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Abstract. Heterogeneity in psychiatric and neurological disorders has
undermined our ability to understand the pathophysiology underlying
their clinical manifestations. In an effort to better distinguish clinical
subtypes, many disorders, such as Bipolar Disorder, have been further
sub-categorized into subgroups, albeit with criteria that are not very
clear, reproducible and objective. Imaging, along with pattern analysis
and classification methods, offers promise for developing objective and
quantitative ways for disease subtype categorization. Herein, we develop
such a method using learning multiple tasks, assuming that each task
corresponds to a disease subtype but that subtypes share some common
imaging characteristics, along with having distinct features. In particu-
lar, we extend the original SVM method by incorporating the sparsity
and the group sparsity techniques to allow simultaneous joint learning for
all diagnostic tasks. Experiments on Multi-Task Bipolar Disorder classi-
fication demonstrate the advantages of our proposed methods compared
to other state-of-art pattern analysis approaches.

1 Introduction

Most neurodegenerative and neuropsychiatric disorders are very heterogeneous,
both from an imaging and from a clinical perspective, likely reflecting under-
lying complex genetic and environmental factors. Heterogeneity is further com-
plicated by the fact that oftentimes different pathologies co-exist in the same
individual, thereby confounding the structural and the clinical phenotypes. In
the past decade, we have witnessed a great deal of progress in the use of advanced
pattern analysis and machine learning methods for the classification of individ-
uals, which is important for diagnostic and predictive purposes, and ultimately
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for individualized medicine. To date, however, most attempts for multivariate
pattern analysis (MVPA) methods, such as Support Vector Machines (SVM),
especially linear formulations, are primarily focused on the problem of finding a
single direction separating two groups, and not on capturing multiple directions
in heterogeneous populations.

For example, Bipolar Disorder (BD) mainly consists of BD type I and type II
[1]. Multiple tasks of classifications including the whole patients (BD) vs normal
controls (NC), each subtype of BD vs NC (i.e., BD I vs NC and BD II vs NC),
and the distinguishing between different subtypes of BD (BD I vs BD II), are
thereby more necessarily implemented rather than simple binary categorization
of BD vs NC for computerized MRI diagnosis.

Multi-task learning [2] is a relatively recent development in the field of ma-
chine learning, and might be better suited for classification under phenotypic
heterogeneity, as it simultaneously solves multiple classification tasks. Herein,
we develop a novel multi-task SVM method, named Multi-Task l2,1 + l1-norm
SVM (mtSVML21L1), which can work in the context of multiple classification
tasks, by solving the multi-task hinge loss with sparsity [3] and group spar-
sity [4] regularization minimization problem. The learned weight coefficients W
which defining the hyperplane are endowed with group sparsity property across
multiple tasks while allow different patterns between tasks. This, therefore, can
facilitate us to select a subset of features from the original input variables, which
are meaningful for all the tasks. Our method is different from the multi-task fea-
ture learning methods [5][6][7][8][9][10][11] which are based on the least square
(LS) loss technique. Actually, hinge loss based SVM (adopted in our method) has
been validated [12][13] to have better performance than LS based methods for
feature selection and classification. To the best of our knowledge, this is the first
multi-task pattern classification method invented to identify the individual-level
biomarkers for diagnosis of the heterogeneous neuropsychiatric data.

2 Multi-Task l2,1 + l1-norm Support Vector Machine

2.1 Formulation

Assuming that we have t supervised learning tasks, let Xi = [x1, x2, · · · , xn] ∈
R

d×n as the training data matrix on ith task, i = 1, · · · , t, where d is the feature
dimension, n is the number of input data samples, and let Yi = [y1, y2, · · · , yn] ∈
R

n as the corresponding labels from these training samples for task i, where
yj ∈ {+1,−1} is the binary label for each task. Let W = [w1, w2, · · · , wt] ∈ R

d×t

be the weight coefficient matrix for all t tasks, whose column wi ∈ R
d parame-

terizes the linear discriminant function and whose row wk ∈ R
t is the vector of

coefficients associated with the kth feature across different tasks. Then the hinge
loss based multi-task model, i.e., Multi-Task l2,1+l1-norm SVM (mtSVML21L1)
can be defined by the following minimization problem:

min
W

t∑

i=1

f(wT
i Xi, Yi) + α‖W‖2,1 + β‖W‖1 (1)
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where f is the hinge loss function as used in standard SVM [14] and defined as:

f(wT
i Xi, Yi) =

n∑

i=1

(1− yji(w
T
i xji + bi))+ (2)

where (a)+ =max(0, a), b is the bias term. In the second term of (1), ‖W‖2,1 =∑d
k=1 ‖wk‖2 is the structural sparsity, i.e., l2,1-norm regularization [4], which en-

courages the weight coefficient matrix with many near-zero rows, while endows
the coefficients that are significant to all the tasks to have larger weights. It will
make sense if all classification tasks more or less share some common features.
This may be true in our BD problem, because some brain regions might be ab-
normal in all subgroups (BD I, BD II) here. However, on the other hand, each
task may have its specific features that are important for this task while unim-
portant for some others. So the l1-norm regularization term ‖W‖1 is included
in (1) in order to induce sparsity among tasks. This idea can be illustrated by
Fig. 1: Fig. 1A is the standard sparsity pattern, and the models for different tasks
are built independently; Fig. 1B is the pattern learned by the model with only
l2,1-norm, which enforces all models from different tasks to select a common set
of features; Fig. 1C shows the learned pattern with l2,1 + l1-norm, which makes
sparsity weight coefficients that are similar, but not identical, across tasks.

Fig. 1. Illustrations of sparsity effects. Different colors indicate different weight coeffi-
cients. A) Standard sparsity; B) Model with only l2,1-norm; C)Model with l2,1+l1-norm.

2.2 Solution

We use the Optimal Stochastic Alternating Direction Method of Multipliers
(SADMM) method [15] to solve our l2,1+l1-norm SVM problem. We first convert
(1) to the following equivalent problem:

min
W

t∑

i=1

n∑

j=1

max(0, 1− yjiw
T
i xji) + α‖Z‖2,1 + β‖Z‖1 s.t. Z = W (3)
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This is a non-smooth but strongly convex problem. Let f(w, ξ) = max(0, 1 −
ywTx), where ξ = {x, y} is a feature-label pair, and h(Z) = α‖Z‖2,1 + β‖Z‖1,
the augmented Lagrangian will be:

Lk
μ(W,Z, λ) = f(Wk)+ < gk,W > + 1

2ηk
‖W −Wk‖22 + h(Z)

− < λ,Z −W > +μ
2 ‖Z −W‖22

(4)

where gk = f
′
(Wk, ξk+1) is a stochastic sub-gradient of f(Wk) at the current

search point Wk of the kth iteration, λ is the Lagrangian multipliers, μ > 0 is
a penalty parameter, < A,B >= trace(ATB), ηk is the step size and is set as
ηk = 2/γ(k + 2) as well as in [15]. Applying SADMM to problem (4) produces
closed-form updating rules as follows:

Wk+1 = argmin
W

WT f
′
(Wk, ξk+1) +

μ
2 ‖Zk −W − λk

μ ‖22 + 1
2ηk

‖W −Wk‖22
Zk+1 = argmin

Z
α‖Z‖2,1 + β‖Z‖1 + μ

2 ‖Z −Wk+1 − λk

μ ‖22
λk+1 = λk − μ (Zk+1 −Wk+1)

(5)

Let Lk
μ(W ) = WT f

′
(Wk, ξk+1) +

μ
2 ‖Zk −W − λk

μ ‖22 + 1
2ηk

‖W −Wk‖22, have

∂Lk
μ(W )/∂W = 0, and then we get the updating rule:

Wk+1 = (
1

ηk
+ μ)−1

[
μZk − λk +

1

ηk
Wk − f

′
(Wk, ξk+1)

]
(6)

where f
′
(w, ξ) = −yx, if ywTx < 1; otherwise 0.

The implementation of the method can be summarized in Algorithm 1. Note
that the Step 4 is solved by utilizing the decomposition property [7]. For further
details see Supplementary Material1, in which we also provided the proof on
the convergence property of the algorithm.

Fig. 2. Simulated data and results. A) Data generation; B) Learned weight coefficients.

1 www.cbica.upenn.edu/sbia/Tianhao.Zhang/MICCAI2015.html

www.cbica.upenn.edu/sbia/Tianhao.Zhang/MICCAI2015.html
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Algorithm 1. Multi-Task l2,1 + l1-norm SVM (mtSVML21L1)

Input: data matrix X, labels Y , and parameters α, β
Initialize: W0 = Z0 = λ0 = 0, μ = 10−6, μmax = 1010, ρ0 = 1.1, ε = 10−8, γ = 2,
maxIter= 103, k = 0.
Output: W
while not converge, k <maxIter, do

1 ηk = 2/γ(k + 2)
2 Obtain stochastic gradient gk; build Lk

μ via (4)
3 Fix the others and update W by (6)
4 Fix the others and update Z by:

Zk+1 = argmin
Z

α‖Z‖2,1 + β‖Z‖1 + μ
2
‖Z −Wk+1 − λk

μ
‖22

5 Update the multiplier λ by: λk+1 = λk − μ (Zk+1 −Wk+1)
6 Update the parameter μ by: μ = min(ρ0μ, μmax)
7 Check the convergence conditions: ‖Zk+1 −Wk+1‖∞ < ε
8 k = k + 1

end while

3 Results

3.1 Multi-Task Feature Learning on the Simulated Data

The Data: We generated three groups of images: 1) disease type I (D1) data,
2) disease type II (D2) data, and 3) normal control data (NC). Each group had
30 samples, resulting in a total of 90 samples. All images are of size 100× 100.
The data are generated as follows. For each of the normal data, the mean is in
[0.8, 0.95] with some Gaussian noise. In D1 and D2 images, there is an area of
size 30× 30, in which the values are decreased to [0.1, 0.6] with some Gaussian
noise. The locations of such patches in D1 and D2 are not identical, but they
have an overlapping area of size 20×20. The generation is illustrated in Fig. 2A.

The Results: The results obtained by mtSVML21L1 are shown in Fig. 2B.
Both disease patterns are identified in the comparison of D1+D2 vs NC (Task
1), with their overlapping area being more highlighted. In Task 2, it’s shown that
the abnormal patch in D1 is identified, while in Task 3, the abnormal patch in D2
is well marked. In Task 4, we can see that only the differences between D1 and
D2 are highlighted. Taken together, the simulation results show our proposed
method works effectively and correctly for multi-task feature learning.

3.2 Multi-Task Classification on the Bipolar Disorder Data

The Data: We evaluated the proposed methods using the structural brain MRIs
on Bipolar Disorder (BD), a typical heterogeneous neuropsychiatric illness. From
the total of 71 subjects, 44 were treatment-naive patients of BD and 27 were
age and gender matched normal controls (NC). According to the DSM-IV cri-
teria, each patient was assigned into BD I (22 subjects) or BD II (22 subjects)
subgroups. Details on demographic characteristics, and image acquisition and
preprocessing can be found in [16]. T1-weighted images were preprocessed ac-
cording to a number of steps [16], including 1) AC-PC plane alignment; 2) Skull
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removal; 3) Tissue segmentation into gray matter (GM), white matter (WM),
and cerebrospinal fluid (CSF); and 4) High-dimensional image warping to a
standard MNI space, resulting in the mass-preserved tissue density maps.

Experimental Design: Based on the voxel-wise tissue density values of GM,
we performed the multiple classification tasks, including 1) Task 1: BD vs NC,
2) Task 2: BD I vs NC, 3) Task 3: BD II vs NC, and 4) Task 4: BD I vs
BD II. According to the absolute values of weight coefficients W , we select the
respectiveK top-ranked features [6][12] for each task, with which the linear SVM
is used in the final step for the binary classification for each task. Other than the
proposed mtSVML21L1 method, some comparative methods are also carried out
as below: 1) stLSL1: Single Task l1-norm Least Square (LS) loss function feature
selection; 2) stSVML1: Single Task l1-norm SVM feature selection; 3) mtLSL21:
Multi-Task l2,1-norm LS loss function feature selection [6][7]; 4) mtSVML21:
Multi-Task l2,1-norm SVM, i.e., the case that only l2,1-norm term is included
in Equation (1); 5) mtLSL21L1: Multi-Task l2,1 + l1-norm LS loss function [17]
feature selection. mtLSL21L1 is built upon mtLSL21 by adding the l1-norm,
and solved by using the Accelerated Proximal Gradient (APG) [7] method. To
compare all methods, we used 5-fold cross-validation: four random subsets for
training and the remaining one subset for testing.

Parameters Tuning: The above methods can be classified into three groups ac-
cording to regularization terms: 1)l1-norm: stLSL1 and stSVML1; 2)l2,1-norm:
mtLSL21 and mtSVML21; 3)l2,1 + l1-norm: mtLSL21L1 and mtSVML21L1.
They are related with two parameters, α or/and β which regulate the effects
of the l2,1 or/and l1 terms respectively. We searched them in the range of
α, β ∈ [

10−5, · · · , 10−1, 0.5, 1, 101, · · · , 105]. Another important parameter is K,
i.e., the number of features which are selected from tasks. In our experiments,
this number is in the area of [5, 5500].

Table 1. The ACCs (%) and the AUCs of the competing methods, calculated from
four different tasks, respectively. The right columns list the average values.

Methods
Task 1 Task 2 Task 3 Task 4 ACC AUC

ACC AUC ACC AUC ACC AUC ACC AUC (avg) (avg)

stLSL1 59.23 0.49 51.78 0.54 48.79 0.44 46.80 0.42 51.65 0.47

stSVML1 56.48 0.47 51.79 0.54 53.52 0.43 50.81 0.45 53.15 0.48

mtLSL21 67.52 0.61 66.75 0.62 58.52 0.56 68.52 0.61 65.33 0.60

mtSVML21 70.38 0.66 74.78 0.73 72.43 0.73 71.42 0.61 72.25 0.68

mtLSL21L1 76.00 0.64 74.83 0.64 74.28 0.61 72.34 0.63 74.36 0.63

mtSVML21L1 78.95 0.67 84.23 0.76 84.18 0.77 78.35 0.71 81.42 0.72

Classification Results: The optimal classification accuracy (ACC) and the
area under curve (AUC) measures of all methods are listed in Table 1. As shown,
Multi-Task methods performed better than Single Task ones. Among all the
methods, mtSVML21L1 has the best performances. The fact that mtSVML21L1
outperformed mtSVML21 reveals the benefit of characterizing specific patterns
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related to different tasks. The heterogeneity in the BD group resulted in inferior
performance of BD vs NC than BD I/II vs NC. In addition, we find that BD I
vs BD II is the most difficult task, and likely requires a much larger training set.

Feature Interpretations: We overlaid the output weight coefficients obtained
by mtSVML21L1 onto the standard template for visual inspection. The repre-
sentative sections are displayed in Fig. 3. We can see that BD I and BD II share
similar patterns of GM abnormalities around the Frontal Pole (Fig. 3A) and
the Precuneus (Fig. 3B) which are present in the results of Tasks 1, 2, and 3
(namely, BD vs NC, BD I vs NC, BD II vs NC), but not in Task 4 (BD I vs BD
II). Relative to BD I vs NC (Task 2), BD II vs NC (Task 3) demonstrated more
widely spread patterns including not only the Frontal Pole and the Precuneus
but also more signals around the Cerebellum (Fig. 3C), and the Middle Frontal
Gyrus (Fig. 3D) which were further confirmed by the direct comparison between
BD I and BD II, that is, Task 4.

Fig. 3. Representative slices of regions, including A) Frontal Pole, B) Precuneus, C)
Cerebellum, and D) Middle Frontal Gyrus, obtained from all four tasks. The scale
indicates the absolute values of weights.

4 Conclusions

In this paper, we propose a novel method named Multi-Task l2,1 + l1-norm
Support Vector Machine (mtSVML21L1) for classifying Bipolar Disorder (BD)
disease under the presence of phenotypic heterogeneity. We adopt the framework
of multi-task hinge loss with sparsity regularization terms to jointly learn features
that are commonly shared among all the tasks and which are characterized with
specific patterns in each task. Experimental results have shown that, compared
with other state-of-the-art methods, our proposed method can achieve the best
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performances for multi-tasks, also yielding better results than previous works on
MRI-based classification in BD [16]. Furthermore, the features learned by the
proposed method reveals the heterogeneous patterns of structural abnormalities
from different tasks. Taken together, the proposed methods have deepened our
insight into the neurobiological basis of the disorder′s clinical heterogeneity and
helped us make progress on individual-level patient stratification.
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