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Abstract. Kidney segmentation from dynamic contrast enhanced mag-
netic resonance images (DCE-MRI) is vital for computer-aided early
assessment of kidney functions. To accurately extract kidneys in the
presence of inherently inhomogeneous contrast deviations, we control an
evolving geometric deformable boundary using specific prior models of
kidney shape and visual appearance. Due to analytical estimates from
the training data, these priors make the kidney segmentation fast and
accurate, offering the prospect of clinical applications. Experiments with
50 DCE-MRI in-vivo data sets confirmed that the proposed approach
outperforms three more conventional counterparts.

1 Introduction

Accurate delineation of kidney borders in dynamic perfusion images is essen-
tial for their automated analysis. However, it meets with challenges due to the
need to maintain adequate spatial resolution while acquiring images very quickly
to capture the transient first-pass transit event; varying signal intensities (gray
levels) over the time course of agent transit; and motion-induced artefacts re-
lated to intrinsic pulsate effects, breathing, or transmitted effects from adjacent
structures, such as the bowel. To address these challenges, De Priester et al. [1]
obtained a kidney mask by thresholding the difference between averaged pre-
contrast and early-enhanced images, removing objects smaller than a certain
size, and smoothing the remaining object by morphological closing and man-
ual processing. This approach was further expanded by Giele [2], obtaining the
kidney contour as the morphological inner gradient, or difference between the
initial and eroded mask. Koh et al. [3] segmented kidneys with a morphologi-
cal 3D H-maxima transform, using rectangular masks and edge information to
avoid prior knowledge or training. Nonetheless, similar intensities in the kidney
and surrounding background tissues make segmentation by straightforward sig-
nal thresholding mostly inaccurate. To circumvent these drawbacks, the kidney
and its internal structures were segmented by Chevaillier et al. [4] by using a
semi-automated k-means clustering of pixel-wise temporal intensity curves to
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classify the pixels. An automated wavelet-based k-means partitioning was ap-
plied also by Li et al. [5] for segmenting the kidneys and tested successfully on
a small number of subjects (four volunteers and three patients).

However, the most accurate kidney segmentation is obtained by evolving a
deformable boundary with due account of visual appearance and shape of the
kidney or its element of interest. Sun et al. [6] guided the evolution in a DCE-
MRI towards the kidney borders with a variational level set integrating a tem-
poral smoothness constraint and spatial inter-pixel correlations and employed
the Chan-Vese’s level set framework [7] for segmenting the cortex and medulla.
Later on, the accuracy of kidney segmentation using a variational level set was
improved by incorporating statistical image data [8], or prior knowledge about
the kidney’s visual appearance (texture) and shape [9]. A level set-based guid-
ance by Gloger et al. [10] also used the shape prior and Bayesian statistical
inference for generating the shape probability maps. But the existing techniques
usually take no account of inter-pixel dependencies governing visual appearance
and shape of the kidney and its structural elements. As a result, even most effi-
cient today’s deformable boundaries remain too sensitive to fuzzy kidney borders
and image noise, involving spatially variant contrast and offset deviations.

To partially overcome these limitations and handle spatial inhomogeneities
and contrast variations in the DCE-MRI, a probabilistic shape prior is appended
below with a new visual appearance prior based on a 5th-order translation and
contrast/offset invariant MGRF. In addition to the latter prior with analytical
parameter estimation, we integrate the appearance and shape priors into a novel
energy function resulting in a more effective stochastic guiding force for a level-
set-based evolution of a deformable boundary.

2 Shape-Appearance Guided Deformable Boundary

Geometric (level-set based) deformable object-background boundaries are pop-
ular and powerful tools in segmenting medical images due to their flexible and
parameter-independent evolving on the (x, y)-plane [7]. At each moment t the
boundary is represented by a zero level φt(x, y) = 0 of an implicit level-set func-
tion – a distance map φt(x, y) of the signed minimum Euclidean distances from
every point (x, y) to the boundary. The distance is negative for the interior and
positive for the exterior points, and the distance map evolves iteratively [7]:
φn+1(x, y) = φn(x, y) − τνn(x, y)|∇φn(x, y)| where n is an integer instant of
time t = nτ measured with a step τ > 0; νn(x, y) is a speed function guiding

the evolution, and ∇φn =
[
∂φn

∂x , ∂φn

∂y

]
denotes the spatial gradient of the dis-

tance map. Conventional speed functions accounting for image intensities, ob-
ject edges, gradient vector flow, etc., are unsuccessful on noisy images with low
object-background intensity gradients, such as kidney DCE-MRI. Since kidneys
have well-defined shapes and distinct visual appearances, our stochastic speed
function combines both the kidney’s shape and appearance priors to increase
the segmentation accuracy.
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Adaptive 1st-order Kidney Shape Prior. Let R = {(x, y) : x = 0, . . . , X − 1; y =
0, . . . , Y − 1} be a finite 2D lattice supporting greyscale kidney images and their
region maps. Our shape prior is modeled with a spatially variant independent
random field (IRF) of binary region labels (L = {1(kidney), 0(background)), such
that maps m : R → L of regions in the DCE-MRI with labels m = [m(x, y) :
(x, y) ∈ R;m(x, y) ∈ L] are sampled from. To learn the model from a set of train-
ing DCE-MRI, m◦

n; n = 1, . . . , N , from different subjects, geometric deviations
between their kidney shapes are reduced by mutual alignment using non-rigid
B-spline-based deformations [11]. After a medical expert delineates kidneys bor-
ders in the training images, the shape prior is specified by an empirical joint
probability disturbution, Psh(m) =

∏
(x,y)∈R psh:x,y(m(x, y)). Here, each label

m(x, y) = 1 or 0, and psh:x,y(1) =
1
n

∑N
n=1 m

◦
n(x, y) is the empirical pixel-wise

kidney probability for a stack of the co-aligned training images m◦
n.

Learnable 5th-order MGRF Appearance Prior. Let Q = {0, . . . , Q− 1} denote a
finite set of signals (intensities, or grey levels), in the DCE-MRI, g : R → Q, with
signals g = [g(x, y) : (x, y) ∈ R]. Probabilistic signal dependencies in the images
are quantified with an interaction graph, Γ = (R,A), with nodes at the lattice
sites (pixels or voxels), (x, y) ∈ R, and edges, or arcs ((x, y), (x′, y′)) ∈ A ⊆ R

2

connecting interdependent, or interacting pairs of the nodes, called neighbours.
An MGRF of images is defined by a Gibbs probability distribution (GPD),

P =
[
P (g) : g ∈ Q

|R|;
∑

g∈Q|R| P (g) = 1
]
, factored over a set C of cliques in

Γ supporting non-constant factors, logarithms of which are Gibbs potentials
(functions of clique-wise signals) [12].

Let a translation-invariant K-order interaction structure on R be represented
by A, A ≥ 1, families, Ca; a = 1, . . . , A, of K-order cliques, ca:x,y ∈ Ca, of the
same shape and size. Every clique is associated with a certain pixel, (x, y) ∈ R,
acting as the origin, and supports the same K-variate scalar potential function,
Va : QK → (−∞,∞), depending only on specific ordinal relations between the
clique-wise signals. The GPD for this translation- and contrast/offset-invariant

MGRF is PK(g) = 1
Zψ(g) exp (−EK(g)) where EK(g) =

∑A
a=1 EK:a(g) and

EK:a(g) =
∑

ca:x,y∈Ca
VK:a (g(x

′, y′) : (x′, y′) ∈ ca:x,y) denote the Gibbs energy

for all the clique families and for each individual family, respectively; ψ(g) is a
core distribution (if all the Gibbs potentials are equal to zero), and the partition
function Z normalizes the GPD over the parent population of images.

Because kidneys appearance in the DCE-MRI is mostly the same under locally
varying contrast, ordinal image descriptors, such as, e.g., local binary (LBP) or
ternary patterns (LTP) [13] are more reasonable, than signal co-occurrences.
Below, a motivated by the LBP/LTPs new class of high-order MGRFs, intro-
duced in [14,15], is applied to model the kidney appearance priors. Its learning
framework generalizes the analytical 2nd-order one in [16].

Given a training image g◦, the maximum likelihood estimates (MLE) of the
Gibbs potentials for the above generic K-order MGRF model with the simplest
core, being an independent random field (IRF) of signals, can be approximated
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(a) (b) (c)

Fig. 1. The 5th-order clique (a): signals q0,q1,. . . , q4 are at the central pixel and its four
central-symmetric neighbours at the radial distance r, respectively, and the color-coded
shape prior before (b) and after (c) the nonrigid registration.

by generalizing the analytical approximation in [16] of the MLEs of potentials
for a generic 2nd-order MGRF:

VK:a(β) =
FK:a:core(β)−FK:a(β|g◦)

FK:a:core(β)(1−FK:a:core(β))
; a = 1, . . . , A; β ∈ BK

where β denotes a numerical code (value) of a particular K-order relation be-
tween the K signals on the clique; BK is a set of these codes for all K-order
signal co-occurrences; FK:a(g

◦) is an empirical marginal probability of the rela-
tion β; β ∈ BK , over the K-order clique family CK:a for the training image g◦,
and FK:a:core(β) is the like probability for the core distribution.

Algorithm 1. Learning the 5th-order MGRF appearance models.

1. Given a training DCE-MRI g◦, find the empirical kidney (l = 1) and background
(l = 0) probability distributions, Fl:5:r(g

◦) = [Fl:5:r(β|g◦) : β ∈ B] of the LBP-
based descriptors for different clique sizes r ∈ {1, . . . , rmax} where the top size
rmax = 10 in our experiments below.

2. Find the empirical distributions F5:r:core = [F5:r:core(β) : β ∈ B] of the same de-
scriptors for the core IRF ψ(g), e.g., for an image, sampled from the core.

3. Find the approximate potentials’ MLE Vl:5:r(β) =
F5:r:core(β)−Fl:5:r(β|g◦)

F5:r:core(β)·(1−F5:r:core(β))
.

4. Compute partial Gibbs energies of the descriptors for equal and all other clique-
wise signals over the training image for the clique sizes r = 1, 2, . . . , 10 to choose
the size ρl, making both the energies the closest one to another.

To demonstrate advantages of capturing constrained high-order signal re-
lations, the kidney and background appearances are quantified below, for
simplicity, by pixel-wise Gibbs energies for two 5th-order translation- and
contrast/offset-invariant MGRFs, each with a single family of fixed-shape
central-symmetric cliques cx,y = {(x, y), (x ± r, y), (x, y ± r)}, shown in Fig. 1.
Their potentials and radial distances, r, between the peripheral and central lat-
tice cites are learned from the training image. Each LBP-based clique descriptor
accounts for binary ordinal relations between grey values in the central, q0, and
four peripheral pixels, q1, . . . , q4, i.e., b(qi, q0) = 0 if qi = q0 and 1 otherwise;
i = 1, . . . , 4, giving 16 codes per clique. To further detail the clique-wise signal
relations, our descriptor accounts also for the number τ ; τ = 1, . . . , 5, of signals,
being equal to or greater than their mean, q̂ = 1

5 (q0 + q1 + . . .+ q4), making in
total up to 80 distinct codes β; β ∈ B = {0, . . . , 79}, per clique.
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Algorithm 2. Kidney segmentation with a geometric deformable boundary.

1. Equalize a DCE-MRI g using its cumulative probability distribution of signals.
2. Select among the training images a reference image, gref , having the minimum

Kullback-Leibler divergence from the equalized DCE-MRI g.
3. Align g with gref using the non-rigid deformations [11].
4. Evolve a deformable boundary with the speed function depending on the

appearance and shape priors: ν(x, y) = κθ(x, y) where κ is the mean cur-
vature and θ(x, y) defines the pixel-wise evolution magnitude and direction:
θ(x, y) = −P1:x,y if P1:x,y > P0:x,y and θ(x, y) = P0:x,y otherwise where

Pl:x,y =
(

El:5:ρl:x,y(g)

E0:5:ρ0:x,y(g)+E1:5:ρ1:x,y(g)

)
psh:l(x, y); l ∈ L = {1, 0}.

5. Transfer the final boundary to the initial (non-aligned) DCE-MRI by reversing the
non-rigid deformations, which have been estimated for the alignment.

Algorithms 1 and 2 outline learning the kidney and background appearance
priors and basic steps of segmenting the kidney DCE-MRI with these and shape
priors, respectively. The pixel-wise energies, El:5:ρl:x,y(g); l ∈ L, summing the
learned potentials for the five cliques, containing the pixel (x, y), characterize
in Algorithm 2 to what extent that pixel of the image g can be assigned to the
background or kidney in accord with their appearance priors.

3 Experimental Validation and Conclusions

The proposed approach has been tested on the 3D (2D + time) DCE-MRI data
sets collected from 50 subjects (35 men and 15 women from 10 to 56 years old (the
mean age of 31±11 years). The temporal sampling was adequate to characterize
the transit of the clinical gadoteric acid contrast agent (Dotarem 0.5 mmol/mL;
Guerbet, France), injected at the rate of 3-4 ml/sec, at the dose of 0.2 ml/kgBW.
The gradient-echo T1 imaging employed a 1.5 T MRI scanner Signa Horizon LX
Echo speed (GE Medical Systems, USA) with a phased-array torso surface coil;
slice thickness: 5 mm; TR = 30-40 msec; TE = 2-3 msec; flip angle 70o; FOV
= 38×38 cm2, and matrix size = 256×160. To obtain representative sampling
to characterize perfusion for each patient, a single coronal image section was
used at the level of the renal hilum of the transplanted kidney. Approximately
80 repeated temporal frames were obtained at 3 sec intervals.

Basic steps of the proposed level set-based segmentation are shown in Fig. 2,
which also compares, together with Table 1 and Figs. 3 and 4, our segmenta-
tion accuracy with the vector level set (VLS) algorithm by Abdelmunim and
Farag [9] and the parametric kernel graph cut (PKGC) with morphological and
connectivity post-analysis by Salah et al. [17]. Differences between the mean Dice
similarity coefficients (DSC) for our and other algorithms in Table 1 are statis-
tically significant by the paired t-test. In total, embedding the proposed simple
5th-order MGRF appearance model, together with our earlier shape prior, into
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(a) (b) (c) (d) (e) (f)

(g:DSC 0.99) (h) (i) (j:DSC 0.94) (k:DSC 0.92) (l:DSC 0.81)

Fig. 2. The image (a) to be segmented; its alignment (b) [11] to a selected training
reference image (c); the pixel-wise Gibbs energy (d) of our 5th-order MGRF model; the
total energy (e) after fusing that energy with the shape prior; the segmented aligned
kidney (f); the final segmentation (g) after reversing to the original image (a); the
pixel-wise Gibbs energy (h) for the 2nd-order MGRF appearance model [16]; the total
energy (i) after fusing with the shape prior; the PKGC segmentation (j) [17]; the
segmentation (k) with the 2nd-order MGRF prior; and the VLS segmentation (l) [9].
The ground truth is in green.

Table 1. Accuracy of our level-set based kidney segmentation with the 5th- or only
2nd-order appearance prior w.r.t. the vector level set (VLS) [9] and parametric kernel
graph cut (PKGC) [17] algorithms on the 50 data sets.

5th-order prior 2nd-order prior VLS PKGC

DSC: mean±st.dev. 0.99±0.02 0.91±0.03 0.90±0.08 0.82±0.18

p-value ≤ 10−4 ≤ 10−4 ≤ 10−4

the speed function of the level-set-guided boundary evolution results in more
accurate segmentation of complex 3D (2D + time) kidney DCE-MRI.

These qualitative and quantitative comparisons use the ground truth obtained
manually by an MRI expert. To highlight advantages of the proposed 5th-order
MGRF priors, the pixel-wise Gibbs energies were compared in Fig. 2,h–k, and
Table 1 with the like energies for the 2nd-order priors [16]. Obviously, the latter
priors describe the object appearance less accurately. The considerably more
distinct 5th-order pixel-wise Gibbs energies for the kidney and background (see
Figs. 2,d,e,h,i) ensure better guidance of the evolving level-sets-based boundary.

Our present mixed-code implementation (Matlab and C++) on a T7500 work-
station (Intel quad-core processor; 3.33 GHz each with 48 GB of memory) takes
about 125± 10 sec for segmenting 79 DCE-MRI time series images, each of size
256× 256 pixels.
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Our
DSC 0.991 DSC 0.996 DSC 0.992 DSC 0.990 DSC 0.993 DSC 0.995

VLS
DSC 0.866 DSC 0.929 DSC 0.954 DSC 0.927 DSC 0.937 DSC 0.939

PKGC
DSC 0.522 DSC 0.870 DSC 0.928 DSC 0.959 DSC 0.948 DSC 0.924

Fig. 3. Comparison to the VLS [9] and PKGC [17] (green – the ground truth).

a:
t0 = 0 sec t1 = 3 sec t2 = 6 sec t3 = 9 sec t4 = 12 sec t5 = 15 sec

b:
DSC 0.993 DSC 0.993 DSC 0.993 DSC 0.994 DSC 0.993 DSC 0.994

c:
DSC 0.703 DSC 0.935 DSC 0.911 DSC 0.969 DSC 0.953 DSC 0.967

d:
DSC 0.502 DSC 0.552 DSC 0.663 DSC 0.958 DSC 0.865 DSC 0.930

Fig. 4. Original first 6 images (a) of one of the DCE-MRI sequences and our segmen-
tation (b) w.r.t. the VLS [9] (c) and PKGC [17] (d).
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