

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/135160

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

© 2020 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/135160
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wrap@warwick.ac.uk

The Ideal View on Rackoff’s
Coverability TechniqueI,II

Ranko Lazića, Sylvain Schmitzb

aDIMAP, Department of Computer Science, University of Warwick, UK
bLSV, ENS Paris-Saclay & CNRS & Inria, France

Abstract

Well-structured transition systems form a large class of infinite-state systems, for
which safety verification is decidable thanks to a generic backward coverability
algorithm. However, for several classes of systems, the generic upper bounds
one can extract from the algorithm are far from optimal. In particular, in the
case of vector addition systems (VAS) and several of their extensions, the known
tight upper bounds were rather derived thanks to ad-hoc arguments based on
Rackoff’s small witness property.

We show how to derive the same bounds directly on the computations of the
VAS instantiation of the generic backward coverability algorithm. This relies
on a dual view of the algorithm using ideal decompositions of downwards-closed
sets, which exhibits a key structural invariant in the VAS case. This reason-
ing offers a uniform setting for all well-structured transition systems, including
branching ones, and we further apply it to several VAS extensions: we derive op-
timal upper bounds for coverability in branching and alternating VAS, matching
the previously known results from the literature.

1. Introduction

A Generic Framework for Safety Verification. One of the key tasks in auto-
mated verification is ensuring that ‘nothing bad will every occur’ in the system,
that is checking its safety. Such a sound and complete check is in general im-
possible for systems with an infinite configuration space, caused for instance by
dynamic data structures, real-time constraints, unbounded channels, parame-
ters, or thread creation. Nevertheless, Abdulla, Čerāns, Jonsson, and Tsay [1]
and Finkel and Schnoebelen [2] have identified in the 1990s an ubiquitous class

IAn extended abstract of this work was published in the Proceedings of the 9th Inter-
national Workshop on Reachability Problems, Lecture Notes in Computer Science vol. 9328
pp. 76–88 (M. Bojańczyk, S. Lasota, and I. Potapov, Eds.), Springer, 2015.

IIWork funded in part by the Leverhulme Trust Visiting Professorship VP1-2014-041 and
the EPSRC grant EP/M011801/1.

Preprint submitted to Elsevier December 9, 2018

of infinite-state transition systems encompassing many of these ‘sources of in-
finity’, namely effective well-structured transition systems (WSTS), for which a
variant of safety is decidable.

In a WSTS, the configurations can be compared through a well-quasi-ordering
(wqo) ≤ compatible with the transition relation. Safety in such systems can usu-
ally be expressed as a coverability check, where we wish to avoid both the ‘bad’
configuration and any larger one. In other words, we want to know given the
initial configuration x and the ‘bad’ configuration y, whether x can cover y, i.e.
reach some configuration y′ ≥ y in finitely many steps. The generic algorithm
to solve this problem is known as the backward coverability procedure, and com-
putes successively the sets of configurations that can cover y in at most 0, 1,
2, . . . steps. Those sets are upwards-closed and since ≤ is a wqo they can be
represented through their finitely many minimal elements.

The Complexity of Coverability. The termination of the backward coverability
algorithm relies on the underlying wqo—more precisely, on the ascending chain
condition for its upwards-closed subsets. In full generality, no complexity upper
bounds can be extracted from the wqo alone. Nevertheless, in most algorithmic
uses of wqos, one can rely on generic combinatorial analyses to extract upper
bounds [3, 4, 5]. Those bounds are typically non primitive-recursive, and de-
pend primarily on the underlying wqo. This approach has been successfully
applied to the coverability problem in several classes of WSTS, and in many
cases these gigantic worst-case complexity upper bounds are really a testament
to the expressiveness of the corresponding classes of WSTS, as they are matched
with tight lower bounds [e.g. 6, 7, 8, 9, 10, 5].

(Un?)fortunately, these generic upper bounds are sometimes very far from
optimal. Intuitively, this occurs when the operations allowed by the WSTS
at hand are not able to fully exploit the underlying wqo. A striking illustra-
tion is provided by vector addition systems (VAS) and reset VAS : they work
on the same wqo of tuples of vectors of non-negative integers, and the com-
plexity upper bounds offered e.g. by Figueira et al. [3] are in Ackermann in
both cases. However, while coverability in reset VAS is indeed Ackermann-
complete [6], coverability in the weaker VAS model has long been known to
be ExpSpace-complete thanks to a lower bound by Lipton [11] and an upper
bound by Rackoff [12].

Rackoff’s Technique is essentially combinatorial in nature: he shows by induc-
tion on the dimension of the VAS that, if x can cover y, then there exists a small
(doubly-exponential) run in the VAS witnessing the reachability of some y′ ≥ y
from x. A non-deterministic algorithm can then simply look for such a witness
using only exponential space. While quite ad-hoc, the technique has nevertheless
proven surprisingly versatile as it has been extended to prove tight complexity
upper bounds for coverability in numerous extensions of VAS [13, 14, 15, 16, 17].
It is however far from clear how to adapt the technique for more general sys-
tems, where for instance the notion of dimension is absent or more involved, as

2

e.g. in data nets [18] whose configurations can be seen as multisets or sequences
of vectors of integers.

Remarkably, Bozzelli and Ganty [19] showed that Rackoff’s small witness
property can be applied to the backward coverability algorithm for VAS to ob-
tain a 2ExpTime upper bound. In the same spirit, Majumdar and Wang [20]
applied the combinatorial analysis of Demri et al. [13] to establish that the
expand, enlarge, and check (EEC) algorithm for ‘bottom-up’ coverability in
branching VAS runs in 2ExpTime. However, the arguments of both Bozzelli
and Ganty and Majumdar and Wang use Rackoff’s analysis and its bottom-up
branching extension as black boxes, avoiding to work directly with the structures
manipulated by the backward and EEC algorithms. Therefore, it is again un-
clear how those results could be translated to further classes of well-structured
transition systems.

A Generic Approach to the Complexity of Coverability. In this paper, we show
how to recast Rackoff’s technique in the generic setting of the backward cover-
ability algorithm for WSTS. We take for this in Section 3 a dual view on the
backward coverability algorithm, by considering successively the sets of con-
figurations that do not cover y in 0, 1, 2, . . . or fewer steps. Such sets are
downwards-closed, and enjoy a (usually effective) canonical representation as
finite unions of ideals [21, 22, 23].

This dual view of the backward coverability algorithm is merely an alterna-
tive presentation of its usual exposition using upwards-closed sets, and termi-
nates in exactly the same number of steps. Hence so far we have not gained
anything, and in fact have rather added new effectiveness assumptions on ideal
representations and made the complexity analysis using wqos slightly more te-
dious (see Appendix A for the case of VAS and reset VAS).

Crucially, we show in Section 4 that, in the case of VAS, this dual view
exhibits an additional invariant of ω-monotonicity, which allows us to obtain
the optimal doubly-exponential bound of Bozzelli and Ganty [19]. This step
is not fully generic, as other invariants might need to be invented for other
classes of WSTS; note however that since the original publication of this work at
RP 2015, this has been achieved for ν-Petri nets in [24] and invertible polynomial
automata in [25].

Generic Extensions to Branching Systems. As further proof of the versatility
of the framework, we consider in the second part of the paper the top-down
(Section 5) and bottom-up (Section 6) coverability problems in branching tran-
sition systems, whose executions are trees rather than paths, and which provide
a natural setup for games and deduction systems [26, 27, 15, 16]. Bottom-up
coverability is one of the two natural extensions of the coverability problem
to branching systems: one regards the execution trees as bottom-up and asks
whether a target configuration is coverable at the root, whereas the other re-
gards them as top-down and asks whether a target configuration is coverable at
all leaves. While both coverability problems have been studied in alternating
branching VAS (ABVAS) [27, 13, 15, 16], the arguments for the corresponding

3

Model Complexity Reference In this Paper

VAS ExpSpace [12, 19] Corollary 4.6
reset VAS Ackermann [3] Corollary 3.11
top-down ABVAS Tower [16] Corollary 5.6
top-down AVAS 2ExpTime [15] Corollary 5.6
bottom-up meet ABVAS Ackermann [16] Corollary 6.9
bottom-up BVAS 2ExpTime [13] Corollary 6.9

Table 1: The complexity of coverability problems in VAS extensions; all these upper bounds
are optimal.

complexity upper bounds were rather specialised, and we were missing a generic
formulation of the backward coverability algorithm for such branching systems.

In each case, we provide a generic backward algorithm that solves the prob-
lem, and show that its running time matches the known optimal complexities
in the case of ABVAS [13, 15, 16]. In contrast to the upper bound proofs in the
literature, which employ ad-hoc adaptations of Rackoff’s technique, the proofs
we obtain are uniform extensions from the basic case of VAS, so they proceed
by analysing the downwards-closed sets that the backward algorithms produce
and rely on the same ω-monotonicity invariant. For top-down coverability in
ABVAS, the ideals involved are the same as for VAS (vector ideals), whereas
bottom-up coverability requires us to work one level higher (vector set ideals).

Our purpose in this paper is above all pedagogical, as we hope to see this type
of reasoning applied more broadly where the simple proof argument of Rackoff
fails. We do not prove any new upper bounds here, and rather illustrate the
approach throughout sections 3 and 4 in the well-understood cases of VAS and
reset VAS, and show that it scales to the more involved case of ABVAS in
sections 5 and 6. We sum up the known complexity upper bounds we obtain
with our approach in Table 1.

We start with some preliminaries on WSTS and ideals in the upcoming
Section 2.

2. Preliminaries

We first recall the necessary background on well-quasi-orders, well-structured
transition systems, and ideal decompositions, while illustrating systematically
the definitions on VAS and reset VAS.

2.1. Well-Structured Transition Systems

A well-quasi-order (wqo) (X,≤) is a set X equipped with a transitive re-
flexive relation ≤ such that, along any infinite sequence x0, x1, . . . of elements
from X, one can find two indices i < j such that xi ≤ xj . A finite or infinite
sequence without such pair of indices is bad, and necessarily finite over a wqo.
See for instance [28] for more background on wqos.

4

Example 2.1 (Dickson’s Lemma). The set Nd of d-dimensional vectors of nat-
ural numbers forms a wqo when endowed with the product ordering v, defined
by u v v if u(i) ≤ v(i) for all 1 ≤ i ≤ d.

A well-structured transition system (WSTS) [1, 2] is a triple (X,→,≤) where
X is a set of configurations, → ⊆ X × X is a transition relation, and (X,≤)
is a wqo with the following compatibility condition: if x ≤ x′ and x → y, then
there exists y′ ≥ y with x′ → y′. In other words, ≤ is a simulation relation
on the transition system (X,→). Finkel and Schnoebelen [2] show that weaker
notions of compatibility suffice for the backward coverability algorithm, but we
will stick to the classical one from Abdulla et al. [1].

We write as usual →≤0 def= {(x, x) | x ∈ X} and →≤k+1 def= →≤k ∪ {(x, y) |
∃z ∈ X . x→ z →≤k y} for the reachability relation in at most k+ 1 steps, and
→∗ def=

⋃
k→≤k for the reflexive transitive closure of →.

Example 2.2 (VAS are WSTS). A d-dimensional vector addition system (VAS)
is a finite set A of vectors in Zd. It defines a WSTS (Nd,→,v) with space of
configurations Nd and u→ u+a for all u in Nd and a in A such that u+a is
in Nd.

For instance, the 2-dimensional VAS A÷2
def= {(−2, 1)} can be seen as weakly

computing the halving function: from any configuration (n, 0), it can reach
(n mod 2, bn/2c) and all its reachable configurations (n′,m) satisfy m ≤ n/2.

Example 2.3 (Reset VAS are WSTS). A d-dimensional reset VAS is a finite
subset A of Zd× P({1, . . . , d}), where P denotes the powerset operation. Given
R ⊆ {1, . . . , d} and a vector u, we define the vector R(u) by R(u)(i) def= 0 if
i ∈ R, and R(u)(i) def= u(i) otherwise. A reset VAS defines a WSTS (Nd,→,v)
where u→ R(u + a) if there exists (a, R) in A such that u + a is in Nd.

For instance, the 5-dimensional reset VAS

Alog
def=

{
(0, 0,−2, 1, 0, ∅), (0, 0, 1,−1, 0, ∅),

(−1, 1,−2, 1, 0, {3}), (1,−1, 1,−1, 1, {4})

}
is a weak computer for the logarithm function: from any configuration of the
form (1, 0, 2n, 0, 0), it can reach (1, 0, 1, 0, n), and all its reachable configurations
of the form (1, 0, n′,m, `) satisfy ` ≤ n. Such a weak computation is impossible
in a VAS [29].

More specifically, the first two vector components are used to encode two
control states (1, 0) and (0, 1), whereas the remaining components store counters
for the input n′, temporary m, and result `, respectively (see Figure 1). Starting
at (1, 0), the system can increment ` only by switching the control to (0, 1) and
then coming back to (1, 0), which necessarily resets both n′ and m. It follows
that the maximum values of ` are attained by executions in which n′ and m are
minimal whenever they are reset, i.e. executions that:

• at control state (1, 0), subtract 2 from n′ and add 1 to m using the top
loop as many times as possible;

5

(1, 0) (0, 1)

−2, 1, 0

1,−1, 0

−2, 1, 0

1,−1, 0

−2 , 1, 0

1, −1 , 1

Figure 1: A view of Alog with its first two components seen as states. The boxed components
are reset after firing the corresponding transitions.

• at control state (0, 1), subtract 1 from m and add 1 to n′ using the bottom
loop as many times as possible.

In particular, starting from a configuration (1, 0, 2n, 0, 0), the maximum result
` = n can be obtained by an execution in which the resets of n′ produce configu-
rations of the form (0, 1, 0, 2n−`−1, `), and the resets of m produce configurations
of the form (1, 0, 2n−`, 0, `).

2.2. Ideal Decompositions

The downward-closure of a subset S ⊆ X over a wqo (X,≤) is ↓S def= {x ∈
X | ∃s ∈ S . x ≤ s}. A subset D ⊆ X is downwards-closed if ↓D = D. We
write ↓x for the downward-closure of the singleton set {x}. Upward-closures
and upwards-closed sets U = ↑U are defined similarly.

Well-quasi-orders can also be characterised by the descending chain condi-
tion: a quasi-order (X,≤) is a wqo if and only if every descending sequence
D0) D1) D2) · · · of downwards-closed subsets Di ⊆ X is finite.

An ideal of X is a downwards-closed subset I ⊆ X, which is directed : it is
non-empty, and if x, x′ are two elements of I, then there exists y in I with x ≤ y
and x′ ≤ y. Alternatively, ideals are characterised as irreducible non-empty
downwards-closed sets: an ideal is a non-empty downwards-closed set I with
the property that, if I ⊆ D1 ∪ D2 for two downwards-closed sets D1 and D2,
then I ⊆ D1 or I ⊆ D2. Over a wqo (X,≤), any downwards-closed set D ⊆ X
has a unique decomposition as a finite union of ideals D = I1 ∪ · · · ∪ In, where
the Ij ’s are mutually incomparable for inclusion [21, 22].

Example 2.4 (Vector Ideals). Over (Nd,v), observe that ↓u is an ideal for
every u in Nd. Those are however not the only ideals, e.g. I def= {(0, n, 0) | n ∈ N}
is also an ideal of N3. Write Nω def= N] {ω} where ω is a new top element; the
product ordering v extends naturally to Ndω. Then the ideals of (Nd,v) are
exactly the intersections ↓u ∩ Nd as u ranges over Ndω.

To reduce clutter, for such vectors u, we shall write simply ↓u to denote
its downward closure inside Nd provided that interpretation is clear from the
context. For example, regarding the subset I of N3 considered above, we have
I = ↓(0, ω, 0).

6

Although ideals provide finite representations for manipulating downwards-
closed sets, some additional effectiveness assumptions are necessary to employ
them in algorithms. In this paper, we will say that a wqo (X,≤) has effective
ideal representations [see 22, 23, for more stringent requisites] if every ideal can
be represented, and there are algorithms on those representations:

(ContId) to check I ⊆ I ′ for two ideals I and I ′,

(IntId) to compute the ideal decomposition of I ∩ I ′ for two ideals I and I ′,

(CompUp) to compute the ideal decomposition of the residual X \↑x = {x′ ∈
X | x 6≤ x′} for any x in X.

Example 2.5 (Effective Representations of Vector Ideals). We shall use vectors
in Ndω as representations. For (ContId), given two vectors u and v in Ndω,
↓u ⊆ ↓v if and only if u v v. Furthermore, for (IntId), ↓u ∩ ↓v = ↓w where
w(i) def= min≤(u(i),v(i)) for all 1 ≤ i ≤ d. Finally, for (CompUp), if u is
in Nd, then Nd \ ↑u =

⋃
1≤j≤d |u(j)>0 ↓u/j where u/j(i) = ω if i 6= j and

u/j(j)
def= u(j)− 1.

Crucially for the applicability of our approach, effective ideal representations
exist for most wqos of interest [22, 23].

3. Backward Coverability

Let us recall in this section the generic backward coverability algorithm for
well-structured transition systems [1, 2]—the first published instance we know
of this algorithm was incidentally for the case of reset VAS [30].

We take a dual view on this algorithm, by considering downwards-closed sets
represented through their ideal decompositions, instead of the usual view using
upwards-closed sets represented through their minimal elements. We present the
generic algorithm, but will illustrate all the notions using the case of VAS and
reset VAS in Section 3.2, and derive naive upper bounds for both in Section 3.3—
which will turn out to be optimal for reset VAS.

3.1. Generic Algorithm

Consider a WSTS (X,→,≤) and a target configuration y from X to be
covered. Define D∗

def= {x ∈ X | ∀y′ ≥ y . x��→∗ y′} as the set of configurations
that do not cover y. The purpose of the backward coverability algorithm is to
compute D∗; solving a coverability instance with source configuration x0 then
amounts to checking whether x0 belongs to D∗. The idea of the algorithm is to
compute successively for every k the set Dk of configurations that do not cover
y in k steps or fewer:

D∗ =
⋂
k

Dk , Dk
def= {x ∈ X | ∀y′ ≥ y . x���→≤k y′} . (1)

7

The algorithm terminates as soon as Dk ⊆ Dk+1 (and thus Dk+j = Dk = D∗ for
all j). This is guaranteed to arise eventually by the descending chain condition,
since otherwise we would have an infinite descending chain of downwards-closed
sets D0) D1) D2) · · · .

We shall show that the over-approximations Dk can be computed inductively
on k by

D0 = X \ ↑y , Dk+1 = Dk ∩ Pre∀(Dk) , (2)

where for any set S ⊆ X,

Pre∀(S) def= {x ∈ X | ∀z ∈ X . (x→ z =⇒ z ∈ S)} . (3)

Remark 3.1 (Coverability of an Upwards-Closed Set). It is straightforward to
extend the algorithm so that it computes the set of all configurations from which
a given upwards-closed set U =

⋃
y∈minU ↑y is not reachable: simply start with

D0 = X \ U =
⋂
y∈minU X \ ↑y.

Remark 3.2 (Coverability Witnesses). Let us call a computation x→∗ y′ for y′ ≥
y a coverability witness. If x 6∈ D` at some step ` of the backward coverability
algorithm, then this entails that x →≤` y′ for some y′ ≥ y and thus that there
is a coverability witness of length at most `.

Correctness. The correctness of the algorithm hinges on the following claim:

Claim 3.3 (Correctness). Equations (1) and (2) define the same Dk.

Proof. By induction on k. For the base case, x�
��→≤0 y′ for all y′ ≥ y, if and

only if x 6≥ y, i.e. if and only if x is in X \ ↑y. For the induction step and

for all y′ ≥ y, x����→≤k+1 y′ if and only if x���→≤k y′ and there does not exist
any z with x → z and z →≤k y′. The former is equivalent to x belonging to
Dk by induction hypothesis. The latter occurs if and only if for all z in X, if
x → z then z�

��→≤k y′, i.e. if and only if x belongs to Pre∀(Dk) by induction
hypothesis.

Effective Ideal Representations. The algorithm as presented above relies on the
effectiveness of Eq. (2). We are going to use effective representations of the
ideal decompositions of the Dk to this end. Let us first check that we are
indeed dealing with downwards-closed sets:

Claim 3.4 (Downward-closure). For all k, Dk is downwards-closed.

Proof. By induction on k. For the base case, D0 = X \ ↑y is downwards-
closed. For the induction step, first observe that, if D is downwards-closed,
then Pre∀(D) is also downwards-closed. Indeed, let x ≤ x′ for some x′ in
Pre∀(D). Consider any z such that x→ z. Then by WSTS compatibility, there
exists z′ ≥ z such that x′ → z′. Since x′ belongs to Pre∀(D), z′ belongs to D.
Because D is downwards-closed, z also belongs to D. This shows x in Pre∀(D)
as desired. We conclude by noting that downwards-closed sets are closed under
intersection, hence Dk+1 = Dk ∩Pre∀(Dk) is downwards-closed by applying the
induction hypothesis to Dk.

8

The only additional effectiveness assumption we make is that:

(Pre) for any downwards-closed D (given by its ideal decomposition), the ideal
decomposition of Pre∀(D) is computable.

This is sufficient to compute the ideal decompositions of all the Dk. Indeed,
initially D0 is computed using (CompUp). Later, Pre∀(Dk) is computable by
(Pre), and its intersection with Dk is also computable by (IntId). Finally, recall
that, by ideal irreducibility, I1 ∪ · · · ∪ In ⊆ J1 ∪ · · · ∪ Jm for ideals I1, . . . , In
and downwards-closed J1, . . . , Jm if and only if for all 1 ≤ i ≤ n there exists
1 ≤ j ≤ m such that Ii ⊆ Jj . Therefore, the termination check Dk ⊆ Dk+1 is
effective by (ContId).

Remark 3.5 (Existential Predecessors). The classical presentation of the back-
ward coverability algorithm works with upwards-closed sets U , which are repre-
sented through their finitely many minimal elements in minU . The assumption
(Pre) is therefore replaced by the computability of a set of minimal elements for

Pre∃(U) def= {x ∈ X | ∃z ∈ U . x→ z} (4)

for an upwards-closed U represented by its minimal elements.
It turns out that, under the usual effectiveness assumptions on (X,≤) plus

the ideal effectiveness assumptions, the two assumptions on the computability
of Pre∀ and Pre∃ are equivalent. Indeed, we have the duality

Pre∀(D) = X \
(
Pre∃(X \D)

)
, (5)

where an ideal decomposition of X \ U for an upwards-closed U =
⋃
x∈minU ↑x

can be computed since X \U =
⋂
x∈minU X \ ↑x, while the minimal elements of

X \D can be computed using the Generalised Valk-Jantzen Lemma [31].1

Hence, assuming effective ideal representations, our view of the backward
coverability algorithm using downwards-closed sets is effective in the same cases
as the usual upwards-closed version of the algorithm.

3.2. Coverability for VAS and Reset VAS

We now show how the general backward algorithm can be instantiated to the
coverability problems for VAS and reset VAS. Although the resulting concrete
algorithms are essentially well-known, this both provides gentle examples and
allows us to introduce a few operations involving vector ideals that will be useful
in the sequel.

To obtain the instantiations for VAS and reset VAS, we need to prove that
they satisfy the various effectiveness assumptions. Example 2.5 dealt with (Con-
tId), (IntId), and (CompUp). By Remark 3.5, (Pre) is also effective since exis-
tential predecessors are well-known to be computable [1, 2].

1This last result is quite general, but it might be simpler in practice to implement this
computation directly; for instance, in the case of X = Nd, Nd \ ↓u for u ∈ Nd

ω is decomposed
as

⋃
1≤j≤d|u(j)<ω ↑u\j where u\j(i) = 0 if i 6= j and u\j(j) = u(j) + 1 otherwise, and

↑u ∩ ↑v = ↑w where w(i) = max≤(u(i),v(i)) for all 1 ≤ i ≤ d.

9

We nevertheless provide here a direct computation of universal predecessors.
Thus, given a downwards-closed D = ↓u1 ∪ · · · ∪ ↓um for some u1, . . . ,um in
Ndω, we want to compute a finite set of vectors v1, . . . ,vn from Ndω such that
Pre∀(D) = ↓v1∪· · ·∪↓vn. Using (ContId) we can then select the maximal such
vj to obtain incomparable ideals.

Universal Predecessors in VAS. Thanks to (IntId) and the fact that A is finite
(VAS are finitely branching), we start by reducing our computation to that of
predecessors along a specific action a from A: Pre∀(D) =

⋂
a∈A Prea∀(D) where

Prea∀(D) def= {v ∈ Nd | v + a ∈ Nd =⇒ v + a ∈ D} (6)

= {v ∈ Nd | v + a 6∈ Nd} ∪ ↓{v ∈ Nd | v + a ∈ D} (7)

= Nd \ ↑θ(a) ∪ ↓{v ∈ Nd | v + a ∈ D} , (8)

where θ(a) def= minv{v ∈ Nd | v + a ∈ Nd} is called the threshold of a and can
be computed for all 1 ≤ i ≤ d by

θ(a)(i) =

{
0 if a(i) ≥ 0

−a(i) otherwise.
(9)

Thus by (CompUp) it only remains to compute a representation for the decom-
position of ↓{v ∈ Nd | v + a ∈ D} =

⋃
1≤j≤m ↓{v ∈ Nd | v + a v uj}. For

each ideal ↓uj in the decomposition of D, ↓{v ∈ Nd | v + a v uj} is either the
empty set if uj 6w θ(−a), or ↓(uj − a) otherwise, where addition is extended
with ω + z = ω for all z in Z.

Example 3.6. Recall the VAS A÷2 = {(−2, 1)} from Example 2.2, and consider
the target configuration t = (0, 5). This yields D0 = ↓(ω, 4), and the backward
coverability algorithm computes the set of all configurations from which A÷2

cannot compute at least 5 in its second component; see Figure 2.

Universal Predecessors in Reset VAS. The same reasoning holds for reset VAS
as for VAS:

Pre∀(D) =
⋂

(a,R)∈A

Nd \ ↑θ(a) ∪
⋃

1≤j≤m

↓{v w θ(a) | R(v + a) ∈ ↓uj}

 ,

(10)
(where R(v +a) is defined as in Example 2.3). In order to compute a represen-
tation for this last set, given a vector v in Ndω and R ⊆ {1, . . . , d}, define vR as
the R-closure of v, which replaces the components in R by ω’s:

vR(i) def=

{
ω if i ∈ R
v(i) otherwise.

(11)

Then ↓{v w θ(a) | R(v + a) ∈ ↓uj} is either the empty set if uj
R 6w θ(−a), or

↓
(
uj

R − a
)

otherwise.

10

t

D0 = ↓(ω, 4)

t

D1 = ↓(1, 4) ∪ ↓(ω, 3)

t

D2 = ↓(1, 4)∪↓(3, 3)∪↓(ω, 2)

t

D3 = ↓(1, 4) ∪ ↓(3, 3) ∪
↓(5, 2) ∪ ↓(ω, 1)

t

D4 = ↓(1, 4) ∪ ↓(3, 3) ∪
↓(5, 2) ∪ ↓(7, 1) ∪ ↓(ω, 0)

t

D∗=D5 = ↓(1, 4)∪ ↓(3, 3)∪
↓(5, 2) ∪ ↓(7, 1) ∪ ↓(9, 0)

Figure 2: The successive Dk for A÷2 with target t = (0, 5).

Example 3.7. Recall the reset VAS Alog from Example 2.3, in which the first
two vector components are used to encode two control states. Setting

D0 = ↓(1, 0, ω, ω, 1) ∪ ↓(0, 1, ω, ω, 0) ,

the backward coverability algorithm computes as follows the set of all configu-
rations from which Alog cannot compute in its last component either at least 2
in state (1, 0) or at least 1 in state (0, 1).

D1 = ↓(0, 0, ω, ω, 1) ∪ ↓(1, 0, 1, ω, 1) ∪ ↓(1, 0, ω, ω, 0) ∪ ↓(0, 1, ω, ω, 0) ,

D2 = ↓(0, 0, ω, ω, 1) ∪ ↓(1, 0, 1, 0, 1) ∪ ↓(1, 0, 0, ω, 1) ∪ ↓(1, 0, ω, ω, 0)

∪ ↓(0, 1, ω, 0, 0) ∪ ↓(0, 1, 0, ω, 0) ,

D3 = ↓(0, 0, ω, ω, 1) ∪ ↓(1, 0, 1, 0, 1) ∪ ↓(1, 0, 0, 1, 1) ∪ ↓(1, 0, ω, ω, 0)

∪ ↓(0, 1, 2, 0, 0) ∪ ↓(0, 1, 0, 1, 0) ,

D4 = ↓(0, 0, ω, ω, 1) ∪ ↓(1, 0, 1, 0, 1) ∪ ↓(1, 0, 0, 1, 1) ∪ ↓(1, 0, 1, ω, 0)

∪ ↓(1, 0, ω, 0, 0) ∪ ↓(0, 1, 2, 0, 0) ∪ ↓(0, 1, 0, 1, 0) ,

D5 = ↓(0, 0, ω, ω, 1) ∪ ↓(1, 0, 1, 0, 1) ∪ ↓(1, 0, 0, 1, 1) ∪ ↓(1, 0, 0, ω, 0)

∪ ↓(1, 0, 1, 1, 0) ∪ ↓(1, 0, 3, 0, 0) ∪ ↓(0, 1, 2, 0, 0) ∪ ↓(0, 1, 0, 1, 0) ,

D∗ = D6 = ↓(0, 0, ω, ω, 1) ∪ ↓(1, 0, 1, 0, 1) ∪ ↓(1, 0, 0, 1, 1) ∪ ↓(1, 0, 0, 2, 0)

∪ ↓(1, 0, 1, 1, 0) ∪ ↓(1, 0, 3, 0, 0) ∪ ↓(0, 1, 2, 0, 0) ∪ ↓(0, 1, 0, 1, 0) .

3.3. Ackermann Upper Bounds for VAS and Reset VAS

Let us finally show how to bound the running time of the backward cov-
erability algorithm on VAS and reset VAS. The main ingredient to that end
is a combinatorial statement on the length of controlled descending chains of
downwards-closed sets.

11

Essentially, we shall observe here that, for a suitable notion of size, the
downwards-closed sets that are produced by the backward coverability algorithm
for VAS and reset VAS cannot grow in an uncontrolled fashion. We shall then be
able to infer bounds on the number of iterations before saturation, and thereby
on the running time.

Controlled Descending Chains. Consider some setX with a size function ‖.‖:X →
N. We require that for every n in N, the set of elements of size at most n in X
is finite (X is called a combinatorial structure).

Given a monotone control function g:N → N and an initial size n ∈ N,
we say that a sequence x0, x1, . . . of elements from X is (g, n)-controlled if
‖xi‖ ≤ gi(n) the ith iterate of g applied to n. In particular, ‖x0‖ ≤ n initially.

This notion can be applied to the descending chain D0) D1) · · · con-
structed by the backward coverability algorithm for a d-dimensional VAS or reset
VAS A and target vector t ∈ Nd. We define for this ‖.‖ as the infinity norm on
elements and finite subsets of Zdω

def= (Z]{ω})d, i.e. the maximum absolute value
of any occurring integer. For instance, ‖(ω, ω)‖ = 0, ‖{(1, ω, 5), (0, ω, ω)}‖ = 5,
and in Example 2.2 ‖A÷2‖ = 2. When considering a downwards-closed set D
with decomposition ↓u1 ∪ · · · ∪ ↓um, we define ‖D‖ def= ‖{u1, . . . ,um}‖. Hence
what is controlled in a descending chain D0) D1) · · · is actually its ideal
representation. Similarly, for an upwards-closed set U ⊆ Nd, we shall define its
size as that of its finite basis ‖U‖ def= maxu∈minU ‖u‖.

Lemma 3.8 (Size-Preserving Operations). Let u,u′ be ideal representations in
Ndω, v,v′ vectors in Nd, and a a vector in Zd. Then

‖↓u ∪ ↓u′‖ ≤ max{‖u‖, ‖u′‖} ‖↑v ∪ ↑v′‖ ≤ max{‖v‖, ‖v′‖}
‖↓u ∩ ↓u′‖ ≤ max{‖u‖, ‖u′‖} ‖↑v ∩ ↑v′‖ ≤ max{‖v‖, ‖v′‖}
‖Nd \ ↑v‖ ≤ max{‖v‖ − 1, 0} ‖Nd \ ↓u‖ ≤ ‖u‖+ 1

‖u + a‖ ≤ ‖u‖+ ‖a‖ ‖v + a‖ ≤ ‖v‖+ ‖a‖ .

Proof. The inequalities for unions are immediate by definition. Regarding ide-
als, the inequalities for intersections and complementations follow from (IntId)
and (CompUp) as detailed in Example 2.5. The remaining inequalities are ob-
tained similarly.

Claim 3.9 (Control for VAS and Reset VAS). The descending chain D0) D1)
· · · (cf. (2)) is (g, n)-controlled for g(q) def= q + ‖A‖ and n def= ‖t‖.

Proof. The fact that ‖D0‖ ≤ ‖t‖ follows from ideal complementation in Lemma 3.8.
Regarding the control function g, still by Lemma 3.8, it suffices to show that
‖Pre∀(D)‖ ≤ ‖D‖ + ‖A‖ for all D = ↓u1 ∪ · · · ∪ ↓um. Note that for reset
VAS, ‖ujR−a‖ ≤ ‖uj −a‖. Hence for both VAS and reset VAS, ‖Pre∀(D)‖ ≤
maxa max1≤j≤m(‖Nd \ ↑θ(a)‖, ‖uj − a‖), where Lemma 3.8 allows to conclude
since ‖θ(a)‖ ≤ ‖a‖ ≤ ‖A‖.

12

Proper Ideals & Upper Bound. Consider a computation D0) D1) · · ·) D` =
D`+1 of the backward coverability algorithm for a VAS or a reset VAS. At each
step 0 ≤ k ≤ `, the cost of computing Dk+1 from Dk and of checking for
termination is polynomial in ‖A‖ and ‖Dk‖. The difficulty is to evaluate how
large ` can be.

The idea here is that, at every step 0 ≤ k < `, there is at least one proper
ideal Ik: an ideal appearing in the representation of Dk but not in that of Dk+1;
then Ik ⊆ Dk but Ik 6⊆ Dk+1. Note that for all 0 ≤ j < k < `, Ij 6⊆ Ik, since
the contrary would entail Ij ⊆ Ik ⊆ Dk ⊆ Dj+1. Hence the sequence (Ik)0≤k<`
of proper ideals is a bad sequence for inclusion.

In the case of VAS and reset VAS, those proper ideals Ik are of the form
↓vk for some representation vk in Ndω, and the sequence v0,v1, . . . ,v`−1 is also
controlled by (g, n) according to Claim 3.9. Using the combinatorial results
from [28, Corollary 2.25 and Theorem 2.34] on such bad sequences, we obtain
the following length function theorem for descending chains of downwards-closed
subsets of Nd; as the point of this paper is rather to avoid such high complexities,
the reader will find all the necessary details in Appendix A.

Theorem 3.10 (Length Function Theorem for Descending Chains). Let n > 0.
Any (g, n)-controlled descending chain D0) D1) · · · of downwards-closed
subsets of Nd is of length at most hωd+1(n · d!), where h(q) def= d · g(q).

Here hα for an ordinal α and base function h denotes the αth Cichoń func-
tion [28].

Recalling that every Dk+1 is computable from Dk in polynomial time, we
furthermore have that each of the ` steps of computation can be performed in
time polynomial in g`(n). Since g is primitive-recursive according to Claim 3.9,
the overall complexity for an instance of size n is bounded by ackermann(p(n))
for some primitive-recursive function p, which lies within the complexity class
Ackermann [32, Corollary 4.3].

Corollary 3.11. Coverability in VAS and reset VAS is in Ackermann.

Such an upper bound is overly pessimistic for VAS, but is actually tight for
reset VAS: coverability for reset VAS is indeed complete for Ackermann [26,
6, 28].

4. Complexity for VAS

We know from Bozzelli and Ganty’s 2ExpTime upper bound [19, Theorem 2]
for the backward coverability algorithm that the Ackermann upper bound
from the previous section is far from tight in the case of VAS. We show in this
section that the descending chains D0) D1) · · · computed by the backward
coverability algorithm for VAS enjoy a structural invariant, which we dub ω-
monotonicity, and which is absent from the chains computed for reset VAS.
In turn, we show in Theorem 4.4 that controlled decreasing chains that are
ω-monotone are much shorter than arbitrary ones, allowing us to derive the
desired 2ExpTime bound in Corollary 4.6.

13

Dk

Ik

Dk+1

E
k

(

Ik+1

Dk+2

E
k
+
1

(

J

Figure 3: Schematic view of the proof of Claim 4.2, where ideals are represented as cones.

4.1. Transitions Between Proper Ideals

The proof of ω-monotonicity in the case of VAS can be shown directly,
but reflects a more general proper transition sequence property of the generic
backward coverability algorithm. Since the latter notion will be useful more
widely, we first develop the material around it in this section, and then consider
the ω-monotonicity for VAS in the next.

Transitions over Ideals. Let us first lift the transition relation → of a WSTS
(X,→,≤) to work over ideals. Define for any ideal I of X

Post∃(I) def= {z ∈ X | ∃x ∈ I . x→ z} . (12)

Then ↓Post∃(I) is downwards-closed with a unique decomposition into maximal
ideals. We follow Blondin et al. [33] and write ‘I → J ’ if J is an ideal from the
decomposition of ↓Post∃(I).

Example 4.1 (Transitions over Vector Ideals). In the case of a VAS A, observe
that, if v is a vector from Ndω, then Post∃(↓v) =

⋃
a∈A ↓(v + a). Each such

↓(v+a), if not empty, is already an ideal. In the case of a reset VAS A, we have
similarly Post∃(↓v) =

⋃
(a,R)∈A ↓R(v+a). Of course, to obtain decompositions,

non-maximal ideals may need to be removed from those union expressions.

Proper Transition Sequences. We can now state the result that motivates this
subsection (see Figure 3 for a picture).

Claim 4.2 (Proper Transition Sequence). If Ik+1 is a proper ideal of Dk+1, then
there exist an ideal J and a proper ideal Ik of Dk such that Ik+1 → J ⊆ Ik.

Proof. Consider first a computation D0) D1) · · ·) D` = D`+1 of the generic
backward coverability algorithm, where each of the Dk is represented as a finite
union of ideals. At each refinement step Dk) Dk+1 of the algorithm, some of
the ideals from the decomposition of Dk—namely the proper ones—might be
removed, while others might remain untouched in the decomposition of Dk+1.
Thus, an ideal is proper in Dk if and only if it intersects the set of elements

14

excluded between steps k and k + 1: by basic set operations, first observe that
(2) is equivalent to

Dk+1 = Dk \ {x ∈ Dk | ∃z 6∈ Dk . x→ z} for k ≥ 0. (13)

Moreover, noting D−1
def= X, z in (13) must belong to Dk−1, or x would have

already been excluded before step k. Noting Ek for the set of excluded elements
at step k, we have therefore Dk+1 = Dk \ Ek where

E−1
def= ↑y , Ek

def= {x ∈ Dk | ∃z ∈ Ek−1 . x→ z} . (14)

Consider now a proper ideal Ik+1 of Dk+1: this means Ik+1 ∩ Ek+1 6= ∅.
This implies in turn ↓Post∃(Ik+1) ∩ Ek 6= ∅ by (14), thus there exists J such
that Ik+1 → J and J ∩ Ek 6= ∅.

Since Ik+1 ⊆ Dk+1 ⊆ Pre∀(Dk) by (2), we also know that Post∃(Ik+1) ⊆
Dk. By ideal irreducibility, it means that J ⊆ Ik for some ideal Ik from the
decomposition of Dk. Observe finally that Ik ∩Ek ⊇ J ∩Ek 6= ∅, i.e. that Ik is
proper.

4.2. ω-Monotonicity

For u in Ndω, its ω-set is the subset ω(u) of {1, . . . , d} such that u(i) = ω if
and only if i ∈ ω(u). We say that a descending chain D0) D1) · · ·) D` of
downwards-closed subsets of Nd is ω-monotone if for all 0 ≤ k < ` − 1 and all
proper ideals ↓vk+1 in the decomposition of Dk+1, there exists a proper ideal
↓vk in the decomposition of Dk such that ω(vk+1) ⊆ ω(vk). Note that, in VAS
and reset VAS alike, because Dk) Dk+1 and by ideal irreducibility, for any
vk+1 from the decomposition of Dk+1 there exists some vk from that of Dk

with ↓vk+1 ⊆ ↓vk and thus ω(vk+1) ⊆ ω(vk), but that vk may not be proper
(then vk+1 = vk).

As we can see with Example 3.7 however, the descending chains computed
for reset VAS are in general not ω-monotone: (1, 0, ω, ω, 0) is proper in D3 and
has a proper transition to (0, 1, 0, ω, 0) in D2 using (−1, 1,−2, 1, 0, {3}) from
Alog, but no ideal with {3, 4} as ω-set is proper in D2.

Claim 4.3 (VAS Descending Chains are ω-Monotone). The descending chains
computed by the backward coverability algorithm for VAS are ω-monotone.

Proof. Let D0) D1) · · ·) D` be the descending chain computed for a VAS
A. Suppose 0 ≤ k < `− 1 and ↓vk+1 is a proper ideal in the decomposition of
Dk+1. By Claim 4.2 (cf. Example 4.1), there exists a proper ideal ↓vk in the
decomposition of Dk such that vk+1 + a v vk. We conclude that ω(vk+1) ⊆
ω(vk).

4.3. Upper Bound

We are now in position to state a refinement of Theorem 3.10 for ω-monotone
controlled descending chains. For a control function g:N→ N, define the func-
tion g̃:N2 → N by induction on its first argument:

g̃(0, n) def= 1 , g̃(m+ 1, n) def= g̃(m,n) + (gg̃(m,n)(n) + 1)m+1 . (15)

15

Dk+1

uj

vj

Dj

⊆

uj+1

vj+1

Dj+1

(

Ω = ω(uj) = ω(vj) = ω(uj+1) = ω(vj+1)

v

Figure 4: Schematic view of the proof of Claim 4.5 for j ∈ {k + 1, . . . , k′ − 1}. The red
connection witnesses ω-monotonicity: vj+1 → vj+1 + a v vj for some a ∈ A by Claim 4.2,
and this implies ω(vj+1) ⊆ ω(vj).

Theorem 4.4 (Length Function Theorem for ω-Monotone Descending Chains).
Any (g, n)-controlled ω-monotone descending chain D0) D1) · · · of downwards-
closed subsets of Nd is of length at most g̃(d, n).

Proof. Note that D` the last element of the chain has the distinction of not
having any proper ideal, hence it suffices to bound the index k of the last
set Dk with a proper ideal ↓vk, and add one to get a bound on `. We are
going to establish by induction on d − |Ω| that, if ↓vk is a proper ideal from
the decomposition of Dk and its ω-set is Ω, then k < g̃(d − |Ω|, n), which by
monotonicity of g̃ in its first argument entails k < g̃(d, n) as desired.

For the base case, |Ω| = d implies that vk is the vector with ω’s in every
coordinate, which can only occur in D0. The inductive step is handled by the
following claim, when setting k < g̃(d− |Ω| − 1, n) by induction hypothesis for
the maximal index with a proper ideal whose ω-set strictly includes Ω:

Claim 4.5. Let Ω ⊆ {1, . . . , d} and k < k′ be such that:

(i) for all j ∈ {k+ 1, . . . , k′− 1}, the decomposition of Dj does not contain a
proper ideal whose ω-set strictly includes Ω;

(ii) the decomposition of Dk′ contains a proper ideal whose ω-set is Ω.

Then we have k′ − k ≤ (‖Dk+1‖+ 1)(d−|Ω|).

Proof of Claim 4.5. See Figure 4 for a depiction of the main arguments.
From assumption (ii), there exists a proper ideal ↓vk′ in the decomposition

of Dk′ with Ω = ω(vk′). By ω-monotonicity, for every j = k′−1, k′−2, . . . , k+1
we can find a proper ideal ↓vj in the decomposition of Dj such that Ω =
ω(vk′) ⊆ ω(vk′−1) ⊆ · · · ⊆ ω(vk+1). Due to assumption (i), these inclusions
cannot be strict, hence

Ω = ω(vk′) = ω(vk′−1) = · · · = ω(vk+1) . (16)

16

Since they are proper, those k′ − k vectors are mutually distinct.
Consider any such vj with j ∈ {k + 1, . . . , k′}; we shall prove that

‖vj‖ ≤ ‖Dk+1‖ . (17)

Since Dk+1 ⊇ Dj , by ideal irreducibility there exists a vector uj in the decom-
position of Dk+1 such that

vj v uj , (18)

which implies ω(vj) ⊆ ω(uj). We claim that

ω(uj) = ω(vj) = Ω . (19)

Indeed, either uj = vj and (19) holds, or because ↓vj is proper at Dj , we have
that ↓uj is proper at Dj′ for some j′ ∈ {k + 1, . . . , j − 1}. Hence (19) holds,
since otherwise we would have Ω = ω(vj) (ω(uj), contradicting assumption (i)
on j′. Therefore, by (18) and (19), ‖vj‖ ≤ ‖uj‖ ≤ ‖Dk+1‖ and (17) holds.

To conclude, note that there can be at most (‖Dk+1‖ + 1)(d−|Ω|) mutually
distinct vectors in Ndω with Ω as ω-set (c.f. (16)) and norm bounded by ‖Dk+1‖
(c.f. (17)).

Finally, putting together Claim 3.9 (control for VAS), Claim 4.3 (ω-monotonicity),
and Theorem 4.4 (lengths of controlled ω-monotone descending chains), we ob-
tain that the backward coverability algorithm for VAS runs in 2ExpTime, and
in pseudo-polynomial time if the dimension d is fixed.

Corollary 4.6. For any d-dimensional VAS A and target vector t, the backward
coverability algorithm terminates after at most ((‖A‖+ 1)(‖t‖+ 2))(d+1)! steps.

Proof. Let h(m,n) def= g̃(m,n)(‖A‖ + 1)(n + 2) where g(q) = q + ‖A‖ as in
Claim 3.9. We have

h(m+ 1, n) = g̃(m+ 1, n)(‖A‖+ 1)(n+ 2)

=
(
g̃(m,n) + (gg̃(m,n)(n) + 1)m+1

)
(‖A‖+ 1)(n+ 2)

=
(
g̃(m,n) + (g̃(m,n)‖A‖+ n+ 1)m+1

)
(‖A‖+ 1)(n+ 2)

≤ (2g̃(m,n)‖A‖+ n+ 1)m+1(‖A‖+ 1)(n+ 2)

≤ (h(m,n))m+2 ,

so g̃(m,n) ≤ h(m,n) ≤ ((‖A‖+1)(n+2))(m+1)!, which applies to the backward
coverability algorithm for n = ‖t‖ and m = d.

As mentioned in the introduction, this 2ExpTime upper bound is not tight
for the coverability problem for VAS—which is ExpSpace-complete [11, 12].
However, the bound is tight for the backward coverability algorithm: as shown
by Bozzelli and Ganty [19, Corollary 2] using Lipton’s construction, there is
a uniform family of VAS (An)n∈N each of size O(n) on which the algorithm
requires 22n

iterations.

17

By Remark 3.2, the double exponential upper bound on the length of the
descending chain D0) D1) · · · constructed by the backward coverability
algorithm for VAS translates into a bound on the length of the shortest cover-
ability witnesses—this is a converse to the result of Bozzelli and Ganty. Then,
the ExpSpace complexity upper bound of Rackoff [12] can be recovered using
a nondeterministic algorithm that guesses and checks the existence of such a
witness.

5. Top-Down Tree Coverability

We turn to demonstrating how easily our new proof of the doubly-exponential
bound for the backward coverability algorithm on VAS can be extended to derive
(the known) optimal bounds for top-down alternating branching VAS: Tower
in general [16] and 2ExpTime with alternation only [15]. While this complexity
analysis does not yield any new results, we believe it brings some additional
insights into our dual view of the backward coverability algorithm. Also, unlike
with VAS, the upper bounds we obtain show that the backward coverability
algorithm has optimal complexity.

We start this section by extending the notion of well-structured transition
systems to top-down tree computations (Section 5.1) and adapting the (dual)
backward coverability algorithm to the top-down setting (Section 5.2). We then
recall the definition of alternating branching VAS from [16] in Section 5.3, and
show in Section 5.4 that their instantiation of the dual backward coverability
algorithm enjoys the same ω-monotonicity as in the case of VAS, from which
we derive the known upper bounds from [15, 16].

5.1. Top-Down Well-Structured Transition Systems

The theory of well-structured transition systems can be lifted in a very nat-
ural way to top-down tree computations, although we are not aware of any
literature on the subject. One can nevertheless find enlightening parallels with
monotonic games [34], which we shall exploit next in Section 5.2.

Branching transition systems (X,→) allow their transitions to be branching,
i.e. to map configurations to sets of configurations: → ⊆ X ×P(X) where P(X)
denotes the powerset of X. Intuitively, a computation in a branching transition
system starting from some initial configuration x is an X-labelled tree with root
label x, such that every node labelled y has set of child labels S for some y → S.

We adapt the notations of Section 2.1 by lifting → to a relation ⇒ between
sets of configurations: S ⇒ S′ if and only if for all x in S there exists Sx ⊆ S′

with x → Sx. The notations ⇒≤k and ⇒∗ are then defined as usual for the
lifted relation ⇒; for instance, S ⇒≤k S′ if and only for every x in S, there is a
computation tree of height at most k with root label x and leaf labels included
in S′.

18

Top-Down Compatibility. In order to define top-down WSTS, the compatibility
condition must be lifted to work with sets of configurations, and we use the
Smyth ordering to this end. More precisely, let (X,≤) be a quasi-order; we
define the Smyth quasi-order (P(X),⊆S) by S ⊆S S

′ for S, S′ ∈ P(X) if, for all
x′ ∈ S′, there exists x ∈ S such that x ≤ x′.

Definition 5.1 (Top-Down WSTS). A top-down WSTS is a triple (X,→,≤)
where (X,→) is a branching transition system and (X,≤) is a wqo with the
following top-down compatibility condition: if x ≤ x′ and x → S, then there
exists S′ ⊇S S with x′ → S′.

Note that we do not require → to map to finite sets, nor (P(X),⊆S) to be a
wqo (which it might not be in general; see [35] and the discussion in Section 6.1).

5.2. Backward Top-Down Coverability

The top-down coverability problem (also called the leaf coverability prob-
lem), given an ordered branching transition system (X,→,≤) and root and leaf
configurations x, y ∈ X, asks whether there exists a finite computation tree
whose root label is x and whose every leaf label is ≥ y. Equivalently, it asks
whether {x}⇒∗ ↑y.

Game Viewpoint. A top-down coverability instance defines a two-player game
over an infinite arena with positions in X. Starting from x, Player 1 attempts to
cover y, while Player 2 attempts to foil it. At each round, in a configuration z,

1. Player 1 chooses an applicable transition z → S

2. Player 2 then chooses a branch, i.e. some z′ ∈ S, and the game proceeds
to the next round from z′.

Player 1 wins the game if a configuration z ≥ y is eventually reached. One can
see that computation trees represent strategies for Player 1, and such a tree has
all its leaves ≥ y if and only if it is a winning strategy.

Winning Regions. Observe that, using this game-theoretic viewpoint, the win-
ning region for Player 1 is an upwards-closed set of configurations, and con-
versely the winning region for Player 2 is downwards-closed. In our dual view of
the backward top-down coverability algorithm using downwards-closed sets, we
actually compute the winning region D∗ for Player 2 by successive refinements
of the winning region Dk for the game limited to at most k rounds. A con-
figuration z then belongs to Dk+1 if, for all choices of rules by Player 1, there
exists a move to a configuration z′ in the winning region Dk of Player 2. Using
this insight, the generic algorithm from Section 3 can be adapted to top-down
coverability by replacing the Pre∀ operator from (3) with

Pre∀∃(S) def= {x ∈ X | ∀S′ ⊆ X . x→ S′ =⇒ S′ ∩ S 6= ∅} . (20)

19

Downward-Closure and Correctness. It is straightforward to check that Pre∀∃
preserves the property of downward-closure as in Claim 3.4. Given the initial
downwards-closed D0

def= X \ ↑y, as in Section 3, we write D∗ for the last set
in the longest (necessarily finite) descending chain of downwards-closed sets
D0) D1) · · · defined by Dk+1

def= Dk ∩ Pre∀∃(Dk). From the definition of
Pre∀∃, we have the required correctness property, matching Claim 3.3:

Claim 5.2 (Correctness). For all k, Dk = {x ∈ X | {x}���⇒≤k ↑y}.
Thus, the set D∗ consists of all configurations x ∈ X such that all computa-
tion trees of (X,→,≤) whose root label is x have some leaf label in D0. This
generic procedure can be turned into an algorithm under the same effectiveness
assumptions as in Section 3, where (Pre) now requires the ideal decomposition
of Pre∀∃(D) to be computable from the ideal decomposition of D.

5.3. Alternating Branching VAS

Recall that an alternating branching vector addition system (ABVAS) of
dimension d ∈ N is a triple (A,B∧,B+) where A ⊆ Zd is a finite set of unary
rules, B∧ ⊆ Zd × Zd is a finite set of fork rules, and B+ ⊆ Zd is a finite set of
split rules.

An ABVAS defines a top-down WSTS (Nd,→,v) where the transition rela-
tion → is the union of

• unary transitions u→ {u + a} for some a in A,

• fork transitions u→ {u + b1,u + b2} for some (b1, b2) in B∧, and

• split transitions u → {u1,u2} where u + b = u1 + u2 for some b in B+

with u + b in Nd.

Recall that all the vectors u, u + a, u + b1, u + b2, u1, and u2 must belong to
Nd. We can easily check that it satisfies top-down compatibility.

Thus a VAS is an ABVAS with empty B∧ and B+; an ABVAS with B∧ = ∅
is called a branching VAS (BVAS), and one with B+ = ∅ is called an alternat-
ing VAS (AVAS). Such systems appear in a variety of contexts in relation with
fragments of propositional linear logic, simulation relations, computational lin-
guistics, etc. [36, 37, 15, 16].

Example 5.3. Consider the BVAS (A, ∅,B+) defined by

A def= {(1,−1, 0, 0,−1)} B+
def= {(0, 0, 1,−1, 0), (0, 1,−1, 0, 0)} .

Observe that the only way to cover (1, 0, 0, 0, 0) from (0, 0, 0, 1, n) is to start
initially with n ≥ 4; this corresponds to the computation tree represented in
Figure 5.

The top-down coverability problem in ABVAS is equivalent to top-down
coverability of ABVAS with join semantics, in which the fork rules are applied
by taking pointwise maxima (i.e. u → {u1 + b1,u2 + b2} for (b1, b2) in B∧ if
u = max{u1,u2} and u, u1, u1 + b1, u2, and u2 + b2 are in Nd), and also to
the reachability problem for lossy ABVAS [16].

20

(0, 0, 0, 1, 4)

(0, 0, 1, 0, 2)

(0, 1, 0, 0, 1)

(1, 0, 0, 0, 0)

(0, 1, 0, 0, 1)

(1, 0, 0, 0, 0)

(0, 0, 1, 0, 2)

(0, 1, 0, 0, 1)

(1, 0, 0, 0, 0)

(0, 1, 0, 0, 1)

(1, 0, 0, 0, 0)

Figure 5: A computation tree for the BVAS of Example 5.3.

5.4. Complexity for ABVAS

We instantiate now the backward top-down coverability algorithm of Sec-
tion 5.2 to the case of top-down ABVAS. Similarly to the cases of VAS and
reset VAS in sections 3.2 and 3.3, we shall start by giving an explicit computa-
tion for predecessors, allowing us to provide bounds on the sizes of ideals in the
course of the backward top-down coverability algorithm. The next step will be
to show that ω-monotonicity also holds for top-down ABVAS.

Effectiveness and Control. Note that for every n, there are finitely many vectors
v in Ndω of size at most n. Thus the effectiveness of Pre∀∃ is a consequence of
its control, for which we have the following counterpart to Claim 3.9.

Claim 5.4 (Control for Top-Down ABVAS). The descending chain D0) D1)
· · · is (g, n)-controlled for g(x) def= max{x+ ‖A‖, x+ ‖B∧‖, 2x+ ‖B+‖+ 1} and
n def= ‖t‖. For AVAS, i.e. when B+ is empty, the term 2x+‖B+‖+1 disappears.

Proof. First observe from the definition of Pre∀∃ in (20) that

Pre∀∃(S) = PreA∀ (S) ∩ PreB∧
∀∃ (S) ∩ Pre

B+

∀∃ (S) (21)

where

PreA∀ (S) def= {v ∈ Nd | ∀a ∈ A . v + a ∈ Nd =⇒ v + a ∈ S} , (22)

PreB∧
∀∃ (S) def=

{
v ∈ Nd

∣∣∣∣ ∀(b1, b2) ∈ B∧ . v + b1 ∈ Nd ∧ v + b2 ∈ Nd
=⇒ v + b1 ∈ S ∨ v + b2 ∈ S

}
, (23)

Pre
B+

∀∃ (S) def=

{
v ∈ Nd

∣∣∣∣ ∀b ∈ B+.∀v1,v2 ∈ Nd . v + b = v1 + v2

=⇒ v1 ∈ S ∨ v2 ∈ S

}
. (24)

Let us examine the three cases in (21); by (IntId) for vector ideals, the size
of the ideals in Pre∀∃(D) will be bounded by the maximal size over all three
cases. For (22),

PreA∀ (D) =
⋂
a∈A

Prea∀(D) (25)

21

as defined in (6), entailing ‖PreA∀ (D)‖ ≤ ‖D‖ + ‖A‖ as seen in Claim 3.9.
For (23),

PreB∧
∀∃ (D) =

⋂
(b1,b2)∈B∧

(Preb1

∀ (D) ∪ Preb2

∀ (D)) (26)

and thus ‖PreB∧
∀∃ (D)‖ ≤ ‖D‖+ ‖B∧‖. Finally, regarding (24), we are here in a

situation where Remark 3.5 and footnote 1 lead to a much simpler analysis:

Pre
B+

∀∃ (D) = Nd \ (Pre
B+

∃∀ (Nd \D)) (27)

where ‖Nd \D‖ ≤ ‖D‖+ 1 by Lemma 3.8, and

Pre
B+

∃∀ (Nd \D) =
⋃

b∈B+

{v1 + v2 − b ∈ Nd | v1,v2 ∈ Nd \D} . (28)

This last expression yields ‖Pre
B+

∃∀ (Nd \D)‖ ≤ 2(‖D‖+ 1) + ‖B+‖, and finally

‖Pre
B+

∀∃ (D)‖ ≤ 2‖D‖+ ‖B+‖+ 1 as desired.

ω-Monotonicity. The property that allows us to deduce that the backward top-
down coverability algorithm is optimal for top-down ABVAS, and also when
restricted to AVAS, is again ω-monotonicity of the downwards-closed sets that
it computes. We extend for this claims 4.2 and 4.3.

Claim 5.5 (Top-Down ABVAS Descending Chains are ω-Monotone). The de-
scending chains computed by the backward top-down coverability algorithm for
ABVAS are ω-monotone.

Proof. Let D0) D1) · · ·) D` be the descending chain computed for a top-
down ABVAS (A,B∧,B+). Suppose 0 ≤ k < `− 1 and vk+1 is a proper vector
in the decomposition of Dk+1. Then ↓vk+1 6⊆ Pre∀∃(Dk+1), so there is a case
for each of the three types of rules in (21).

Split Here some b ∈ B+ and v′,v′′ ∈ Ndω are such that vk+1 + b = v′ + v′′

and ↓v′, ↓v′′ 6⊆ Dk+1. Without loss of generality, we may assume that the
ω-sets of v, v′ and v′′ are the same. Since ↓vk+1 ⊆ Pre∀∃(Dk), we have
that either ↓v′ ⊆ Dk or ↓v′′ ⊆ Dk, say the former. Let vk be any vector
in the decomposition of Dk such that v′ v vk. We conclude that vk is
proper and that ω(vk+1) ⊆ ω(vk).

Fork This case is similar but easier as we may assume vk+1 + b1 = v′ and
vk+1 + b2 = v′′.

Unary This case is as for VAS, cf. the proof of Claim 4.3.

22

Upper Bounds. We are now equipped to establish, by applying the length func-
tion theorem for ω-monotone descending chains (Theorem 4.4) that the back-
ward top-down coverability algorithm for top-down ABVAS runs in Tower in
general and 2ExpTime with alternation only. Since the ideal decomposition of
each Dk+1 is computable in time polynomial in the bound on the size of Dk, it
suffices to bound the number of iterations of the main loop.

Corollary 5.6. For any d-dimensional ABVAS (A,B∧,B+) and target vec-
tor t, the backward top-down coverability algorithm terminates after at most

2.
..2︸︷︷︸
d

32(‖t‖+L)

steps, where L def= max{‖A‖, ‖B∧‖, ‖B+‖+ 1}.

For AVAS, i.e. when B+ is empty, the algorithm terminates after at most
((L′ + 1)(‖t‖+ 2))(d+1)! steps, where L′ def= max{‖A‖, ‖B∧‖}.

Proof. As top-down ABVAS have controlled ω-monotone chains, we can ap-
ply Theorem 4.4. Recall Equation (15), and let us over-approximate the con-
trol function from Claim 5.4 by g†(q) def= 2q + L. Define h(m,n) def= 32(n +

L)(g̃†(m,n))2; then

g̃†(m+ 1, n) ≤ (2g̃
†(m,n)(n+ L+ 1))m+1 ≤ 2(g̃†(m,n)+1)(n+L+1)(m+1) ≤ 2h(m,n)/4

hence

h(m+ 1, n) ≤ 32(n+ L)2h(m,n)/2 ≤ 25+n+L+h(m,n)/2 ≤ 2h(m,n) ,

so

g̃†(d, n) ≤ h(d, n) ≤ 2.
..2︸︷︷︸
d

32(n+L)

.

Regarding top-down AVAS, let also h′(m,n) def= g̃‡(m,n)(L′+1)(n+2) where
g‡(q) def= q + L′. We have h′(m + 1, n) ≤ (h′(m,n))m+2 as in Corollary 4.6, so

g̃‡(d, n) ≤ h′(d, n) ≤ ((L′ + 1)(n+ 2))(d+1)!.

These upper bounds are optimal: top-down coverability is indeed Tower-
hard for ABVAS [16] and 2ExpTime-hard for AVAS [15].

6. Bottom-Up Tree Coverability

As the last case study in this paper of the ideal view of Rackoff’s technique,
we consider the coverability problem for bottom-up coverability in meet ABVAS.
As in Section 5, we start this section by extending the notion of well-structured
transition systems to bottom-up tree computations in Section 6.1. It turns out
that bottom-up coverability in a branching transition system reduces to plain
coverability in a ‘powerset’ transition system, and therefore that the algorithm
from Section 3 can be instantiated as such.

23

Nevertheless, we show in Sections 6.1 and 6.2 how to transcribe in a generic
manner most of the ingredients of the backward coverability algorithm on this
powerset system in terms of the original branching system. In particular, the
complexity analysis does not need to consider descending chains of downwards-
closed sets of sets, as we can extract descending chains of downwards-closed sets
(Remark 6.6).

This allows to derive in Section 6.3 the known optimal Ackermann upper
bounds for bottom-up coverability in meet ABVAS [16], and even 2ExpTime
upper bounds in the case of BVAS [13], as the extracted descending sequences
are ω-monotone in that case.

6.1. Bottom-Up Well-Structured Transition Systems

We consider again branching transition systems (X,→,≤) as defined in Sec-
tion 5.1, where→ ⊆ X×P(X). When we consider a branching transition system
bottom-up, it is enlightening to think of it as a deduction system with ‘propo-
sitions’ in X, where a transition x→ S means that x can be deduced from the
set S. This intuition provides another way of lifting the transition relation→ to
operate on subsets of X, this time proceeding bottom-up in computation trees:
we write

S ` Ŝ if and only if Ŝ = S ∪ {x ∈ X | ∃Sx ⊆ S . x→ Sx} . (29)

Observe that this new relation is actually a function. It maps the set S to the
elements that can be deduced from it in one or fewer steps, i.e. ` = `≤1. Thus
S `∗ S′ if and only if S′ is exactly the set of elements that root computation
trees with leaf labels in S.

Quasi-Ordering Powersets. Let (X,≤) be a quasi-order. We define the Hoare
quasi-order (P(X),⊆H) by S ⊆H S′ for S, S′ ∈ P(X) if, for all x ∈ S, there
exists x′ ∈ S′ such that x ≤ x′. Observe that this ordering reduces to a simple
inclusion when S and S′ are downwards-closed; in fact, S ⊆H S′ if and only if
↓S ⊆ ↓S′. This is a sort of dual of the Smyth quasi-order, as S ⊆H S′ if and
only if X \ (↓S) ⊆S X \ (↓S′).

Both the Hoare and the Smyth quasi-orders might fail to be wqo when
(X,≤) is a wqo. In fact, they are wqos precisely when (X,≤) is an ω2-wqo [35,
Corollary 12]. Fortunately, all the wqos used in the WSTS literature, including
(Nd,≤), are ω2-wqos.

Bottom-Up Coverability. Also known as the root coverability problem, the bottom-
up coverability problem, given an ordered branching transition system (X,→,≤)
and root and leaf configurations y, x ∈ X, asks whether there exists a finite com-
putation tree whose root label is ≥ y and whose every leaf label is x. Equiv-
alently, it asks whether some y′ ≥ y can be deduced from the single x, i.e.
whether {x} `∗ S where S ∩ ↑y 6= ∅.

The Hoare quasi-order offers another view of bottom-up coverability: for a
root label y and a leaf label x, the question becomes whether there exists S ∈

24

P(X) such that {y} ⊆H S and {x} `∗ S. In other words, bottom-up coverability
is an instance of plain coverability, from {x} to {y}, in the ‘powerset’ transition
system (P(X),`,⊆H), a deterministic, non-branching transition system.

Bottom-Up Compatibility. In the light of the previous remark, we should define
a notion of bottom-up compatibility that captures exactly the usual compati-
bility in (P(X),`,⊆H).

Definition 6.1 (Bottom-Up WSTS). A bottom-up WSTS is a triple (X,→,≤)
where (X,→) is a branching transition system and (X,≤) is an ω2-wqo with
the following bottom-up compatibility condition: if S ⊆H S′ and x → S, then
there exist x′ ≥ x such that: x′ ∈ S′ or there exists S′x′ ⊆ S′ with x′ → S′x′ .

We can check that the above definition is exactly the needed one.

Proposition 6.2. An ordered branching transition system (X,→,≤) is a bottom-
up WSTS if and only if (P(X),`,⊆H) is a WSTS.

Proof. As already mentioned, (X,≤) is ω2-wqo if and only if (P(X),⊆H) is
wqo [35, Corollary 12].

Regarding compatibility, first assume that (P(X),`,⊆H) enjoys compatibil-
ity and assume S ⊆H S

′ and x→ S. Let Ŝ and Ŝ′ be the sets such that S ` Ŝ
and S′ ` Ŝ′. By definition of Ŝ, since x → S, x ∈ Ŝ. By compatibility of `,
Ŝ ⊆H Ŝ′, therefore there exists x′ ∈ Ŝ′ such that x ≤ x′. By definition of Ŝ′,
this entails that x′ ∈ S′, or that there exists S′x′ ⊆ S′ such that x′ → S′x′ . This
shows that (X,→,≤) is bottom-up compatible.

Conversely, assume that (X,→,≤) is bottom-up compatible and assume
S ⊆H S′. Let Ŝ and Ŝ′ be the sets such that S ` Ŝ and S′ ` Ŝ′; we want to
show that Ŝ ⊆H Ŝ

′. Consider for this any x ∈ Ŝ. Two cases arise by definition
of Ŝ. If x ∈ S, then because S ⊆H S

′ there exists x′ ≥ x in S′ ⊆ Ŝ′ as desired.
Otherwise, there exists Sx ⊆ S such that x→ Sx. As Sx ⊆ S ⊆H S

′, Sx ⊆H S
′,

hence bottom-up compatibility applies and there exists x′ ≥ x with two possible
cases: if x′ ∈ S′ ⊆ Ŝ′ we are done; otherwise there exists S′x′ ⊆ S′ such that

x′ → S′x′ and this in turn implies that x′ ∈ Ŝ′ and concludes the proof.

Example 6.3 (ABVAS are not Bottom-Up WSTS). Alternating branching
VAS as defined in Section 5.3 are in general not bottom-up WSTS. For instance,
consider the 2-dimensional ABVAS (∅,B∧, ∅) where B∧

def= {((0,−2), (−1, 0))}.
Then we have the fork transition (1, 2)→ {(1, 0), (0, 2)}, but {(1, 0), (0, 2)} ⊆H
{(1, 1), (0, 2)} 6⊇H {(1, 2)}, and there is no configuration v ∈ N2 such that
v → S′v ⊆ {(1, 1), (0, 2)}.

In fact, bottom-up coverability in ABVAS is undecidable [38].

Example 6.4 (Meet ABVAS are Bottom-Up WSTS). A meet ABVAS is de-
fined as an ABVAS (cf. Section 5.3), except that applications of fork rules
take component-wise minima. Thus fork transitions are now defined as u →
{u1+b1,u2+b2} if u = min{u1,u2} for some (b1, b2) in B∧ and u,u1,u2,u1+
b1,u2 + b2 are all in Nd.

25

Regarding bottom-up compatibility, unary rules are compatible as in the
case of VAS. For fork rules, observe that if u→ {u1 + b1,u2 + b2} as the result
of a rule (b1, b2) in B∧ and S′ ⊇H {u1 + b1,u2 + b2}, then by definition of the
Hoare quasi-order there exist S′u′

def= {u′1 + b1,u
′
2 + b2} ⊆ S′ with u1 ≤ u′1 and

u2 ≤ u′2, and u′ def= min{u′1,u′2} is such that u′ → S′u′ and u ≤ u′ as required.
For split rules, if u → {u1,u2} where u + b = u1 + u2 for some b in B+

and S′ ⊇H {u1,u2}, then by definition of the Hoare quasi-order there exists
S′u′

def= {u′1,u′2} ⊆ S′ with u1 ≤ u′1 and u2 ≤ u′2 and u′ def= u′1 + u′2 − b fits:
u′ → S′u′ and u′ ≥ u.

In particular, BVAS, i.e. when B∧ is empty, are bottom-up WSTS. We also
remark that the bottom-up coverability problem in meet ABVAS is equivalent
to the reachability problem for gainy ABVAS [16]

6.2. Backward Bottom-Up Coverability

Let us consider the instantiation of the algorithm of Section 3.1 to the WSTS
(P(X),`,⊆H). Our main purpose here is to provide formulations in terms of the
underlying bottom-up WSTS (X,→,≤) of the main ingredients of the backward
coverability algorithm. Its effectiveness requires

1. effective ideal representations for (P(X),⊆H), and

2. effective universal predecessors.

We will conclude this subsection by instantiating the proper transition sequences
of Claim 4.2 in the case of the WSTS (P(X),`,⊆H).

Effective Ideal Representations. Regarding the first point, we rely on the fol-
lowing fact.

Fact 6.5 ([22, 39, 23]). If (X,≤) is an ω2-wqo with effective ideal representa-
tions, then (P(X),⊆H) is a wqo with effective ideal representations.

Indeed, the ideals of (P(X),⊆H) are all ↓HD def= {D′ ∈ D(X) | D′ ⊆ D}
for downwards-closed D ∈ D(X), where D(X) denotes the downwards-closed
subsets of X and ↓H the downward closure with respect to ⊆H. Thus the ideals of
(P(X),⊆H) can be represented as finite sets of ideals from X, and the algorithms
for (ContId), (IntId), and (CompUp) are straightforward to adapt. In order to
distinguish between the downwards-closed subsets of P(X) and those of X, we
use calligraphic D to denote the former.

Effective Universal Predecessors. Regarding the second point, since ` is a func-
tion, we can simplify the expression of Pre∀(D) in (3) for a downwards-closed
subset D ⊆ P(X) to

Pre∀(D) = {S ∈ P(X) | S ` Ŝ ∈ D} . (30)

Note that S ∈ Pre∀(D), i.e. S ` Ŝ ∈ D, entails S ∈ D since S ⊆ Ŝ and D is
downwards-closed, hence Equation (2) can be simplified using

Pre∀(D) = D ∩ Pre∀(D) . (31)

26

As D is downwards-closed, it is a finite union of ideals, hence Ŝ ∈ D if and only
if there exists a downwards-closed D from the ideal decomposition of D such
that Ŝ ∈ ↓HD. Equivalently, this occurs exactly when Ŝ ⊆ D, i.e. in terms of
the underlying branching transition relation, exactly when S ∈ Pre∀(D) defined
by

Pre∀(D) def= {S ⊆ D | ∀x . (∃Sx ⊆ S ∧ x→ Sx =⇒ x ∈ D)} . (32)

The set Pre∀(D) is downwards-closed for ⊆H. If D decomposes as ↓HD1 ∪ · · · ∪
↓HDn, then

Pre∀(D) =
⋃

1≤i≤n

Pre∀(Di) . (33)

Hence (Pre) can be restated as requiring an algorithm computing an ideal de-
composition for Pre∀(D) as defined in (32) for any downwards-closed D ⊆ X.

Proper Transition Sequences. Recall the definition of existential successors from
Equation (12). In the case of an ideal ↓HD of (P(X),⊆H), this yields

Post∃(↓HD) = {Ŝ ∈ P(X) | ∃S ∈ ↓HD . S ` Ŝ} . (34)

Also recall that we are actually interested in Claim 4.2 in its downward closure
↓HPost∃(↓HD). It turns out that the latter has a single ideal: let D ` D̂, then

↓HPost∃(↓HD) = ↓HD̂ . (35)

Indeed, D̂ is certainly among the Ŝ in Post∃(↓HD), and conversely, if Ŝ ∈
Post∃(↓HD) for some S ∈ ↓HD with S ` Ŝ, then by compatibility Ŝ ⊆H D̂.

Remark 6.6 (Transfer of Length Function Theorems). At this stage, we can
already observe that, in the computation D0) D1) · · ·) D` of the back-
ward coverability algorithm in (P(X),`,⊆H), Equation (35) and Claim 4.2
show that there is a sequence of proper ideals ↓HD0, ↓HD1, . . . , ↓HD`−1 with
Dk+1 ` D̂k+1 ⊆ Dk for all k. Because Dk+1 ⊆ D̂k+1, we have the inclusion
Dk+1 ⊆ Dk, and it is strict since Dk is proper. Therefore the sequence is actu-
ally a descending chain D0) D1) · · ·) D`−1 of proper ideals, and it suffices
to bound the length of that chain to obtain a bound on `.

Thus, in the case of bottom-up coverability, length function theorems like
Theorem 3.10 on the length of descending chains of downwards-closed subsets
of X can be applied to yield a bound on the length of the descending chain
D0) D1) · · ·) D` of downwards-closed subsets of P(X).

6.3. Complexity for Meet ABVAS
As in the previous complexity analyses for coverability in VAS and reset

VAS and top-down coverability in ABVAS, in order to apply length function
theorems, we should show that universal predecessors can be computed in meet
ABVAS and extract a control function. Together with Remark 6.6 and Theo-
rem 3.10, this will be enough to get an Ackermann upper bound for bottom-up
coverability in meet ABVAS. Furthermore, we shall see that in BVAS, the de-
scending chain exhibited in Remark 6.6 is ω-monotone, hence Theorem 4.4 can
be applied to prove a 2ExpTime upper bound.

27

Effectiveness and Control. Let the size of a downwards-closed subset D of P(Nd)
whose ideal decomposition is ↓HD1 ∪ · · · ∪ ↓HDn be the maximum of the sizes
of D1, . . . , Dn.

Using a similar but lengthy case analysis as in the cases of VAS and reset
VAS in Sections 3.2 and 3.3, we extract a control function from (32). This also
entails the effectiveness of universal predecessors since there are only finitely
many D of a given size.

Claim 6.7 (Control for Meet ABVAS). The descending chain D0) D1) · · · is
(g, n)-controlled for g(x) def= x+ max{‖A‖, ‖B∧‖, ‖B+‖} and n def= ‖t‖.

ω-Monotonicity. The distinction between bottom-up ABVAS and BVAS ap-
pears here. As observed in Remark 6.6, inside the descending chain of downwards-
closed subsets of P(Nd) computed by the backward bottom-up coverability algo-
rithm, we can always find a descending chain of downwards-closed subsets of Nd,
whose length is bounded by the Ackermann function. However, for bottom-up
BVAS, the latter descending chain is ω-monotone, enabling us to infer that its
length is then at most doubly exponential.

Claim 6.8 (Bottom-Up BVAS Descending Chains are ω-Monotone). The de-
scending chains D0) · · ·) D`−1 of proper ideals extracted in Remark 6.6 from
the computation of the backward bottom-up coverability algorithm for BVAS
are ω-monotone.

Proof. Consider a d-dimensional BVAS (A, ∅,B+). First note that, if D is a
downwards-closed subset of Nd with an ideal decomposition ↓u1∪ · · ·∪↓un and
D ` D̂, then ↓D̂ can be written as

↓D̂ =

 ⋃
a∈A

⋃
1≤j≤n

↓(uj − a)

 ∪
 ⋃

b∈B+

⋃
1≤i,j≤n

↓(ui + uj − b)

 . (36)

Suppose now 0 ≤ k < `−2 and vk+1 is a proper vector in the decomposition
of Dk+1, i.e. ↓vk+1 6⊆ Dk+2. Let D def= Dk+2 ∪ ↓vk and D̂ be such that D ` D̂.
On the one hand, D 6∈ Dk+2, which entails

(Dk+2 ∪ ↓vk) ` D̂ 6⊆ Dk+1 , (37)

since otherwise we would have D ∈ Pre∀(Dk+1) = Dk+2 according to (30)
and (31). On the other hand,

Dk+2 ` D̂k+2 ⊆ Dk+1 (38)

in the descending chain from Remark 6.6. In order to reconcile (37) and (38),
there must exist w in the decomposition of ↓D̂ such that ↓w 6⊆ Dk+1, and where
w was ‘produced’ using vk in (36):

• either w = vk+1 − a for some a ∈ A,

• or w = v′ + vk+1 − b for some v′ in the decomposition of Dk+2 and
b ∈ B+.

28

In both cases, ω(vk+1) ⊆ ω(w).2

Finally, ↓w ⊆ ↓D̂ ⊆ ↓D̂k+1 ⊆ Dk. Hence by ideal irreducibility there exists
vk in the decomposition of Dk such that w v vk. Since ↓w 6⊆ Dk+1, vk is
proper, and furthermore ω(vk+1) ⊆ ω(w) ⊆ ω(vk).

Upper Bounds. Finally, by applying the length function theorem for descending
chains (Theorem 3.10), or for ω-monotone descending chains (Theorem 4.4)
in the case of BVAS, we establish the Ackermann and 2ExpTime bounds.
Again, the ideal decomposition of each Dk+1 is computable in time polynomial
in gk(‖t‖), so it suffices to bound the number of iterations of the main loop.

Corollary 6.9. For any d-dimensional meet ABVAS (A,B∧,B+) and target
vector t, the backward bottom-up coverability algorithm terminates after at most
ackermann(p(d, L, ‖t‖)) steps, where p is a primitive-recursive function and L def=
max{‖A‖, ‖B∧‖, ‖B+‖}.

For BVAS, i.e. when B∧ is empty, the algorithm terminates after at most
((L+ 1)(‖t‖+ 2))(d+1)! + 1 steps.

These upper bounds are tight: Ackermann-hardness was shown originally
by Urquhart [26] for reachability in a variant of gainy AVAS, and also holds
for bottom-up coverability for meet AVAS [16]; 2ExpTime-hardness was first
shown by Demri et al. [13] for bottom-up coverability for BVAS.

7. Concluding Remarks

Rackoff’s technique has successfully been employed to prove tight upper
bounds for the coverability problem in VAS and extensions [13, 14, 15, 16, 17].
However, the technique does not readily generalise to more complex classes of
well-structured transition systems, e.g. where configurations are not vectors of
natural numbers.

We have shown that the same complexity bounds can be extracted in a prin-
cipled way, by considering the ideal view of the backward coverability algorithm
for VAS, and by noticing a structural invariant on its computations. Essentially
the same arguments suffice to re-prove several recent upper bounds [13, 15, 16]
in branching extensions of VAS.

This paves the way for future investigations on coverability problems with
large complexity gaps (where different structural invariants will need to be
found). As an instance of such results, we have recently shown in [24] that the
techniques presented in this paper yield new tight upper bounds for coverability
in ν-Petri nets [see e.g. 40], improving on the previously known HyperAcker-
mann upper bound.

2In a meet ABVAS, there is an additional possibility: w = min{vk − b1,v′− b2} for some
v′ in the decomposition of Dk+2 and (b1, b2) ∈ B∧ or (b2, b1) ∈ B∧. In such a case, due to
the ‘min’ operation, it is possible that ω(vk+1) 6⊆ ω(w).

29

Appendix A. Ackermann Upper Bounds

One way to obtain Ackermann upper bounds for the backward coverabil-
ity algorithm on VAS and reset VAS would be to consider the dual ascending
chain of upwards-closed sets employed in the usual description of the backward
coverability algorithm. The resulting bounds would be similar (and the proof
somewhat simpler), see [e.g. 28, Section 2.2.2]. Instead, we prove the bounds
directly on descending chains, thanks to Theorem 3.10:

Theorem 3.10 (Length Function Theorem for Descending Chains). Let n > 0.
Any (g, n)-controlled descending chain D0) D1) · · · of downwards-closed
subsets of Nd is of length at most hωd+1(n · d!), where h(q) def= d · g(q).

The main tool to this end is the following statement, which combines Corol-
lary 2.25 and Theorem 2.34 from [28]:

Theorem A.1 (Length Function Theorem for Bad Sequences). Let n > 0. Any
(g, n)-controlled bad sequence over a polynomial combinatorial wqo (X,≤, |.|X)
with maximal order type o(X) < ωd+1 is of length at most ho(X)(n · d), where

h(x) def= d · g(x).

In Section 3.3, we have already sketched how to extract a (g, n)-controlled
bad sequence v0,v1, . . . of vectors from Ndω out of a (g, n)-controlled descending
chain D0) D1) · · · of downwards-closed subsets of Nd. What needs to be
shown in order to apply Theorem A.1 to that bad sequence is that we can use
a polynomial combinatorial wqo (X,≤) with o(X) < ωd+1 instead of Ndω, and
derive the hωd+1(n ·d!) bound from it. This is a routine application of the results
from [28], but we shall give a detailed account for the reader’s sake.

Polynomial Combinatorial WQOs. Let us denote by Γ0 the empty wqo and by
Γ1 the singleton set {•} well-quasi-ordered with equality. A polynomial wqo is
one that can be constructed from Γ0, Γ1, and N through Cartesian products ‘×’
and disjoint unions ‘+’, using respectively the product and sum orderings [28,
Section 2.1.2].

A combinatorial quasi-order associates a size function |.|X :X → N to a
quasi-order (X,≤), such that X≤n

def= {x ∈ X | |x|X ≤ n} is finite for every n
(this is called a normed wqo in [28]). For polynomial wqos, we use the zero size
on Γ1 and the infinity norm on Cartesian products.

Reflections. A shrinking order reflection (aka a normed reflection) between two
combinatorial quasi-orders (X,≤X , |.|X) and (Y,≤Y , |.|Y) is a function r:X →
Y such that, for all x and x′ from X,

• r(x) ≤Y r(x′) implies x ≤X x′, and

• |r(x)|Y ≤ |x|X .

30

If (Y,≤Y , |.|Y) is a combinatorial wqo and there is a shrinking order reflection
from (X,≤X , |.|X) to it, then (X,≤X , |.|X) is a combinatorial wqo with (g, n)-
controlled bad sequences of at most the same length [28, Proposition 2.16].

Observe that r defined by r(ω) def= • and r(n) def= n is a shrinking order
reflection from (Nω,≤, ‖.‖) into (N + Γ1,≤, |.|). Hence (Ndω,v, ‖.‖) reflects into

((N + Γ1)d,v, |.|) (A.1)

by [28, Rem. 2.17]. This will be the polynomial combinatorial wqo on which we
will apply Theorem A.1.

Maximal Order Types. It remains to compute the maximal order type of ((N + Γ1)d,v, |.|).
This can be done algebraically [28, Section 2.4.1] using natural sums ‘⊕’ and
natural products ‘⊗’ of maximal order types:

o(N + Γ1) = ω ⊕ 1 = ω + 1 , (A.2)

o((N + Γ1)d) = (ω + 1)⊗ · · · ⊗ (ω + 1)︸ ︷︷ ︸
d times

=
∑
d≥i≥0

ωi
(
d

i

)
. (A.3)

Cichoń Functions. Let us recall that, given a monotone inflationary h:N→ N,
and an ordinal α, the αth Cichoń function hα is defined by induction on α by

h0(x) def= 0 , hα(x) def= 1 + hPx(α)(h(x)) , (A.4)

where Px(α) < α denotes the predecessor ordinal at x of α, defined for 0 < α <
ε0 by:

Px(α+ 1) def= α , Px(γ + ωβ) def= γ + ωPx(β) · x+ Px(ωPx(β)) . (A.5)

For instance, Px(ω2) = ω · x+ Px(ω) = ω · x+ x+ Px(1) = ω · x+ x, and more
generally Px(ωd+1) =

∑
d≥i≥0 ω

i · x. Each Cichoń function hα is monotone.

Proof of Theorem 3.10. By extracting proper ideals and applying Theorem A.1,
we obtain an upper bound of

` = ho((N+Γ1)d)(n · d) (A.6)

on the length of (g, n)-controlled bad sequences over Ndω, and thus of ` + 1
on the length of (g, n)-controlled descending chains D0) D1) · · ·) D` of
downwards-closed subsets of Nd. As (A.3) is quite a mouthful, we are going to
over-approximate this bound with a more readable one.

Recall that any ordinal α below ωd+1 can be written in Cantor normal form
as α = ωd ·ad+ · · ·+ω0 ·a0 where ad, . . . , a0 are coefficients in N. We can refine
the structural ordering of [28, Eq. 2.70] for ordinals below ωd+1 by:

ωd · ad + · · ·+ ω0 · a0 v ωd · bd + · · ·+ ω0 · b0 if ∀1 ≤ i ≤ d . ai ≤ bi . (A.7)

By [28, Exercise 2.11], α v β ensures hα(n) ≤ hβ(n) for all n.

31

Observe now that (A.3) is such that, for all n > 0,

o((N + Γ1)d) v
∑
d≥i≥0

ωi · nd! = Pnd!(ω
d+1) . (A.8)

Hence the result stated in Theorem 3.10, by (A.6) and

ho((N+Γ1)d)(nd) ≤ ho((N+Γ1)d) (h(nd!)) since nd ≤ h(nd!)

≤ hPnd!(ωd+1) (h(nd!)) by (A.8)

= hωd+1(nd!)− 1 .

References

[1] P. A. Abdulla, K. Čerāns, B. Jonsson, Y.-K. Tsay, Algorithmic analysis of
programs with well quasi-ordered domains, Information and Computation
160 (1/2) (2000) 109–127, doi:10.1006/inco.1999.2843.

[2] A. Finkel, Ph. Schnoebelen, Well-Structured Transition Systems Every-
where!, Theoretical Computer Science 256 (1–2) (2001) 63–92, doi:10.1016/
S0304-3975(00)00102-X.

[3] D. Figueira, S. Figueira, S. Schmitz, Ph. Schnoebelen, Ackermannian and
Primitive-Recursive Bounds with Dickson’s Lemma, in: LICS 2011, IEEE
Computer Society, 269–278, doi:10.1109/LICS.2011.39, 2011.

[4] S. Schmitz, Ph. Schnoebelen, Multiply-Recursive Upper Bounds with Hig-
man’s Lemma, in: ICALP 2011, vol. 6756 of Lecture Notes in Computer
Science, Springer, 441–452, doi:10.1007/978-3-642-22012-8 35, 2011.

[5] F. Rosa-Velardo, Ordinal recursive complexity of unordered data nets, In-
formation and Computation (2017), to appear. Also published as Tech.
Rep. TR-4-14, Departamento de Sistemas Informáticos y Computación,
Universidad Complutense de Madrid, URL https://federwin.sip.ucm.es/
sic/investigacion/publicaciones/pdfs/TR-04-14.pdf, 2014.

[6] Ph. Schnoebelen, Revisiting Ackermann-Hardness for Lossy Counter Ma-
chines and Reset Petri Nets, in: MFCS 2010, vol. 6281 of Lecture Notes in
Computer Science, Springer, 616–628, doi:10.1007/978-3-642-15155-2 54,
2010.

[7] S. Haddad, S. Schmitz, Ph. Schnoebelen, The Ordinal Recursive Complex-
ity of Timed-Arc Petri Nets, Data Nets, and Other Enriched Nets, in:
LICS 2012, IEEE Press, 355–364, doi:10.1109/LICS.2012.46, 2012.

[8] P. Karandikar, S. Schmitz, The Parametric Ordinal-Recursive Complexity
of Post Embedding Problems, in: FoSSaCS 2013, vol. 7794 of Lecture Notes
in Computer Science, Springer, 273–288, doi:10.1007/978-3-642-37075-5
18, 2013.

32

http://dx.doi.org/10.1006/inco.1999.2843
http://dx.doi.org/10.1016/S0304-3975(00)00102-X
http://dx.doi.org/10.1016/S0304-3975(00)00102-X
http://dx.doi.org/10.1109/LICS.2011.39
http://dx.doi.org/10.1007/978-3-642-22012-8_35
https://federwin.sip.ucm.es/sic/investigacion/publicaciones/pdfs/TR-04-14.pdf
https://federwin.sip.ucm.es/sic/investigacion/publicaciones/pdfs/TR-04-14.pdf
http://dx.doi.org/10.1007/978-3-642-15155-2_54
http://dx.doi.org/10.1109/LICS.2012.46
http://dx.doi.org/10.1007/978-3-642-37075-5_18
http://dx.doi.org/10.1007/978-3-642-37075-5_18

[9] C. Haase, S. Schmitz, Ph. Schnoebelen, The Power of Priority Channel
Systems, Logical Methods in Computer Science 10 (4) (2014) 4:1–4:39,
doi:10.2168/LMCS-10(4:4)2014.

[10] N. Decker, D. Thoma, On Freeze LTL with Ordered Attributes, in: FoS-
SaCS 2016, vol. 9634 of Lecture Notes in Computer Science, Springer, 269–
284, doi:10.1007/978-3-662-49630-5 16, 2016.

[11] R. Lipton, The reachability problem requires exponential space, Tech. Rep.
62, Yale University, 1976.

[12] C. Rackoff, The covering and boundedness problems for vector addition
systems, Theoretical Computer Science 6 (2) (1978) 223–231, doi:10.1016/
0304-3975(78)90036-1.

[13] S. Demri, M. Jurdziński, O. Lachish, R. Lazić, The covering and bounded-
ness problems for branching vector addition systems, Journal of Computer
and System Sciences 79 (1) (2013) 23–38, doi:10.1016/j.jcss.2012.04.002.

[14] R. Bonnet, A. Finkel, M. Praveen, Extending the Rackoff technique to
affine nets, in: FSTTCS 2012, vol. 18 of Leibniz International Proceedings
in Informatics, LZI, 301–312, doi:10.4230/LIPIcs.FSTTCS.2012.301, 2012.

[15] J.-B. Courtois, S. Schmitz, Alternating Vector Addition Systems with
States, in: MFCS 2014, vol. 8634 of Lecture Notes in Computer Science,
Springer, 220–231, doi:10.1007/978-3-662-44522-8 19, 2014.

[16] R. Lazić, S. Schmitz, Non-Elementary Complexities for Branching VASS,
MELL, and Extensions, ACM Transactions on Computational Logic
16 (3:20) (2015) 1–30, doi:10.1145/2733375.

[17] J. Kochems, C.-H. L. Ong, Decidable Models of Recursive Asynchronous
Concurrency, Preprint, URL http://arxiv.org/abs/1410.8852, 2015.

[18] R. Lazić, T. Newcomb, J. Ouaknine, A. W. Roscoe, J. Worrell, Nets with
Tokens which Carry Data, Fundamenta Informaticae 88 (3) (2008) 251–274.

[19] L. Bozzelli, P. Ganty, Complexity Analysis of the Backward Coverability
Algorithm for VASS, in: RP 2011, vol. 6945 of Lecture Notes in Computer
Science, Springer, 96–109, doi:10.1007/978-3-642-24288-5 10, 2011.

[20] R. Majumdar, Z. Wang, Expand, Enlarge, and Check for Branching Vector
Addition Systems, in: Concur 2013, vol. 8052 of Lecture Notes in Computer
Science, Springer, 152–166, doi:10.1007/978-3-642-40184-8 12, 2013.

[21] R. Bonnet, On the cardinality of the set of initial intervals of a partially
ordered set, in: Infinite and finite sets: to Paul Erdős on his 60th birthday,
Vol. 1, Coll. Math. Soc. János Bolyai, North-Holland, 189–198, 1975.

33

http://dx.doi.org/10.2168/LMCS-10(4:4)2014
http://dx.doi.org/10.1007/978-3-662-49630-5_16
http://dx.doi.org/10.1016/0304-3975(78)90036-1
http://dx.doi.org/10.1016/0304-3975(78)90036-1
http://dx.doi.org/10.1016/j.jcss.2012.04.002
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.301
http://dx.doi.org/10.1007/978-3-662-44522-8_19
http://dx.doi.org/10.1145/2733375
http://arxiv.org/abs/1410.8852
http://dx.doi.org/10.1007/978-3-642-24288-5_10
http://dx.doi.org/10.1007/978-3-642-40184-8_12

[22] A. Finkel, J. Goubault-Larrecq, Forward Analysis for WSTS, Part I: Com-
pletions, in: STACS 2009, vol. 3 of Leibniz International Proceedings in
Informatics, LZI, 433–444, doi:10.4230/LIPIcs.STACS.2009.1844, 2009.

[23] J. Goubault-Larrecq, S. Halfon, P. Karandikar, K. Narayan Kumar,
Ph. Schnoebelen, The ideal approach to computing closed subsets in well-
quasi-orderings, In preparation, see [31] for an earlier version, 2017.

[24] R. Lazić, S. Schmitz, The Complexity of Coverability in ν-Petri Nets, in:
LICS 2016, ACM Press, 467–476, doi:10.1145/2933575.2933593, 2016.

[25] M. Benedikt, T. Duff, A. Sharad, J. Worrell, Polynomial Automata: Ze-
roness and Applications, in: LICS 2017, IEEE Computer Society, to appear,
2017.

[26] A. Urquhart, The Complexity of Decision Procedures In Relevance Logic II,
Journal of Symbolic Logic 64 (4) (1999) 1774–1802, doi:10.2307/2586811.

[27] K. N. Verma, J. Goubault-Larrecq, Karp-Miller Trees for a Branching Ex-
tension of VASS, Discrete Mathematics and Theoretical Computer Science
7 (1) (2005) 217–230, URL http://eudml.org/doc/129486.

[28] S. Schmitz, Ph. Schnoebelen, Algorithmic Aspects of WQO Theory, Lecture
notes, URL http://cel.archives-ouvertes.fr/cel-00727025, 2012.

[29] J. Leroux, P. Schnoebelen, On Functions Weakly Computable by Petri Nets
and Vector Addition Systems, in: RP 2014, vol. 8762 of Lecture Notes in
Computer Science, Springer, 190–202, doi:10.1007/978-3-319-11439-2 15,
2014.

[30] A. Arnold, M. Latteux, Récursivité et cônes rationnels fermés par intersec-
tion, CALCOLO 15 (4) (1978) 381–394, doi:10.1007/BF02576519.

[31] J. Goubault-Larrecq, On a generalization of a result by Valk and Jantzen,
Tech. Rep. LSV-09-09, LSV, ENS Cachan, URL http://www.lsv.fr/Publis/
RAPPORTS LSV/PDF/rr-lsv-2009-09.pdf, 2009.

[32] S. Schmitz, Complexity Hierarchies Beyond Elementary, ACM Transactions
on Computation Theory 8 (1) (2016) 1–36, doi:10.1145/2858784.

[33] M. Blondin, A. Finkel, P. McKenzie, Handling Infinitely Branching WSTS,
in: ICALP 2014, vol. 8573 of Lecture Notes in Computer Science, 13–25,
doi:10.1007/978-3-662-43951-7 2, 2014.

[34] P. A. Abdulla, A. Bouajjani, J. d’Orso, Monotonic and downward
closed games, Journal of Logic and Computation 18 (1) (2008) 153–169,
doi:10.1093/logcom/exm062.

[35] A. Marcone, Fine Analysis of the Quasi-Orderings on the Power Set, Order
18 (4) (2001) 339–347, doi:10.1023/A:1013952225669.

34

http://dx.doi.org/10.4230/LIPIcs.STACS.2009.1844
http://dx.doi.org/10.1145/2933575.2933593
http://dx.doi.org/10.2307/2586811
http://eudml.org/doc/129486
http://cel.archives-ouvertes.fr/cel-00727025
http://dx.doi.org/10.1007/978-3-319-11439-2_15
http://dx.doi.org/10.1007/BF02576519
http://www.lsv.fr/Publis/RAPPORTS_LSV/PDF/rr-lsv-2009-09.pdf
http://www.lsv.fr/Publis/RAPPORTS_LSV/PDF/rr-lsv-2009-09.pdf
http://dx.doi.org/10.1145/2858784
http://dx.doi.org/10.1007/978-3-662-43951-7_2
http://dx.doi.org/10.1093/logcom/exm062
http://dx.doi.org/10.1023/A:1013952225669

[36] Ph. de Groote, B. Guillaume, S. Salvati, Vector Addition Tree Automata,
in: LICS 2004, IEEE Computer Society, 64–73, doi:10.1109/LICS.2004.51,
2004.

[37] S. Schmitz, On the Computational Complexity of Dominance Links in
Grammatical Formalisms, in: ACL 2010, ACL Press, 514–524, 2010.

[38] P. Lincoln, J. Mitchell, A. Scedrov, N. Shankar, Decision problems for
propositional linear logic, Annals of Pure and Applied Logic 56 (1–3) (1992)
239–311, doi:10.1016/0168-0072(92)90075-B.

[39] A. Finkel, J. Goubault-Larrecq, Forward Analysis for WSTS, Part II: Com-
plete WSTS, Logical Methods in Computer Science 8 (3:28) (2012) 1–35,
doi:10.2168/LMCS-8(3:28)2012.

[40] F. Rosa-Velardo, D. de Frutos-Escrig, Decidability and complexity of Petri
nets with unordered data, Theoretical Computer Science 412 (34) (2011)
4439–4451, doi:10.1016/j.tcs.2011.05.007.

35

http://dx.doi.org/10.1109/LICS.2004.51
http://dx.doi.org/10.1016/0168-0072(92)90075-B
http://dx.doi.org/10.2168/LMCS-8(3:28)2012
http://dx.doi.org/10.1016/j.tcs.2011.05.007

	Introduction
	Preliminaries
	Well-Structured Transition Systems
	Ideal Decompositions

	Backward Coverability
	Generic Algorithm
	Coverability for VAS and Reset VAS
	Ackermann Upper Bounds for VAS and Reset VAS

	Complexity for VAS
	Transitions Between Proper Ideals
	omega-Monotonicity
	Upper Bound

	Top-Down Tree Coverability
	Top-Down Well-Structured Transition Systems
	Backward Top-Down Coverability
	Alternating Branching VAS
	Complexity for ABVAS

	Bottom-Up Tree Coverability
	Bottom-Up Well-Structured Transition Systems
	Backward Bottom-Up Coverability
	Complexity for Meet ABVAS

	Concluding Remarks
	Ackermann Upper Bounds

