1)(z+))− sign((Q1/P1)(z−))

+
1

2

∑
z∈Zer(Q1)

sign((P1/Q1)(z+))− sign((P1/Q1)(z−))

= Ind(Q1/P1)+Ind(P1/Q1) = Ind(Q/P)+Ind(P/Q) = Ind(Q/P)+Ind(R/Q).

Since 1
2 (sign(PQ(∞))− sign(PQ(−∞))) is null when p− q is even and equal to

sign(apbq) otherwise we obtain the first claim.

We recall Equation 1 where r is the degree of R:

∀j < q − 1 sResPj(P,Q) = εp−qb
p−r
q sResPj(Q,−R)

and Equation 4:
sResPq−1(P,Q) = −εp−qbp−q+1

q R.

Case 1: q − 1 > r.

Pmv(sRes(P,Q)) =

PmV (ap, 0, . . . , 0, εp−qb
p−q
q , 0, . . . , 0, bp−rq εp−qsResr(Q,−R), . . . , bp−rq εp−qsRes0(Q,−R))

Case 1.1: q > r − 1 and p− q is even.
Pmv(sRes(P,Q)) =

PmV (εp−qb
p−q
q , 0, . . . , 0, bp−rq εp−qsResr(Q,−R), . . . , bp−rq εp−qsRes0(Q,−R))

= PmV (bp−qq , 0, . . . , 0, bp−rq sResr(Q,−R), . . . , bp−rq sRes0(Q,−R))

= PmV (1, 0, . . . , 0, bq−rq sResr(Q,−R), . . . , bq−rq sRes0(Q,−R))

= PmV (bq−rq , 0, . . . , 0, sResr(Q,−R), . . . , sRes0(Q,−R))

Case 1.1.1: q > r − 1 and p− q is even and q − r is even.
= PmV (sResr(Q,−R), . . . , sRes0(Q,−R)) = PmV (sRes(Q,−R))

Case 1.1.2: q > r − 1 and p− q is even and q − r is odd.
= PmV (bq, 0, . . . , 0, sResr(Q,−R), . . . , sRes0(Q,−R)) = PmV (sRes(Q,−R))

Case 1.2: q > r − 1 and p− q is odd.
Pmv(sRes(P,Q))

= PmV (εp−qb
p−q
q , 0, . . . , 0, bp−rq εp−qsResr(Q,−R), . . . , bp−rq εp−qsRes0(Q,−R))

+εp−qsign(apεp−qb
p−q
q)

= PmV (bp−qq , 0, . . . , 0, bp−rq sResr(Q,−R), . . . , bp−rq sRes0(Q,−R)) + sign(apbq)

= PmV (bq−rq , 0, . . . , 0, sResr(Q,−R), . . . , sRes0(Q,−R)) + sign(apbq)

where we conclude as in subcases 1.1.1 and 1.1.2.

Case 2: q − 1 = r.

In this case using Equation 4, sResq−1(P,Q) = −εp−qb− qp−q+1cr = εp−qb
p−r
q (−c−r)

where cr is the leading coefficient of R

So Pmv(sRes(P,Q))

= PmV (ap, 0, . . . , 0, εp−qb
p−q
q , bp−rq εp−qsResq−1(Q,−R), . . . , bp−rq εp−qsRes0(Q,−R))

And we conclude as in case 1.

ut

Algorithm 4 describes how to compute the PmV and so the Cauchy index of
two polynomials. Now let us introduce the Tarski query.

Algorithm 4: Computing the generalized permanences minus variations

PmVPol(A, P, p,Q, q): an integer
Input: P,Q, polynomials A[X] of degree p and q with q < p
Output: PmV (sResp(P,Q), . . . , sRes0(P,Q))
Data: j an index, sp, . . . , s0 a sequence of signs
Data: sReS(P,Q) a sequence of items of A
if q = −∞ then return 0
// consistently with Cauchy index definition

sRes(P,Q)← SubResultants(A, P, p,Q, q)
// The subresultants computation depends on A
// since Algorithm 2 has an additional assumption.

for j from 0 to p do sj ← Sign(A, sResj(P,Q))
return PmV (sp, . . . , s0) // by applying the definition

Definition 3.16 (Tarski query). Let P,Q ∈ D[X]. Then:

TaQ(Q,P) =
∑

z∈Zer(P)

sign(Q(z)).

The Tarski query is closely related to the Cauchy index as established by the
next proposition.

Proposition 3.17. Let P,Q ∈ D[X]. Then:

TaQ(Q,P) = Ind(P ′Q/P).

Proof. Let z be a root of P with multiplicity µ. Then P ′Q/P = Q(µ
X−z+R) with

R a rational function with no pole at z. If Q(z) = 0 then P ′Q/P has no pole
in z. Otherwise sign((P ′Q/P)(z+)) = sign(Q(z)) and sign((P ′Q/P)(z−)) =
−sign(Q(z)). The assertion of the proposition follows. ut

Example 3.18. – For P1 =
√

5X2+1 andQ1 = X+
√
5−7
2 , we have P ′1 = 2

√
5X.

The sign of P ′1Q1 around the poles of P ′1Q1/P1 is constant: positive around z1
and negative around z2. Hence Ind(P ′1Q1/P1) = 1

2 (−1−1+(−1)−1) = −2.
On the other hand, since the sign of Q1 is negative at both z1 and z2,
TaQ(Q1, P1) = −1 + (−1) = −2.

– For P2 = (2
√

5 − 1)X2 − 1 and Q2 = X, we have P ′2 = (4
√

5 − 2)X. The
sign of P ′2Q2 is always non-negative, hence it is so at the poles of P ′2Q2/P2,
where it is non-zero. Hence Ind(P ′2Q2/P2) = 1

2 (−1−1 + 1− (−1)) = 0 while
Q2 has the same sign as the roots of P2, so TaQ(Q2, P2) = −1 + 1 = 0.

In fact the Tarski question is an auxiliary value. The values we are really
interested in are the following counters:

– nbP (Q)[−1] = |{z ∈ Zer(P) | Q(z) < 0}|;
– nbP (Q)[0] = |{z ∈ Zer(P) | Q(z) = 0}|.

– nbP (Q)[1] = |{z ∈ Zer(P) | Q(z) > 0}|;

The following lemma whose proof is obvious is the key for computing such
counters.

Lemma 3.19. The Tarski queries and root counters are related by:

– TaQ(1, P) = nbP (Q)[−1] + nbP (Q)[0] + nbP (Q)[1];
– TaQ(Q,P) = −nbP (Q)[−1] + nbP (Q)[1];
– TaQ(Q2, P) = nbP (Q)[−1] + nbP (Q)[1].

Example 3.20. We previously computed TaQ(Q1, P1) = −2 (see Example 3.18).
The value TaQ(1, P1), actually computed through Ind(P ′1/P1) yields the number
of roots of P1, which is 2. Finally, computing TaQ(Q2

1, P1) can also be done
through the Cauchy index, and yields the number of roots of P1 that are not
roots of Q1, in this case also 2.

As a result, solving the system induced by the above lemma, there are two
roots of P1 where Q1 is strictly negative, and no root of P1 where Q1 is positive
or null. The polynomial Q1 has degree 1, this shows that both roots of P1 are
strictly smaller than the (only) root of Q1.

Thus defining the invertible matrix M1 and vector TaQP (Q) by:

M1 =

 1 1 1
−1 0 1
1 0 1

TaQP (Q) =

TaQP (Q)[0]
TaQP (Q)[1]
TaQP (Q)[2]

 =

TaQ(Q0, P)
TaQ(Q1, P)
TaQ(Q2, P)

we obtain:

Proposition 3.21.
TaQP (Q) = M1 · nbP (Q)

As we are interested in determining the simultaneous signs of polynomials
evaluated on the roots of another polynomial we generalize mappings nbP and
TaQP to a sequence of polynomials.

Definition 3.22 (Generalized counters and Tarski queries). Let P ∈
D[X] and Q = (Q1, . . . , Qm) be a finite sequence of D[X]. Then:
nbP (Q) is an integer vector whose support is {−1, 0, 1}{1,...,m} such that:

nbP (Q)[i1, . . . , im] = |{z ∈ Zer(P) | ∀j ≤ m sign(Qj(z)) = ij}|

TaQP (Q) is an integer vector whose support is {0, 1, 2}{1,...,m} such that:

TaQP (Q)[i1, . . . , im] = TaQ(Qi11 · · ·Qimm)

The tensor product of two matrices A of dimension ma × na and B of
dimension mb × nb is the matrix A ⊗ B of dimension mamb × nanb defined
by: A ⊗ B[(ia, ib), (ja, jb)] = A[ia, ja]B[ib, jb]. We inductively define for t > 1,
Mt = M1 ⊗Mt−1.

Proposition 3.23. Let P ∈ D[X] and Q = (Q1, . . . , Qm) a finite sequence of
D[X]. Then:

TaQP (Q) = Mm · nbP (Q).

Proof. Observe that both TaQP (Q) and nbP (Q) only depend on Zer(P). Thus
w.l.o.g we assume that P =

∏
iX − zi with all zi distinct. In this case,

TaQP (Q) =
∑
i

TaQX−zi(Q) and nbP (Q) =
∑
i

nbX−zi(Q).

So we are left with the case P = X − z. For all (i1, . . . , im),

TaQP (Q)[i1, . . . , im] = TaQP (Qi11 · · ·Qimm)

= sign(Qi11 (z) · · ·Qimm (z))

=
∏
j

sign(Q
ij
j (z)) =

∏
j

TaQP (Q
ij
j)

Therefore by definition of tensor product,
TaQP (Q) = TaQP (Q1)⊗ · · · ⊗TaQP (Qm).
On the other hand, for all (i1, . . . , im), nbP (Q)[i1, . . . , im] = 1∧

j sign(Qj(z))=ij

=
∏
j 1sign(Qj(z))=ij =

∏
j nbP (Qj)[ij]. Therefore,

nbP (Q) = nbP (Q1)⊗ · · · ⊗ nbP (Qm).
So TaQP (Q) = TaQP (Q1)⊗ · · · ⊗TaQP (Qm)
= M1 · nbP (Q1)⊗ · · · ⊗M1 · nbP (Qm) using Proposition 3.21
= (M1 ⊗ · · · ⊗M1) · (nbP (Q1) ⊗ · · · ⊗ nbP (Qm)) using a property of tensor
product
= Mm · nbP (Q).

ut

Using elementary properties of the tensorial product, one gets the following
corollary.

Corollary 3.24. Let P ∈ D[X] and Q = (Q1, . . . , Qm) a finite sequence of
D[X]. Then:

nbP (Q) = (Mm)−1 ·TaQP (Q) =
(
(M1)−1 ⊗ · · · ⊗ (M1)−1

)
·TaQP (Q).

While the previous corollary provides a way to compute the number of zeroes
of P per sign realization at family Q, the procedure is highly inefficient w.r.t
m. Indeed Mm has size 3m × 3m while the values and the size of the support of
vector nbP (Q) remain bounded by the number of zeroes of P . So in the next
paragraphs, we refine the procedure by iteratively computing nbP (Qi, . . . , Qm)
by decreasing values of i and using the intermediate result to reduce the size of
the matrix to be inverted at the next computation step.

Definition 3.25. Let m be an integer, Σ ⊆ {−1, 0, 1}m and A ⊆ {0, 1, 2}m.
Then A is adapted to Σ if the (sub)matrix Mm[A,Σ] is invertible.

Since Mm is invertible any Σ admits some A. However we need a way to
efficiently compute such an A.

Definition 3.26. Let Σ ⊆ {−1, 0, 1}m. Then A(Σ) is inductively defined by:

– If m = 1 then:
1. When |Σ| = 1, A(Σ) = {0}
2. When |Σ| = 2, A(Σ) = {0, 1}
3. When |Σ| = 3, A(Σ) = {0, 1, 2}

– Let Σ ⊆ {−1, 0, 1}m+1.
For k ∈ {1, 2, 3}, define Σk = {σ ∈ {−1, 0, 1}m | |{(i, σ) ∈ Σ}| ≥ k}.
Then A(Σ) = {0} ×A(Σ1) ∪ {1} ×A(Σ2) ∪ {2} ×A(Σ3).

Observe that Σ3 ⊆ Σ2 ⊆ Σ1 and that |Σ3|+ |Σ2|+ |Σ1| = |Σ|.

Proposition 3.27. Let Σ ⊆ {−1, 0, 1}m. Then A(Σ) is adapted to Σ.

Proof. The base case m = 1 is established by a straightforward examination of
M1. Assume that the result holds for m and consider Σ ⊆ {−1, 0, 1}m+1. For
σ ∈ Σ1, we denote by Cσ the column of matrix Mm[{0, 1, 2}m, Σ1] indexed by
σ. Then columns of matrix Mm+1[{0, 1, 2}m+1, Σ] are:

- C(−1,σ) =

 1
−1
1

⊗ Cσ =

 Cσ
−Cσ
Cσ

 if (−1, σ) ∈ Σ,

- C(0,σ) =

1
0
0

⊗ Cσ =

Cσ
0
0

 if (0, σ) ∈ Σ,

- C(1,σ) =

1
1
1

⊗ Cσ =

Cσ
Cσ
Cσ

 if (1, σ) ∈ Σ.

For σ ∈ Σ1, we pick a minimal kσ,1 such that (kσ,1, σ) ∈ Σ. For σ ∈ Σ2,
we pick a minimal kσ,2 6= kσ,1 such that (kσ,2, σ) ∈ Σ. For σ ∈ Σ3, we pick
the unique 1 = kσ,3 /∈ {kσ,1, kσ,2} such that (kσ,3, σ) ∈ Σ. Let us reorder the
columns of matrix Mm+1[{0, 1, 2}m+1, Σ] as follows. The first |Σ1| columns are
those indexed by all (kσ,1, σ) ∈ Σ. The next |Σ2| columns are those indexed by
all (kσ,2, σ) ∈ Σ. The last |Σ3| columns are those indexed by all (kσ,3, σ) ∈ Σ.
We then perform on this matrix some columns operations that let the linear
independence status of rows unchanged:

– when kσ,1 = −1 and kσ,2 = 0 then C0,σ ← C0,σ − C−1,σ so that

C0,σ =

 0
Cσ
−Cσ

.

– when kσ,1 = −1 and kσ,2 = 1 then C1,σ ← 1
2 (C1,σ − C−1,σ) so that

C1,σ =

 0
Cσ
0

.

– when kσ,1 = 0 and kσ,2 = 1 then C1,σ ← C1,σ − C−1,σ so that

C1,σ =

 0
Cσ
Cσ

.

– when kσ,3 is defined (and so equal to 1) then C1,σ ← 1
2 (C1,σ−2C0,σ+C−1,σ)

so that

C1,σ =

 0
0
Cσ

.

The resulting matrix has a triangular form :Mm[{0, 1, 2}m, Σ1] 0 0
∗ Mm[{0, 1, 2}m, Σ2] 0
∗ ∗ Mm[{0, 1, 2}m, Σ3]

Due to this triangular form, the first |Σ1| + |Σ2| + |Σ3| independent rows of
Mm+1[{0, 1, 2}m+1, Σ] are the first |Σ1| rows of the first diagonal block followed
by the first |Σ2| rows of the second diagonal block and the first |Σ3| rows of the
third diagonal block. ut

Computing inductively A(Σ) seems to require three “recursive calls”. How-
ever observing that Σ3 ⊆ Σ2 ⊆ Σ1 and using the next proposition we will obtain
an efficient computation.

Proposition 3.28. Let Σ′ ⊆ Σ ⊆ {−1, 0, 1}m. Then A(Σ′) is obtained by ex-
tracting the first |Σ′| linearly independent rows of matrix Mm[A(Σ), Σ′].

Proof. We proceed by induction on m. The base case m = 1 is an immediate
consequence of the definition of A(Σ).

Assume that result holds for m and consider Σ′ ⊆ Σ ⊆ {−1, 0, 1}m+1. Define as
in Definition 3.26, Σ′1, Σ

′
2 and Σ′3. Observe that for all i, Σ′i ⊆ Σi. Consider ma-

trix Mm+1[{−1, 0, 1}m+1, Σ′]. After performing the same linear transformations
on the columns as those of the previous proof, we obtain the following matrix:Mm[{0, 1, 2}m, Σ′1] 0 0

∗ Mm[{0, 1, 2}m, Σ′2] 0
∗ ∗ Mm[{0, 1, 2}m, Σ′3]

Thus the first maximal set of independent rows of this matrix will be obtained
by the first maximal sets of independent rows in the three diagonal blocks.
Applying the induction hypothesis, this corresponds to the first maximal set of
independent rows of the following matrix:Mm[A(Σ1), Σ′1] 0 0

∗ Mm[A(Σ2), Σ′2] 0
∗ ∗ Mm[A(Σ3), Σ′3]

which (by the inverse linear transformations) is equivalent to looking for the first
|Σ′| linearly independent rows of matrix Mm[A(Σ), Σ′].

ut
Algorithm 5 implements the whole method developped above.

Algorithm 5: Computing sign realizations of family Q at roots of P

SignRealization(D, P, p,Q): a non null vector with its support
Input: P , a non null polynomial in D[X] with degree p
Input: Q = {(Q1, q1), . . . , (Qm, qm)}, a family of non null polynomials in D[X]

Output: the vector counting the sign realizations for Q by the roots of P

Data: e1, . . . , em degrees in {0, 1, 2}
Data: TaQ a vector indexed by vectors of degrees
Data: nb a vector indexed by vectors of signs
Data: R, a polynomial in D[X], r a degree
Data: M, an integer matrix
Data: extA,A,A1, A2, A3, sets of vectors of degrees
Data: extΣ,Σ,Σ1, Σ2, Σ3, sets of vectors of signs

for em in {0, 1, 2} do
R← P ′Qemm ; (R, r)← IntRem(D, R, emqm + p− 1, P, p)
// see Algorithm 3 for IntRem

TaQ[em]← PmVPol(D, P, p,R, r)
end

nb←M−1
1 ·TaQ

if nb = 0 then return ∅,− // P has no roots
Σ ← supp(nb)
if |Σ| = 1 then A← {0}
else if |Σ| = 2 then A← {0, 1}
else A← {0, 1, 2}
nb← nb|Σ ; M←M1|A×Σ
for i from m− 1 downto 1 do

extΣ ← {−1, 0, 1} ×Σ; extA← {0, 1, 2} ×A; extM←M1 ⊗M
for (ei, . . . , em) in extA do

R← P ′
∏
i≤j≤mQ

ej
j ; (R, r)← IntRem(D, R,

∑
i≤j≤m qjej , P, p)

TaQ[(ei, . . . , em)]← PmVPol(D, P, p,R, r)
end
nb← extM−1 ·TaQ
Σ1 ← Σ
Σ2 ← {σ ∈ Σ | |{(i, σ) ∈ supp(nb)}| ≥ 2};
Σ3 ← {σ ∈ Σ | |{(i, σ) ∈ supp(nb)}| ≥ 3}
A1 ← A
A2 ← the indexes of the first |Σ2| linearly independent rows of M|A×Σ2

A3 ← the indexes of the first |Σ3| linearly independent rows of M|A2×Σ3

Σ ← supp(nb)
A← {0} ×A1 ∪ {1} ×A2 ∪ {2} ×A3

nb← nb|Σ ; M← extM|A×Σ
end
return Σ,nb

Defining and computing encodings for roots

Definition 3.29 (Thom-encoding). Let P ∈ D[X] with deg(P) = p > 0 and
x ∈ R. The P -encoding of x is the vector:

σP (x) = (sign(P (x)), sign(P ′(x)), . . . , sign(P (p)(x))).

A P -code is a vector of signs indexed by {0, . . . , deg(P)}.

Proposition 3.30. Let P ∈ D[X] and σ be a P -code. Then:

– σ−1P (σ) is either empty, a point or an open interval.
– Let x 6= x′ be two roots of P . Then σP (x) 6= σP (x′).
– Let x, x′ with σP (x) 6= σP (x′). Then x < x′ if and only if, denoting k the

largest index with σP (x)[k] 6= σP (x′)[k]:
1. either σP (x)[k + 1] = 1 and σP (x)[k] < σP (x′)[k];
2. or σP (x)[k + 1] = −1 and σP (x)[k] > σP (x′)[k].

Proof. We proceed by induction on the degree of P . The case deg(P) = 1 is
obvious. Assume that it is valid for all P such that deg(P) ≤ i. Consider P
with deg(P) = i+ 1. Apply the inductive hypothesis on σ restricted to its i last
components, denoted σ′, and on P ′. When σ−1P ′ (σ

′) is empty or a point then the
result is immediate. When σ−1P ′ (σ

′) is an interval, then σ[1] 6= 0. Thus P (x) is a
strictly monotonous function on the interval which meets 0 at most once. This
implies the result.

The second assertion is a direct consequence of the first assertion.

Considering the third assertion, σP (k+1)(x) = σP (k+1)(x′). Since x 6= x′, the sec-
ond assertion implies that σP (k+1)(x) 6= 0.
Since P (k+1) is constant in [min(x, x′),max(x, x′)], this implies the third asser-
tion.

ut

Algorithm 6: Computing the Q-encoding of roots of P

RootCoding(D, P, p,Q, q): a list
Input: P,Q, non null polynomials in D[X] with respective degrees p, q
Output: a list of the Q-encoding of roots of P
Data: (s0, . . . , sq) a vector of signs
Data: nb a vector indexed by vectors of signs
Data: Σ a set of vectors of signs

(Σ,nb)← SignRealization(D, P, p, {(Q(0), q), . . . , (Q(q), 0)})
Order the Q-encodings (s0, . . . , sq) of the support Σ of nb
using Proposition 3.30 and duplicating them w.r.t. nb[(s0, . . . , sq)]
return this list of encodings

Example 3.31. Let us consider the P1-encoding of reals for P1 =
√

5X2−1. First
remark that the second derivative is always positive, hence the third component
of the P1-encoding of any real number is always +1. This encoding divides the
real line into seven intervals:

•] −∞,− 1
4√5

[is encoded into (+1,−1,+1), since for x in this interval, P (x)

is positive but decreasing.
• The first root [− 1

4√5
,− 1

4√5
] is encoded into (0,−1,+1).

•]− 1
4√5
, 0[corresponds to (−1,−1,+1).

• The point [0, 0] is encoded by (−1, 0,+1).
•]0, 1

4√5
[corresponds to (−1,+1,+1).

• The second root [1
4√5
, 1

4√5
] is encoded into (0,+1,+1).

•] 1
4√5
,+∞[is encoded into (+1,+1,+1).

As a consequence of our previous developments, we are now in position to
perform two main computations in D[X]: (1) determining the number of roots
of a polynomial P and computing their P -encoding, and (2) computing the Q-
encoding of roots of a polynomial P . Both results are obtained by Algorithm 6.
For the first goal it is sufficient to call PmVPol(P, P ′) and if the result is non null
to call RootCoding(P, P).

3.2 Triangular systems

While we only stated the effective properties of (a representation of) D in the
previous parts, we now consider specific representations of real subrings of the
form D = Q[α1, . . . , α`] where the αi’s are real algebraic numbers. Such represen-
tations are called triangular systems and we will show (in Proposition 3.34) that
they are sign-effective. In the sequel, the leading coefficient of P =

∑
i≤p aiX

i

in D[X] with deg(P) = p is denoted lcof(P) = ap. Note that the leading
coefficient of a polynomial P in Q[X1, . . . , Xi−1][Xi] is itself a polynomial in
Q[X1, . . . , Xi−1].

Definition 3.32 (Triangular system). Let ((ni, Pi, pi))
`
i=1 such that for all i,

ni is a positive integer and Pi ∈ Q[X1, . . . , Xi−1][Xi] with deg(Pi) = pi > 0. Let
(α1, . . . , α`) be a sequence of reals. Then ((ni, Pi, pi))

`
i=1 is a triangular system

of level ` for (α1, . . . , α`) if:

– α1 is the nth1 root of P1 whose degree is p1;
– For 1 ≤ i < `, Pi+1(α1, . . . , αi) has degree pi and αi+1 is the nthi+1 root of

polynomial Pi+1(α1, . . . , αi) ∈ Q[α1, . . . , αi][Xi+1].

By convention, a triangular system of level 0 is the empty sequence. Observe
that a priori we do not know how to decide whether ((ni, Pi, pi))

`
i=1 is a triangu-

lar system for some sequence of reals. Given a triangular system ((ni, Pi, pi))
`
i=1,

a representation of an item of Q[α1, . . . , α`] is nothing but some polynomial
P ∈ Q[X1, . . . , Xl] denoting P (α1, . . . , α`).

Algorithm 7: Computing PmV in triangular systems

PmVPol(`, T , P, p,Q, q): an integer
Input: `, the current level
Input: T = {(ni, Pi, pi)}`i=1 a triangular system for (α1, . . . , α`)
Input: P,Q, polynomials Q[X1, . . . , X`][X`+1] of degree p and q with q < p

such that P (α1, . . . , α`) 6= 0 and Q(α1, . . . , α`) 6= 0 when q ≥ 0
Output: PmV (sResp(P (α1, . . . , α`), Q(α1, . . . , α`)),

. . . , sRes0(P (α1, . . . , α`), Q(α1, . . . , α`)))
Data: j an index, sp, . . . , s0 a sequence of signs

if q = −∞ then return 0 // consistently with Cauchy index definition
sRes(P,Q)← SubResultants(Q[X1, . . . , X`], P, p,Q, q) // using Algorithm 2

for j from 0 to p do sj ← Sign(`, T , sResj(P,Q))
return PmV (sp, . . . , s0) // by applying the definition

Example 3.33. The system ((2, X2
1 − X1 − 1, 2), (1, (2X1 − 1)X2

2 − 1, 2)) is a

triangular system for the reals (1+
√
5

2 ,− 1
4√5

). Indeed, polynomial X2
1 − X1 − 1

has two roots 1−
√
5

2 < 1+
√
5

2 . In addition, when X1 = 1+
√
5

2 , polynomial (2X1 −
1)X2

2 − 1 becomes P1 =
√

5X2
2 − 1, with two roots − 1

4√5
< 1

4√5
.

Proposition 3.34. Let ` ≥ 0 and ((ni, Pi, pi))
`
i=1 such that for all i, ni is a

positive integer and Pi ∈ Q[X1, . . . , Xi−1][Xi] with deg(Pi) = pi > 0. Then
we can decide whether ((ni, Pi, pi))

`
i=1 is a triangular system for some {αi}`i=1.

Furthermore with this representation, the rings Q[α1, . . . , α`] and Z[α1, . . . , α`]
are sign-effective.

Proof. The proof is done by induction on `. The base case ` = 0 corresponds to
the case where the ring is Q or Z and so there is nothing to prove.

For the inductive case, in order to check whether ((ni, Pi, pi))
`+1
i=1 is a triangular

system, we first check that ((ni, Pi, pi))
`
i=1 is a triangular system. In the positive

case Q[α1, . . . , α`] is sign-effective so that we can check whether P`+1(α1, . . . , α`)
has degree p`+1 and compute the number of roots of Pl+1(α1, . . . , α`) by using
PmvPol(l, T , Pl+1, pl+1, P

′
`+1, p`+1 − 1) in Q[α1, . . . , α`]. We have rewritten the

corresponding algorithm (see Algorithm 7) in order to exploit the representation
provided by Algorithm 2.

Assume that ((ni, Pi, pi))
`+1
i=1 is a triangular system. Again using induction hy-

pothesis Q[α1, . . . , α`] is sign-effective. So in addition to sign determination in
Q[α1, . . . , α`], we are also able to compute Degree and RootCoding in this ring.
Thus Algorithm 8 (applied at level l+ 1) determines the sign of P (α1, . . . , α`+1)
by computing the degree of P in Q[α1, . . . , α`] and then determining the P -
encodings of roots of P`+1 in Q[α1, . . . , α`] and returning the sign of P corre-
sponding to the nth`+1 root.

ut

The sign determination is then obtained by a set of mutually recursive func-
tions. In order to clarify their behavior we have represented their calls in Figure 4.

RootCoding

DegreeIntRem

Sign

SignRealizationPmVPol

−1

−1

Fig. 4. Links between function calls with level ` changing.

Algorithm 8: Determining the sign in a triangular system.

Sign(`, T , P): a sign
Input: P , a polynomial in Q[X1, . . . , X`] = Q[X1, . . . , X`−1][X`]
Input: `, the current level
Input: T = {(ni, Pi, pi)}`i=1 a triangular system for (α1, . . . , α`)
Output: the sign of P (α1, . . . , α`)
Data: Σ a list of sign vectors

if ` = 0 then return Sign(Q, P) // P is a rational
p← Degree(`− 1, T↓`−1, P)
// T↓`−1 is the restriction of T at level `− 1
if p = −∞ then return 0
Σ = RootCoding(`− 1, T↓`−1, P`, p`, P, p)

Let v be the nth` item of Σ
return v[0]

3.3 Building a cylindrical algebraic decomposition

We have the following result [13]:

Theorem 3.35. For every finite family of sets of polynomials P = {Pi}i≤n such
that Pi ⊆ Q[X1, . . . , Xi], one can build a cylindrical algebraic decomposition of
Rn adapted to P in 2EXPTIME.

We devote the rest of the subsection to the proof of this theorem. The al-
gorithm that builds the cylindrical algebraic decomposition of Rn proceeds in
two steps: the elimination step and the lifting step. The elimination step en-
sures the existence of a cylindrical algebraic decomposition while enlarging the
set of polynomials of polynomials Pi. Once P has been completed, the lifting
step provides an effective way to compute the cylindrical algebraic decomposi-
tion. Accordingly, one considers the coefficients of polynomials in R during the
elimination step and restrict them to belong to Q during the lifting step.

Elimination step. The following lemma establishes that the roots of a polyno-
mial are “continuous” w.r.t. the coefficients of the polynomial when the degree
of the polynomial remains constant.

Lemma 3.36. Let P ∈ C[X1, . . . , Xk−1][Xk], S ⊆ Ck−1 such that deg(P (x)) is
constant over x ∈ S. Let a ∈ S such that z1, . . . , zm are the roots of P (a) with
multiplicities µ1, . . . , µm, respectively. Let 0 < r < mini 6=j(|zi − zj |/2). Then
there exists an open neighborhood U of a such that for x ∈ U , P (x) has exactly
µi roots counted with multiplicities in the disc D(zi, r) for all i ≤ m.

Proof. Since the degree of P is constant we can divide the coefficients by the
leading coefficient, obtaining a monic polynomial with same roots and multiplic-
ities and coefficients being rational functions.
Assume that P = Xµ

k . Consider Q = Xµ −
∑
i<µ biX

i with δ = maxi<µ |bi| <
min(1,rµ)

µ . Since δ < 1
µ , any root of Q has a module less than one. Let z be such

a root. Then zµ =
∑
i<µ biz

i. So |zµ| ≤ µδ < rµ which implies |z| < |r|.
Let us consider the mapping from pairs (Q,R) of monic polynomials of degree
respectively q and r to their product ϕ(Q,R) = QR of degree q + r (viewed
as mapping of their coefficients). This mapping is differentiable. It is routine
to check that the Jacobian matrix of this mapping is equal or opposite to the
subresultant Sres0(Q,R) and so it locally admits a differentiable inverse if Q and
R are coprime. Therefore, factoring P = QR such that Q and R are coprime,
there exists some neighborhoods VQ, VR respectively of Q and R, such that
V = ϕ(VQ × VR) is a neighborhood of P .
By iteration, the polynomial P0 = (Xk − z1)µ1 · · · (Xk − zm)µm admits an open
neighborhood V of its coefficients such that every monic polynomial P1 ∈ V
admits a decomposition P1 = Q1 . . . Qm with every Qi of degree µi and whose
roots belong to the disc D(zi, r). Since the discs have no intersection, every disc
contains exactly µi roots counted with multiplicities.
Since the coefficients of P are rational functions of X1, . . . Xk−1 and so continu-
ous, there is a neighborhood U of a that fulfills the conclusion of the lemma. ut

The next proposition establishes that the real roots of a set of polynomials
are “continuous” w.r.t. the coefficients of the polynomials when the degrees of
some appropriate polynomials (including the original ones) remain constant.

Proposition 3.37. Let P1, . . . , Ps ∈ R[X1, . . . , Xk−1][Xk], S ⊆ Rk−1 connected.
Assume that over x ∈ S, for all 1 ≤ i, j ≤ s, Pi(x) is not identically 0,
deg(Pi(x)), deg(gcd(Pi(x), Pj(x)), deg(gcd(Pi(x), P ′i (x)) are both constant.
Then there exist ` (with ` possibly null) continuous functions f1 < · · · < f` from
S to R such that for every x ∈ S, the set of real roots of

∏
j≤s Pj(x) is exactly

{f1(x), . . . , f`(x)}.
Moreover for all i ≤ `, j ≤ s, the multiplicity of the (possible) root fi(x) of Pj(x)
is constant over x ∈ S.

Proof. Let a ∈ S and z1(a), . . . , zm(a) be the roots in C of
∏
j≤s Pi(a) with µji be-

ing the multiplicity of zi(a) for Pj(a). The degree of Rjk(a) = gcd(Pj(a), Pk(a))

is
∑
i≤m min(µji , µ

k
i) and min(µji , µ

k
i) is the (possibly null) multiplicity of zi(a)

for Rjk(a).
Pick r > 0 such that the discs D(zi(a), r) are disjoint. Observe that since
deg(gcd(Pj(x), P ′j(x)) is constant over x ∈ S the number of distinct roots of

Pj(x) is constant over x ∈ S. Let i, j such that µji > 0, applying Lemma 3.36
and the previous observation, there is a neighborhood U of a such that for all
x ∈ U , D(zi, r) contains exactly a root, denoted zji (x), of Pj(x) with multiplicity

µji . Assume there exists k 6= j with µki > 0, since deg(Rjk(x)) is constant over

x ∈ S, zji (x) = zki (x) for all x ∈ U . Otherwise for such an x where the equality
does not hold deg(Rjk(x)) < deg(Rjk(a)). So we can omit the superscript j in

zji (x) (defined when µji > 0).
If zi(a) is real then zi(x) is real otherwise its conjugate would be another root in
D(zi(a), r). If zi(a) is complex, its conjugate being also a root, D(zi(a), r) and
D(zi(a), r) are disjoint and so zi(x) is not real. Hence the number of real roots
of (x) is constant over x ∈ U . As the number of real roots is locally constant
and S is connected then the number of real roots of

∏
j≤s Pj(x) is constant over

x ∈ S, say `.
Let fi(x), for i ≤ l be the function that associates with x the ith real root
of
∏
j≤s Pj(x) in increasing order. Since r could be chosen arbitrarily small, fi

is continuous. As the multiplicity of fi(x) w.r.t. any Pj(x) and Q(x) is locally
constant, it is constant over x ∈ S. ut

The next definition is a basic construction that will be the atomic step of the
elimination stage.

Definition 3.38. Let P =
∑
i≤p aiX

i
k ∈ R[X1, . . . , Xk−1][Xk]. Then lcof(P) =

ap and Tru(P) = {
∑
i≤r aiX

i
k | ∀i > r ai /∈ R∗ ∧ ar 6= 0}.

Let P be a finite subset of R[X1, . . . , Xk−1][Xk]. Then ElimXk(P) is the set
of polynomials of R[X1, . . . , Xk−1] defined as follows. For all P,Q ∈ P, R ∈
Tru(P), T ∈ Tru(Q) with deg(T) ≤ deg(R):

– If lcof(R) does not belong to R then lcof(R) ∈ ElimXk(P);
– If deg(R) ≥ 2 then for all sResj(R,R

′) that are defined and do not belong
to R, sResj(R,R

′) ∈ ElimXk(P);
– for all sResj(R, T) that are defined and do not belong to R, sResj(R, T) ∈
ElimXk(P).

The next lemma establishes the interest of the ElimXk construction.

Lemma 3.39. Let P be a finite set of R[X1, . . . , Xk−1][Xk], S ⊆ Rk−1 a con-
nected set. Assume that S is ElimXk(P)-invariant.

Then there exist ` (with ` posibly null) continuous functions f1 < · · · < f` from
S to R such that for every x ∈ S, the set of real roots of

∏
P∈P∗ P (x) is exactly

{f1(x), . . . , f`(x)} where P∗ is the subset of P consisting of polynomials not
identically null over S.

Moreover for all i ≤ l and for all P ∈ P∗, the multiplicity of the root fi(x) of
P (x) is constant over x ∈ S.

Proof. Let P ∈ P. Since the leading coefficients of Tru(P) belong to ElimXk(P),
the degree of P (x) is constant over x ∈ S.

Let R ∈ Tru(P) be the appropriate polynomial for P (i.e. whose degree is
the degree of P (x) for x ∈ S). Then, by deg(gcd(R,R′)) is determined by the
signs of polynomials of the sequence Sres(R,R′) due to Proposition 3.7. Since all
these polynomials belong to ElimXk(P), the number of distinct complex roots
of deg(gcd(P (x), P ′(x)) is constant over x ∈ S.

Let T ∈ Tru(Q) be the appropriate polynomial of Q for Q ∈ P. Then, by
Proposition 3.7, deg(gcd(R, T)) is determined by the signs of polynomials of
the sequence Sres(R, T). Since all these polynomials belong to ElimXk(P), the
degree of gcd(P (x), Q(x)) is constant over x ∈ S.

The conclusion follows using Proposition 3.37.

ut

We are now in position define the elimination step and to prove its correct-
ness.

Theorem 3.40. Let Q = {Qi}i≤n be a family of finite set of polynomials such
that Qi ⊆ R[X1, . . . , Xi]. Define Pn = Qn and inductively Pi−1 = Qi−1 ∪
ElimXi(Qi) for i > 1. Then there exists a cylindrical algebraic decomposition
adapted to P (and thus to Q).

Proof. Let us prove the existence of a cylindrical algebraic decomposition of Ri
adapted to Pi by induction.

The children of R0 form the partition defined by

(−∞, r1), r1, (r1, r2), . . . , (rm−1, rm), rm, (rm,∞)

where {r1, . . . , rm} is the set of roots of all P ∈ P1 (or R if there is no root). By
construction, the cells of S1 are P1-invariant and open intervals or points.

Assume that we have built our tree up to level i < n. Pick any cell C of level i. C
is ElimXi+1(Pi+1)-invariant since ElimXi+1(Pi+1) ⊆ Pi. Applying Lemma 3.39
yields the children of C.

ut

Complexity of elimination step. Let s = |Q|, d be the maximal total degree of
polynomials of Q, and v the maximal constant appearing in a coefficient of Q.
A straightforward recurrence shows that

– the maximal number of bits of a coefficient of any Pi is O(dn · 3log(n)·
n(n−1)

2 ·
log(v)),

– the maximal total degree of polynomials of all Pi is in O(d3
n

), and

– the total number of polynomials is in O((sd)3
n

).

Example 3.41. Let us build the family P1,P2 of polynomials associated with
the automaton of Fig. 1. We set I1 = X1, I2 = X2, A = X2

1 − X1 − 1, B =
(2X1 − 1)X2

2 − 1 and C = X2 + (X2
1 − 5). We start with P2 = {I2, B,C},

P1 = {I1, A} and add to P1 polynomials computed by ElimX2(P2).

We first add lcof(B) = 2X1 − 1 to P1. Note that we do not add lcof(C)
since it is in Q.

Let us now compute all subresultants of (potentially truncated) polynomials
of P2:

• sRes0(I2, C) =

∣∣∣∣1 0
1 X2

1 − 5

∣∣∣∣ = X2
1 − 5 is added to P1.

• We then add to P1 the polynomial

sRes0(B,C) =

∣∣∣∣∣∣
2X1 − 1 0 −1

0 1 X2
1 − 5

1 X2
1 − 5 0

∣∣∣∣∣∣
= −(2X1 − 1)(X2

1 − 5)2 + 1

= −2X5
1 +X4

1 + 20X3
1 − 10X2

1 − 50X1 + 26

• Remark that sRes0(B, I2) = 1 ∈ Q, hence it is not added to P1. It is also
the case for sRes1(B, I2) and sRes1(B,C).

We then need to compute the subresultants of each polynomial of degree
≥ 2 with its derivative. In our case, that means computing sRes0(B,B′) and
sRes1(B,B′). We have B′ = 2(2X1−1)X2. We obtain sRes1(B,B′) = 2(2X1−1)
that should be added to P1. However, since sRes1(B,B′) = 2lcof(B), their sign
will coincide. For simplicity we will not keep it in P1, although the automatic
procedure does; nonetheless, this would not affect the elimination at lower levels.
Finally, we have

sRes0(B,B′) =

∣∣∣∣∣∣
2X1 − 1 0 −1

0 2(2X1 − 1) 0
2(2X1 − 1) 0 0

∣∣∣∣∣∣ = 4(2X1 − 1)2

which is added to P1. This concludes the elimination phase.

The final sets P1 and P2 are given in Table 1 (page 40).

Algorithm 9: Lifting the cylindrical algebraic decomposition at a point of
level `
Input: P = {P`}`≤k a family of subsets of polynomials obtained by

decomposition
Output: A a tree whose nodes at level ` are sample points of the

decomposition equipped with their sign evaluation for P`
Lifting(`, T): an integer

Input: `, the current level; T = {(ni, Pi, pi)}`i=1 a triangular system for
(α1, . . . , α`) corresponding to a node of A.

Data: L a list of triangular systems equipped with sign vectors, E a triangular
system with a sign vector

L← LinePartition(`, T)
if L = ∅ then
T ′ ← T ∪ {(1, X`+1, 1)}; T ′ · Eval← {(P, Sign(`, T , Lcof(P)) | P ∈ P`+1}
A ← A ∪ (T → T ′); if `+ 1 < k then Lifting(`+ 1, T ′)

else
L← Completing(`, T , L)
for E ∈ L do

Pick some (r, v, P) ∈ E such that r is defined
T ′ ← T ∪ {(r, P, Degree(`, T , P))};
T ′ · Eval← {(Q, v[0]) | Q ∈ P`+1 ∧ ∃(m, v,Q) ∈ E}
A ← A ∪ (T → T ′); if `+ 1 < k then Lifting(`+ 1, T ′)

end

end

Lifting step. We build the cylindrical algebraic decomposition as follows: every
cell C of level ` is represented by a sample point, represented by a triangular
system. In addition, the representation of C includes the evaluation of the sign of
all P ∈ P`. Observe that evaluation of a P ∈ Pj with j < ` is found in its ancestor
cell of level j. The construction is performed by Algorithm 9. An atomic step
of the lifting phase corresponds to build, given a sample point R`, the ordered
list of all sample points of R`+1 representing the cells of the cylinder above
S. It corresponds to a call to Lifting (without the recursive calls). The whole
construction is done by the call Lifting(0, ∅). Lifting first calls LinePartition
in order to get an ordered list of the roots of all P ∈ P`+1. Every real α of this
list is represented by a set of triplets (r, v, P) where P is a polynomial whose
coefficients are algebraic numbers over T (and thus represented by polynomials
in Q[X1, . . . , X`]), v is the P -encoding of α. r may be undefined but when defined
it means that α is the rth root of P . For at least one triplet of the set r is defined
allowing to extend the triangular system T by α. Since one wants to represent
the interval between these roots by sample points, the list is completed by a call
to Completing. After this call either the list is empty (corresponding to the case
of a single child C × R) and this child is represented by α`+1 = 0, first root of
X`+1. The representation of this cell is now enlarged by the evaluation of all
P ∈ P`+1 at this sample point. Otherwise for every item of the list one picks
some arbitrary (r, v, P) with r defined and proceeds as previously to produce all
the children of C.

Algorithm 10 produces the list of roots of all P (α1, . . . , α`) for P ∈ P`+1.
For any such P , it first normalizes it by determining its higher non null coeffi-
cient. Thus R ∈ Tru(P). SL[P] will contain the singletons {(r, v, P)} for every
root of P (α1, . . . , α`). Then the algorithm enlarges these singletons with triplets
{(r′, v′, Q)} for all Q that preceed P in P`+1. All these triplets are obtained
using the lists provided by appropriate calls to RootCoding. Conversely the sets
of the list SL[Q] are enlarged with the triplets related to P . Once all roots have
been produced in SL, it remains to order them and (possibly) merge them. This
can be easily done with the help of their Thom-encoding and it is performed by
a call to OrderedMerge.

Algorithm 11 completes the list of roots by sample points representing the
intervals between the roots. This is done as follows. Given a root α of P and a
root β of Q, such that α and β are consecutive items of the list, there exists a
root f of (PQ)′ such that f ∈]α, β[. Thus the sample point will be an arbitrary
root of (PQ)′ strictly between α and β. If α is the smallest (resp. largest) root
in the list for of some P then the first (resp. last) root of P [X`+1 + 1] (resp.
P [X`+1 − 1]) is α − 1 ∈] − ∞, α[(resp. α + 1 ∈]α,+∞[). In this algorithm E
represents the current item, say β of the list of roots, P some polynomial whose
β is a root and v is its P -encoding. Let α be the previous item of the list (when it
exists). oldP is some polynomial whose α is a root and oldv is its oldP -encoding.
Thus in order to find a root of (P · oldP)′ between α and β, one computes the
P and oldP encoding of the roots of (P · oldP)′.

Algorithm 10: Partitioning the real line at a point of level `.

Input: P = {P`}`≤k a family of subsets of polynomials
LinePartition(`, T): a list
Input: `, the current level
Input: T = {(ni, Pi, pi)}`i=1 a triangular system for (α1, . . . , α`) corresponding

to a node of A whose children have to be computed.
Output: L a list of sample points of the decomposition equipped with their

sign evaluation for P`+1 related to T .
for P ∈ P`+1 do

(R, r)← Normalize(`, T , P)
if r ≤ 0 then SL[P]← ∅
else

SLL← RootCoding(`, T , R, r, R, r)
// Singleton transforms a list of items into a list of

singletons which contain these items. Furthermore it adds

the number of the root of R for subsequent use.

SL[P]← Singleton(SLL)
for Q ∈ P`+1 such that Q ≺ P do

(S, s)← Normalize(`, T , Q)
SLL← RootCoding(`, T , R, r, S, s); EnlargeWith(SL[P], SLL,Q)

end

end
for Q ∈ P`+1 such that Q ≺ P do

if SL[Q] 6= ∅ then
(S, s)← Normalize(`, T , Q)
SLL← RootCoding(`, T , S, s, R, r); EnlargeWith(SL[Q], SLL, P)

end

end

end
L← OrderedMerge(SL)
return L

Algorithm 11: Completing the line partition with samples of intervals.

Input: P = {P`}l≤k a family of subsets of polynomials obtained by
decomposition

Completing(`, T , L): a list
Input: `, the current level
Input: T = {(ni, Pi, pi)}`i=1 a triangular system for (α1, . . . , α`) corresponding

to a node of A whose children have to be computed.
Input: L a list of sample points of the decomposition represented by a

triangular system equipped with their sign evaluation for P`+1 related
to T .

Output: the input list L enriched with of sample points for the intervals before,
between and beyond the original sample points.

for E ∈ L do
Pick some (r, v, P) ∈ E such that r is defined
if E = First(L) then

(R, r)← Normalize(`, T , P (X`+1 + 1));
SLL← RootCoding(`, T , R, r, R, r)
shortL← Singleton(SLL)
for Q ∈ P`+1 do

(S, s)← Normalize(`, T , Q)
SLL← RootCoding(`, T , R, r, S, s); EnlargeWith(shortL, SLL,Q)

end
Insert First(shortL) before E in L

else
(R, r)← Normalize(`, T , (P · oldP)′; SLL← RootCoding(`, T , R, r, R, r)
shortL← Singleton(SLL)
for Q ∈ P`+1 do

(S, s)← Normalize(`, T , Q)
SLL← RootCoding(`, T , R, r, S, s); EnlargeWith(shortL, SLL,Q)

end
Find F in shortL such that ∃(x, vP, P), (y, voldP, oldP) ∈ F
with vP < v and voldP > oldv; Insert F before E in L

end
oldv ← v; oldP ← P

end
Let E be Last(L)
Pick some (r, v, P) ∈ E such that r is defined
(R, r)← Normalize(`, T , P (X`+1 − 1))
SLL← RootCoding(`, T , R, r, R, r); shortL← Singleton(SLL)
for Q ∈ P`+1 do

(S, s)← Normalize(`, T , Q)
SLL← RootCoding(`, T , R, r, S, s); EnlargeWith(shortL, SLL,Q)

end
Insert Last(shortL) after E in L; return L

Example 3.42. We first (by Algorithm 10) compute the line partition of R at level
1 for P1 = {I1, A,D,E, F,G} (see Table 1) obtained previously. This is done by
comparing the P -encodings of roots of Q for all pairs (P,Q) ∈ P2

1 . The result
is (partially) depicted in Fig. 5. Each bullet represents the (relative) position of
a root, given by a triangular system (where the degree of the polynomial is not
represented for clarity). In the table, the line labeled by P gives the P -encodings
of the roots.

I1 = X1

I2 = X2

A = X2
1 −X1 − 1

B = (2X1 − 1)X2
2 − 1

C = X2 +X2
1 − 5

D = 2X1 − 1 (= lcof(B))
E = X2

1 − 5 (= sRes0(I2, C))
F = −2X5

1 +X4
1 + 20X3

1 − 10X2
1 − 50X1 + 26 (= sRes0(B,C))

G = 4(2X1 − 1)2 (= sRes0(B,B′))
Int = −14X6

1 + 18X5
1 + 105X4

1 − 124X3
1 − 180X2

1 + 172X1 + 24 (= (FA)′)

P1 = {I1, A,D,E, F,G} P2 = {I2, B,C}
Table 1. Polynomials used in the cylindrical decomposition.

•
(1, I1)

0
•

(1, A)

1−
√
5

2

•
(1, E)

−
√

5

•

(1, D)
(1, G)

1
2

•
(1, F)

•
(2, A)

1+
√
5

2

•
(2, F)

•
(2, E)

√
5

•
(3, F)

◦

(4, Int)

I1

A

D

E

F

G

(0, 1)

(−1,−1, 1)

(−1, 1)

(−1,−1, 1)

(1, 1,−1, 1, 1,−1)

(1,−1, 1)

(−1, 1) (−1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)

(1,−1, 1) (0,−1, 1) (−1, 0, 1) (−1, 1, 1) (0, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)

...
. . .

Fig. 5. Partition of R according to P1 and Thom encodings. The scale is not accurate.

Example 3.43. We can now complete the line built above by computing sample
points corresponding to intervals between consecutive roots (Algorithm 11). For

instance to compute a sample point at the left of (1, E) = −
√

5, one can choose
−1−

√
5 which is the first root of H = (X+1)2−5 (i.e. E where X is replaced by

X + 1). In order to compute a value between (1, F) and (2, A), we consider the
polynomial Int = (FA)′ = −14X6

1+18X5
1+105X4

1−124X3
1−180X2

1+172X1+24.
Computing the F -encodings of roots of Int gives the number k of roots of Int
smaller than or equal to (1, F). Taking the k + 1th root of Int yields a root
greater than (1, F). The value (k+ 1, Int) is smaller than (2, A) (since one such
root exists). Here, one can show that the appropriate root is the 4th. Hence
the sample point (4, Int) written α1 is added to the line in order to represent
interval](1, F), (2, A)[, as depicted by the empty bullet on Fig. 5. In addition,
for all polynomials P of P1, the P -encoding of (4, Int) is computed: the first
component yields the sign of P in the interval. Namely:

I1(α1) > 0 A(α1) < 0 D(α1) > 0

E(α1) < 0 F (α1) < 0 G(α1) > 0

Remark that this interval corresponds to the one where transition a of Fig. 1 is
fired in the trajectory of Fig. 2.

Sample points (and their encodings) for all intervals should be computed and
added to the line. This is omitted for readability.

Example 3.44. We illustrate the lifting (Algorithm 9) to R2 for the interval rep-
resented by the sample point (4, Int) built above. In this case, one must partition
the real line with roots of polynomials of P2 = {I2, B,C} when X1 = α1. Note
that I1 and A are constants.

In the computation of the P2-encodings, the P1-encodings of α1 are used,
in particular the encodings of polynomials constructed in the elimination phase.
For example, since D(α1) > 0, the leading coefficient of B is positive, hence B
has two roots. And since E(α1) < 0, the root of C(α1) is positive (greater than
the root of I2). Finding that all the roots of B(α1) are smaller than γ the root
of C(α1) involves not only the sign of F (α1) (which only shows that γ is not
between the roots of B(α1)) but additional components of the encoding, namely
in this case the sign of the second derivative of F . This is partially represented in
Fig. 6 (again, the degrees of the polynomials are omitted). Note that this lifting
corresponds to the trajectory depicted in Fig. 2, page 5.

4 Verification algorithms for PolITA

We now use the cylindrical decomposition to build a finite abstraction of the tran-
sition system associated with a PolITA. The model checking problem (hence
also the reachability problem) can be solved with this abstraction. An on-the-
fly construction is then given to produce a more efficient practical algorithm.
Formally, we prove the following:

Theorem 4.1. The model checking problem of TCTLint over PolITA is decid-

able in time (|A| · |ψ| · d)2
O(n)

where n is the number of clocks in A and d the
maximal degree of polynomials appearing in A and ψ.

(4, Int)
(1, I2)

•
(1, F)

•
(1, D)
(1, G)

•
(1, I1)

0
•

(2, A)
•

(2, F)

• (1, B)

• (2, B)

• (1, C)

X1

X2

◦

Fig. 6. Line partitioning for X2 above α1 = (4, Int).

4.1 Abstraction construction

Let A = 〈Σ,Q, q0, F,X, λ,∆〉 be a PolITA with X = {x1, . . . , xn}. We de-
fine Poly(A) the set of all polynomials appearing in guards and updates of A
(including all clocks) as follows:

Poly(A) = X ∪
⋃

(q,g,a,u,q′)∈∆

({⋃
i

{Pi}

∣∣∣∣∣ ϕ =
∧
i

Pi ./i 0

}

∪

{
n⋃
i=1

{xi − Pi}

∣∣∣∣∣ u =

n∧
i=1

xi := Pi

})

Given a TCTLint formula ψ, we define Poly(ψ) the set of all polynomials appear-
ing in ψ, i.e. in subformulas of the form P ./ 0. Note that in the case of the
reachability problem, Poly(ψ) = ∅.

Let DA,ψ be the cylindrical algebraic decomposition adapted to Poly(A) ∪
Poly(ψ) and X. Since DA,ψ is adapted to X, the cells can be arranged in levels

D1
A,ψ, . . . ,DnA,ψ, such that for 1 ≤ i ≤ n,

⋃i
k=1DkA,ψ is a CAD of R{x1,...,xi}. As

a result, the projection of a cell of level i over the axis xi = 0 yields a cell of
level i− 1.

We define RA,ψ the finite transition system with states in Q×DA,ψ, specif-
ically, they can also be arranged by layer, with respect to the level of the state:⋃n
i=1 λ

−1(i) × DiA,ψ. Indeed, given a configuration (q, v) with λ(q) = k, the se-
mantics of PolITA require that for k < i ≤ n, v(xi) = 0, hence v belongs to a
cell of DkA,ψ. We now define the transitions of RA,ψ as follows.

Time successors. Let succ /∈ Σ be a letter representing time elapsing. Let
(q, C) be a state of RA,ψ, with λ(q) = k, and let C ∈ Dk−1A,ψ be the projection of

C onto Rk−1 and −∞ = f0 < · · · < fr+1 = +∞ be the functions dividing C as
in Definition 3.2. The succ transitions are defined as follows:

– if C = {(x, fi(x)) | x ∈ C} for some i ∈ {1, . . . , r}, then there is a transition

(q, C)
succ−−−→ (q, C ′) where C ′ = {(x, y) | x ∈ C, fi(x) < y < fi+1(x)};

– if C = {(x, y) | x ∈ C, fi−1(x) < y < fi(x)} for some i ∈ {1, . . . , r}, then

there is a transition (q, C)
succ−−−→ (q, C ′) where C ′ = {(x, fi(x)) | x ∈ C};

– otherwise, C = {(x, y) | x ∈ C, fr(x) < y < fr+1(x)}, and there is a self-loop

labeled by succ: (q, C)
succ−−−→ (q, C).

In all the above cases, C ′ is called the time successor of C (in the last case, C
is its own time successor).

Proposition 4.2 (Correctness w.r.t. time elapsing). Let v be a valuation
of a cell C of level k.

– There exists d > 0 such that the elapsing of d time units for xk yields a
valuation v +k d ∈ C ′, the time successor of C.

– For any 0 < d′ < d, the elapsing of d′ time units for xk yields a valuation
v +k d that is either in C or in C ′.

Proof. We again distinguish the possible cases for C:

– If C = {(x, fi(x)) | x ∈ C} for some i ∈ {1, . . . , r}, then the time successor
C ′ = {(x, y) | x ∈ C, fi(x) < y < fi+1(x)}. Then v = (x, fi(x)). By elapsing
fi+1(x)−fi(x)

2 time units in level k, one clearly obtains a valuation of C ′.
Moreover, for every inferior delay d′, v +k d

′ is also in C ′.
– If C = {(x, y) | x ∈ C, fi−1(x) < y < fi(x)} for some i ∈ {1, . . . , r}, then
C ′ = {(x, fi(x)) | x ∈ C}. Then v = (x, y) with fi−1(x) < y < fi(x). By
elapsing fi(x)−y time units in level k, one clearly obtains a valuation of C ′.
Moreover, for every inferior delay d′, v +k d

′ remains in C.
– Otherwise, C = {(x, y) | x ∈ C, fr(x) < y < fr+1(x) = +∞}, and any time

elapsing for xk keeps the valuation in C. ut

Discrete successors. Since DA,ψ is adapted in particular to Poly(A) which
contains all guards, we have the following result:

Lemma 4.3. Let C ∈ DA,ψ be a cell of the aforementioned CAD. Let v ∈ C be
a valuation. Then for any v′ ∈ C and for every guard ϕ appearing in A, v′ |= ϕ
if, and only if, v |= ϕ.

Hence we can write C |= ϕ whenever v |= ϕ and v ∈ C.
Moreover, for every update xi := Pi there is a polynomial xi−Pi in Poly(A),

which has value 0 if and only if xi = Pi; as a result:

Lemma 4.4. Let C ∈ DkA,ψ be a cell of level k, C be the projection of C onto

Rk−1 and −∞ = f0 < · · · < fr+1 = +∞ be the semi-algebraic functions dividing
C as in Definition 3.2. Let u be an update of the form xk := P for some poly-
nomial P ∈ Q[x1, . . . , xk−1]. Then there exists an index i ∈ {1, . . . , r} such that,
over C, fi = P .

As a corollary, there exists a unique cell C ′ ∈ DkA,ψ such that for any valuation
v ∈ C, v[u] ∈ C ′, namely C ′ = {(x, fi(x)) | x ∈ C}, which can be written C[u].

Discrete transitions ofA are translated as follows intoRA,ψ: if (q, ϕ, a, u, q′) ∈
∆ and C |= ϕ, there is a transition (q, C)

a−→ (q′, C[u]).

Proposition 4.5 (Correctness w.r.t. discrete steps).

– If (q, v)
a−→ (q′, v′) ∈ TA, then (q, C)

a−→ (q′, C ′) ∈ RA with v ∈ C and
v′ ∈ C ′.

– If (q, C)
a−→ (q′, C ′) ∈ RA then for all v ∈ C there exists v′ ∈ C ′ such that

(q, v)
a−→ (q′, v′) ∈ TA.

Proof.

– First, (q, v)
a−→ (q′, v′) ∈ TA implies that there is a transition (q, ϕ, a, u, q′)

such that v |= ϕ and v′ = v[u]. By Lemma 4.3, we have that C |= ϕ. In
addition, we have by Lemma 4.4 that v′ = v[u] ∈ C[u]. By the definition of

RA,ψ, there is a transition (q, C)
a−→ (q′, C[u]) ∈ RA,ψ.

– Transition (q, C)
a−→ (q′, C ′) ∈ RA,ψ only exists because of a transition

(q, ϕ, a, u, q′)∆, and we have C ′ = C[u]. Let v ∈ C. Since C |= ϕ, by

Lemma 4.3 we have that v |= ϕ. Hence there is a transition (q, v)
a−→

(q′, v[u]) ∈ TA. By Lemma 4.4, v[u] ∈ C[u], which concludes the proof. ut

Example 4.6. Part of this abstraction for deciding reachability in PolITA A0

(Fig. 1, page 4) is depicted on Fig. 7. In this figure, points are given by the tri-
angular system representing them. Computations of sample points for intervals
between roots where omitted, and only appear in the graph as roots of deriva-
tives. Note that having no a edge from state q0, 1, (5, Int) is not an omission,
but a consequence of the guard x21 ≤ x1 + 1 no longer being satisfied. In this
graph, C+ is the polynomial obtained when replacing X2 by X2− 1 in C. Faded
states and transitions are unreachable but are nonetheless constructed from the
decomposition.

Labeling with atomic propositions. Finally, we translate a comparison P ./
0 in ψ into a fresh atomic proposition pP./0 and label RA,ψ as follows. Note that
since DA,ψ is in particular adapted to Poly(ψ), every cell C of DA,ψ is sign-
invariant for P , hence the truth value of P ./ 0 is constant in C. As a result,
it makes sense to write C |= P ./ 0 whenever v |= P ./ 0 for some v ∈ C, and
proposition pP./0 is true in every state (q, C) where C |= P ./ 0. We write ψ the
formula where each P ./ 0 has been replaced by pP./0.

Proposition 4.7. A |= ψ if, and only if, RA,ψ |= ψ.

Note that ψ is a CTL formula, which can be checked with the usual polynomial
time labeling procedure. Since the number of cells in a cylindrical decomposition
is doubly exponential in the number of clocks and polynomial in the number
and maximal degree of polynomials to which it is adapted [6], we obtain the
complexity stated in Theorem 4.1.

q0, 1
(1, I1)

q1, 2
(1, I1)(1, I2)

q0, 1
(1, (AI1)′)

...

q1, 2
(1, (AI1)′)(1, I2)

q0, 1
(1, (I1D)′)

q1, 2
(1, (I1D)′)(1, I2)

q0, 1
(1, D)

q1, 2
(1, D)(1, I2)

q0, 1
(3, (DF)′)

q1, 2
(3, (DF)′)(1, I2)

q0, 1
(1, F)

q1, 2
(1, F)(1, I2)

q0, 1
(4, Int)

q1, 2
(4, Int)(1, I2)

. . .

a q1, 2
(4, Int)(2, (BI2)′)

q1, 2
(4, Int)(2, B)

q1, 2
(4, Int)(2, (BC)′)

q1, 2
(4, Int)(1, C)

q1, 2
(4, Int)(1, C+)

q2, 2
(4, Int)(2, (BC)′)

q2, 2
(4, Int)(1, C)

q2, 2
(4, Int)(1, C+)

q2, 2
(4, Int)(2, B)

q2, 2
(4, Int)(2, (BI2)′)

...

c

c

b

c

b

c

b

q0, 1
(2, A)

q1, 2
(2, A)(1, I2)

q0, 1
(5, Int)

...

a′

.

a

.

a

.

a

.

a

.

a

.

a

.

a

Fig. 7. Partial depiction of RA0 .
Dashed edges correspond to time successors succ; faded states are unreachable.

4.2 On-the-fly algorithm

Propositions 4.2 and 4.4 provide decidability of the model checking problem, by
the algorithm that builds the finite graph RA,ψ verifies that ψ is satisfied in this
graph.

However, building the complete graph is not efficient in practice, since it
requires to build the set of all cells beforehand. In the sequel, we show an on-
the-fly algorithm that builds only the reachable part of RA,ψ. This algorithm
would not, for example, build the faded states of RA0

in Fig. 7.

The key to the on-the-fly algorithm is to store only the part of the tree corre-
sponding to the current sample point and its time successors. This construction
is akin to what is done in Fig. 6, where only the line partitioning for X2 above
the current sample point is computed by the lifting phase, while line partitioning
above, for, say, sample point (1, F) is not computed. As a result, we do not keep
the whole tree but only part of it.

We show that this information is sufficient to compute the successors through
time elapsing and transition firing. Nonetheless, remark that although this prun-
ing yields better performances in practice, the computational complexity in the
worst case is not improved: the line partitioning at the first level already requires
doubly exponential time, since the elimination phase is required.

Definition 4.8 (Pruned tree). Let {Pk}k≤n be the polynomials obtained by
the elimination phase. The pruned tree for sample point (α1, . . . , αk) is the se-
quence of completed line partitionings for sample points {(α1, . . . , αi)}1≤i≤k. By
convention, the pruned tree for the empty sample point (k = 0) is the line par-
titioning at level 1.

Given a clock valuation (v1, . . . , vk, 0, . . . , 0) at level k, it can be represented
by a sample point (α1, . . . , αk), or, equivalently, by a pruned tree for sample point
(α1, . . . , αk−1) and the index m of αk in the line partitioning for (α1, . . . , αk−1).
In this representation, computing the time successors of (α1, . . . , αk) is simply
done by incrementing m (if it is not the maximal index in the line partitioning).
Note that in this algorithm we do not loop on the rightmost cell; although it is
convenient to assume in RA that a time successor always exists, it has no effect
regarding the reachability problem.

The set of enabled discrete transitions can be generated by computing the
signs (see Algorithm 5 page 27) of polynomials appearing in guards. When a

discrete transition q
g,a,u−−−→ q′ is chosen, several cases should be distinguished

with respect to the level of states q and q′.

– If the level decreases, i.e. λ(q′) < λ(q). Then the pruned tree corresponding
to the new configuration is only the topmost-part of height λ(q′) of the
original pruned tree. Otherwise said, we “forget” line partitionings for levels
above λ(q′); however, the partitionings can be kept in memory in order not
to have to recompute them later. The new index is the index of αλ(q′) in the
partitioned line for this level.

– If the level doesn’t change, i.e. λ(q′) = λ(q) = k. The only way to change the
clock values is through an update xk := P with P ∈ Q[X1, . . . , Xk−1]. Then
the polynomial of degree 1 R = Xk−P was added to Poly(A) and its unique
root α′k appears in the line partitioning of level `. Note that in the triangular
system representing (α1, . . . , α

′
k) it may appear as . . . (1, R) or some other

equivalent value, hence to determine the index in the partitioned line the
algorithm must actually determine the sign of R for all sample points of the
line until 0 is found.

– If the level increases, i.e. λ(q′) > λ(q). First there can be an update of
xk, hence the same computations as above must be performed in order to
find the new sample point corresponding to the valuation of clocks up to
λ(q). Then the pruned tree of height λ(q′) has to be computed. This is
done by λ(q′) − λ(q) lifting steps (Algorithm 9 page 9). Since all clocks
remain null for levels above λ(q), the sample points given as input4 are
(α1, . . . , αλ(q), 0, . . . , 0).

Now the on-the-fly algorithm works as follows:

– Compute sets of polynomials {Pi}i≤n by the elimination phase.
– Compute the completed line partitioning at level 1.
– Start at a the initial state. If the level of the initial state is k > 1, proceed

with k − 1 lifting phases as in the case of level increase. Add this state in a
queue.

– Until the queue is empty:
• Compute the list of fireable discrete transitions and whether time suc-

cessor is allowed.
• Add all new successors through a fireable discrete transition or a time

step to the queue.
– Apply the model checking algorithm on this graph.

A note on efficient memory usage As noted above, a line partitioning only
needs to be computed once. In addition – and this also holds for the complete
construction of RA,ψ –, the triangular structure of triangular systems enables a
sharing of line partitioning at lower levels. Thus the size of the graph in memory
is at most the size of the complete tree of the decomposition added, and not
multiplied, by the number of states of the PolITA.

5 Expressiveness and extensions

We finally focus on expressiveness of PolITA. After comparing this class with
stopwatch automata, we show how to extend it while keeping decidable the above

4 Although the actual input of the algorithm are triangular systems, assuming we
have the system T for (α1, . . . , αλ(q)), the subsequent triangular systems are T ∪
(1, Xλ(q)+1)

verification problems. For sake of clarity, in section 2 we have presented a ba-
sic model of PolITA. Here we show how to add three features consisting in:
(1) including parameters in the expressions of guards and updates, (2) associ-
ating with each level a subset of auxiliary clocks, and (3) allowing to update
clocks of lower levels than the current one. Since in the context of ITA, the first
two extensions have already been studied in [9] and the third one in [10], our
presentation will not be fully formalized.

5.1 PolITA vs Stopwatch automata

By syntax inclusion, PolITA are at least as expressive as ITA. As a direct
consequence, there exists a timed language accepted by a PolITA that is not
accepted by a TA [8].

There exists a timed language accepted by a timed automaton that is not
accepted by any PolITA as presented above (the proof is a direct adaptation
from the one proving said language is not accepted by an ITA [10]), although it
is accepted by the extension with auxiliary clocks provided below (Section 5.3).

The class of stopwatch automata (SWA), which also syntactically contains
the class of ITA, is however incomparable to PolITA.

Proposition 5.1. There exists a timed language accepted by a PolITA with a
single clock that cannot be accepted by a stopwatch automaton.

The proof of the above proposition relies on a lemma about runs accepted
by a SWA. Recall that in a stopwatch automaton, each clock can be active or
inactive in every state. Also recall that updates are restricted to resets5 x := 0
and guards are comparisons to a rational constant6. In the remainder of the
section, we use +q to denote addition only on stopwatches active in q.

Lemma 5.2. Let ρ = (q0, v0)
δ0−→ (q0, v0 +q0 δ0)

g0,a0,u0−−−−−→ (q1, v1) · · · be a run in

a stopwatch automaton. Then there exists ρ′ = (q0, v0)
δ′0−→ (q0, v0 +q0 δ

′
0)

g,a1,u−−−−→
(q1, v1) · · · taking the same discrete transitions as ρ such that ∀i, δi ∈ Q.

Proof. We assume that stopwatches are never reset throughout the run. This
can be done since one can assume that a reset stopwatch is actually a fresh one.
Consider the linear system with a variable δi per delay and rational coefficients
which corresponds to all guards appearing after qk. We write

γxi =

{
1 if x is active in qi
0 otherwise

For each stopwatch x, we add the constraints

|ρ|∧
i=0

(
i∑

`=0

γxi · δi

)
|= gi

5 It is possible to simulate affectations to rational constants, but it does not change
expressiveness of the model.

6 Again, diagonal constraints x− y ./ c for c ∈ Q can be simulated.

Note that since guards have rational coefficients, this system has rational coeffi-
cients. In addition since ρ is an accepted run, this system has a solution (δ0, . . .).
Also note that for every solution (δ′i)i, replacing each delay δi with δ′i in ρ still
yields a valid run ρ′, since all guards are still respected. The set of solutions of a
linear system with rational coefficient is a rational polyhedron, so the projection
over each variable yields an interval with rational endpoints (or −∞ or +∞).
If for some i, δi is irrational, the interval cannot be reduced to a point, so it
contains an open set around δi, in which there is a rational δ′i. Therefore, there
exists a solution (δ′i)i ∈ Q|ρ| and ρ′ is a run with rational delays. ut

Proof (Proposition 5.1). Consider PolITA of Fig. 8, which accepts the timed
language L containing the single word (a, 1)(b,

√
2). Assume L is accepted by a

stopwatch automaton AL. Let ρ = (q0, v0)
δ0−→ (q0, v0 +q0 δ0)

g,a1,u−−−−→ (q1, v1) · · ·
be a run accepting (a, 1)(b,

√
2). Note that some ais may actually be ε. Since

b occurs at an irrational instant, there is at least an irrational delay before
the occurrence of b. By Lemma 5.2, ρ′ the run where all delays are rational is
also accepted. Therefore the instant of b in ρ′ is rational and cannot be

√
2.

Furthermore any time rescaling for L does not change this result since either a
or b is taken at an irrational instant. ut

x1 = 1, a x21 = 2, b

Fig. 8. A PolITA whose timed language is not accepted by a stopwatch automaton.

On the other hand, the (untimed) language of a PolITA (and the extensions
of Section 5) is regular, as shown by the construction of a finite abstraction of TA
in Section 4. It is not necessarily the case of (untimed) languages of stopwatch
automata [12,2], hence there are some timed languages accepted by a SWA that
are not accepted by any PolITA.

5.2 Parameters

Getting a complete knowledge of a system is often impossible, especially when in-
tegrating quantitative constraints. Moreover, even if these constraints are known,
when the execution of the system slightly deviates from the expected behavior,
due to implementation choices, previously established properties may not hold
anymore. Additionally, considering a wide range of values for constants allows
for a more flexible and robust design. Introducing parameters instead of con-
crete values is an elegant way of addressing these three issues. Parametrization
however makes verification more difficult. For instance, in timed automata, al-
lowing a single clock to be compared to parameters leads to undecidability of
the reachability problem [21].

Suppose that we enlarge PolITA allowing expressions to be polynomials
whose set of variables is the union of a set of clocks {x1, . . . , xn} and a set of pa-
rameters {p1, . . . , pk}. Then we consider the cylindrical decomposition where the
order of variables is p1, . . . , pk, x1, . . . , xn. Now assume that the relevant values
of parameters are specified by a first-order formula val. Then using the cylin-
drical decomposition, we can answer reachability questions like “for all p1 · · · pk
satisfying val, is q reachable?” or safety questions like “for all p1 · · · pk satisfying
val, is q unreachable?”.

5.3 Auxiliary clocks

With each level i, one may associate a set of auxiliary clocks Yi in addition to the
main clock xi. Since there are multiple clocks for some level i, in this PolITA,
with every state of level i, is associated an active clock among Xi = {xi} ∪ Yi,
specifying which clock evolves with time in this state. Auxiliary clocks may be
used in a restrictive setting w.r.t. the main clocks to influence the behavior of
the PolITA. Let us detail these restrictions:

– In a guard of a transition outgoing from a state at level i, among auxiliary
clocks only those of the level i may occur and they are only be compared
between them or with the main clock (i.e. z ./ z′ with z, z′ ∈ Xi);

– In a transition outgoing from state at level i, an auxiliary clock of level i
may be updated by another clock of level i (i.e. y := z with y ∈ Yi and
z ∈ Xi) while the main clock may be updated by an auxiliary clock only
if the destination state of the transition is also at level i (i.e. xi := y with
y ∈ Yi).

The decision procedure works as follows. The cylindrical decomposition does not
take into account the auxiliary clocks. However the definition of a class specifies
in which interval of level i lies any clock of level i and their relative position for
clocks inside the same interval.

Adding auxiliary clocks strictly extends expressiveness of PolITA w.r.t.
timed languages. It was shown in [10] that the language

L =
{

(a, t1)(b, t2) . . . (a, t2p+1)(b, t2p+2) | p ∈ N,
∀0 ≤ i ≤ p, t2i+1 = i+ 1 and i+ 1 < t2i+2 < i+ 2,

∀1 ≤ i ≤ p, t2i+2 − t2i+1 < t2i − t2i−1
}

is not a language of an ITA. The proof also holds for PolITA since it is only
based on the following hypotheses: (1) there is a single clock per level, (2) at
level i, the behavior is only determined by the current state and the values of
clocks at levels less or equal than i, and (3) the clock xi is null at level j < i.

The untimed language of L is (ab)+. In the accepted timed words, there is an
occurrence of a at each time unit and the successive occurrences of b come each
time closer to the next occurrence of a than previously. Consider the PolITA of
Figure 9 with a single level and single final state q2. The main clock x is active
in all states and y is an auxiliary clock. It is routine to check that the timed
language of this automaton is L.

q0 q1 q2 q3
x = 1, a, x := 0 0 < x < 1, b, y := x

x = 1, a, x := 0

y < x < 1, b, y := x

Fig. 9. A PolITA with a single level and an auxiliary clock

5.4 Allowing more updates

At level i, the value of a clock of level j < i is relevant. So it is interesting to
allow updates of such a clock. Again for keeping decidability, such updates have
the following restrictions:

– At level i, the main clock of level j < i can only be updated by a polynomial
of the main clocks of level less than j: xj := P (x1, . . . , xj−1);

– At level i, an auxiliary clock of level j < i may be updated by a clock of
level j: y := z with y ∈ Yj and z ∈ Xj .

The decision procedure for this extension consists in translating the extended
PolITA in a PolITA with the same behavior by at level i: (1) delaying the
update of clocks of level j < i that should have been done until the current level
becomes j and (2) duplicating the states by memorizing the current value of
such a clock as an expression of the values of the clock when the level j was left.
Guards and updates outgoing from a duplicated state are modified to take into
account these expressions.

Let us illustrate this transformation on the PolITA of Figure 10 that is
transformed in the PolITA of Figure 11. The original clock has only main
clocks and the level of the state is indicated inside the state. In the transformed
state the superscript ’+’ means that this corresponds to a state of of the original
ITA ready to be simulated while the superscript ’-’ indicates that the delayed
updates have to be performed. Let us start with the transition outgoing the
state q0, the update of x1 is delayed but memorized in the state ‘q+2 , x1 := 2’.
The transition outgoing from this state corresponds to the transition outgoing
from q2 but in the guard the occurrence of x1 has been substituted by 2. With
this transformation, the update becomes x2 := 5 but since we are at level 3,
this update is memorized in state ‘q+3 , x1 := 2, x2 := 5’. The transition from q3
at level 3 to q5 at level 2 is split in two transitions in the simulating PolITA.
First we enter state ‘q−5 , x1 := 2, x2 := 5’ at level 2 where the active clock is
an auxiliary clock of level 2, y2. Then in null time due to the guard we perform
the delayed update of x2, still memorizing the update of x1 and enter the state
‘q+5 , x1 := 2’.

6 Conclusion

We extend Interrupt Timed Automata with polynomial expressions on clocks,
and prove that reachability and model checking of some timed temporal logic

q0, 2

q1, 2

q2, 3 q3, 3

q4, 3

q5, 2

x1 := 2 2x2 + x1 > 3 ∧ x3 < 2
x2 := 2x1 + 1

x2 := x1 + 1
x3 := 2x2

x1 := 1

Fig. 10. A PolITA containing extended updates of clocks

q+0 , 2
q+2 , 3
x1 := 2

q+3 , 3
x1 := 2
x2 := 5

q+4 , 3
x1 := 2
x2 := 3

q+5 , 2
x1 := 1

q−5 , 2
x1 := 1
x2 := 5

q−5 , 2
x1 := 1

x2 := 2x1 + 1

q+3 , 3
x2 := 2x1 + 1

q+2 , 3q+1 , 2
q+4 , 3

x2 := x1 + 1

2x2 + 2 > 3
∧x3 < 2 x3 := 10

y2 = 0, ε, x2 := 5

2x2 + x1 > 3
∧x3 < 2 x3 := 4x1 + 2

y2 = 0, ε, x2 := x1 + 1

Fig. 11. A PolITA equivalent to the PolITA of Figure 10

are decidable using the cylindrical decomposition. We also show that an on-
the-fly construction of a class automaton is possible during the lifting phase of
this decomposition. We establish that PolITA and SWA are incomparable and
provide some additional interesting features to the model. In order to experi-
ment the practical complexity of the decision procedures, an implementation is
in progress. Since the current construction still requires the full complexity of
the cylindrical decomposition, we plan for future work to investigate if recent
methods [14,19] with a lower complexity could be used to achieve reachability,
possibly for a restricted version of PolITA.

References

1. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time. Informa-
tion and Computation 104, 2–34 (1993)

2. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
TCS 138, 3–34 (1995)

3. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126, 183–235 (1994)
4. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of

hybrid systems. Proceedings of the IEEE 88(7), 971–984 (2000)
5. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems hav-

ing piecewise-constant derivatives. TCS 138(1), 35–65 (1995)
6. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Springer

(2006)
7. Ben-Or, M., Kozen, D., Reif, J.: The complexity of elementary algebra and ge-

ometry. In: Proceedings of the Sixteenth Annual ACM Symposium on Theory of
Computing. pp. 457–464. STOC ’84, ACM (1984)

8. Bérard, B., Haddad, S.: Interrupt timed automata. In: Proc. of FoSSaCS’09. LNCS,
vol. 5504, pp. 197–211. Springer, York, UK (Mar 2009)

9. Bérard, B., Haddad, S., Jovanovič, A., Lime, D.: Parametric interrupt timed au-
tomata. In: Proceedings of the 7th Workshop on Reachability Problems in Com-
putational Models (RP’13). LNCS, vol. 8169, pp. 59–69. Springer (2013)

10. Bérard, B., Haddad, S., Sassolas, M.: Interrupt timed automata: Verification and
expressiveness. Formal Methods in System Design 40(1), 41–87 (Feb 2012)

11. Berman, L.: The complexity of logical theories. TCS 11(1), 71 – 77 (1980)
12. Cassez, F., Larsen, K.G.: The impressive power of stopwatches. In: Proc. of CON-

CUR’00. LNCS, vol. 1877, pp. 138–152. Springer (Aug 2000)
13. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic

decompostion. In: Automata Theory and Formal Languages 2nd GI Conference,
LNCS, vol. 33, pp. 134–183. Springer Berlin Heidelberg (1975)

14. Din, M.S.E., Schost, E.: Polar varieties and computation of one point in each con-
nected component of a smooth real algebraic set. In: Proceedings of International
Symposium on Symbolic and Algebraic Computation (ISSAC 2003). pp. 224–231.
ACM (2003)

15. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tem-
poral logic of branching time. In: Proc. 14th annual ACM Symp. on Theory of
Computing (Stoc’82). pp. 169–180. ACM (1982)

16. Grossman, R., Nerode, A., Ravn, A., Rischel, H. (eds.): Hybrid systems, LNCS,
vol. 736. Springer (1993)

17. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hy-
brid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

18. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for
real-time systems. Information and Computation 111(2), 193–244 (1994)

19. Hong, H., Din, M.S.E.: Variant quantifier elimination. Journal of Symbolic Com-
putation 47(7), 883–901 (2012)

20. Lafferriere, G., Pappas, G.J., Sastry, S.: O-minimal hybrid systems. MCSS 13(1),
1–21 (2000)

21. Miller, J.S.: Decidability and complexity results for timed automata and semi-linear
hybrid automata. In: HSCC’00. LNCS, vol. 1790, pp. 296–309. Springer (2000)

22. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in
CESAR. In: Proceedings of the 5th International Symposium on Programming.
LNCS, vol. 137, pp. 337–351. Springer-Verlag, London, UK (1982)

23. Tarski, A.: A decision method for elementary algebra and geometry. RAND Cor-
poration, Santa Monica, Calif. (1948)

	Polynomial Interrupt Timed Automata

