
© Springer International Publishing Switzerland 2015 
N. Navab et al. (Eds.): MICCAI 2015, Part I, LNCS 9349, pp. 133–141, 2015. 
DOI: 10.1007/978-3-319-24553-9_17 

Fiber Connection Pattern-Guided Structured Sparse 
Representation of Whole-Brain fMRI Signals  

for Functional Network Inference 

Xi Jiang1, Tuo Zhang2,1, Qinghua Zhao3, Jianfeng Lu3, Lei Guo2, and Tianming Liu1 

1 Cortical Architecture Imaging and Discovery Laboratory, Department of Computer Science  
and Bioimaging Research Center, The University of Georgia, Athens, GA, USA 

superjx2318@gmail.com 
2 School of Automation, Northwestern Polytechnical University, Xi’an, P. R. China 

3 School of Computer Science and Engineering,  
Nanjing University of Science and Technology, Nanjing, P. R. China 

Abstract. A variety of studies in the brain mapping field have reported that the 
dictionary learning and sparse representation framework is efficient and 
effective in reconstructing concurrent functional brain networks based on the 
functional magnetic resonance imaging (fMRI) signals. However, previous 
approaches are pure data-driven and do not integrate brain science domain 
knowledge when reconstructing functional networks. The group-wise 
correspondence of the reconstructed functional networks across individual 
subjects is thus not well guaranteed. Moreover, the fiber connection pattern 
consistency of those functional networks across subjects is largely unknown. To 
tackle these challenges, in this paper, we propose a novel fiber connection 
pattern-guided structured sparse representation of whole-brain resting state 
fMRI (rsfMRI) signals to infer functional networks. In particular, the fiber 
connection patterns derived from diffusion tensor imaging (DTI) data are 
adopted as the connectional features to perform consistent cortical parcellation 
across subjects. Those consistent parcellated regions with similar fiber 
connection patterns are then employed as the group structured constraint to 
guide group-wise multi-task sparse representation of whole-brain rsfMRI 
signals to reconstruct functional networks. Using the recently publicly released 
high quality Human Connectome Project (HCP) rsfMRI and DTI data, our 
experimental results demonstrate that the identified functional networks via the 
proposed approach have both reasonable spatial pattern correspondence and 
fiber connection pattern consistency across individual subjects. 
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1 Introduction 

Sparse representation has received increasing interests in the brain mapping field for 
functional magnetic resonance imaging (fMRI) signal analysis and functional brain 
network inference based on the assumption that each brain fMRI signal can be 
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represented as sparse linear combination of a set of signal basis [1-3]. Recent studies 
have widely reported that the dictionary learning and sparse representation framework 
is efficient and effective in reconstructing concurrent functional brain networks based 
on either task-based or resting state fMRI (rsfMRI) data [1-3]. One possible limitation 
of previous approaches, however, is that it is a pure data-driven regression procedure 
and does not integrate brain science domain knowledge when reconstructing 
functional networks. The group-wise correspondence of the functional networks 
across subjects is thus not well guaranteed. Moreover, the fiber connection pattern 
consistency of the reconstructed functional networks across subjects is largely 
unknown. In the neuroscience field, it is widely believed that the fiber connections are 
the substrates of brain functions [4]. 

To tackle the above-mentioned two challenges, in this paper, we propose a novel 
fiber connection pattern-guided structured sparse representation of whole-brain 
rsfMRI signals to infer functional networks. Note that previous efforts have been 
devoted to fiber connectivity-constrained conventional functional network (node and 
connectivity) analysis (e.g., [5]), while we focus on fiber connection pattern-
constrained identification of functionally consistent brain regions, which are simply 
called ‘functional network’ in this paper. In particular, the fiber connection patterns 
derived from diffusion tensor imaging (DTI) data are adopted as the connectional 
features to perform group-wise consistent fine-granularity cortical parcellation across 
subjects based on our previous methods in [6]. Those consistent parcellated regions 
are then employed as the group structured constraint to guide group-wise multi-task 
sparse representation of whole-brain rsfMRI signals to reconstruct functional 
networks. Theoretically, structured multi-task sparse representation [7] defines a 
specific structure (e.g., groups, trees, or graphs) on the multi-tasks, and achieves both 
intra-group homogeneity and intra/inter-
group sparsity via combined ℓଵ  and ℓଶ -norms [7]. Our premise is that 
cortical vertices within the same 
parcellated cortical region which have 
similar fiber connection patterns should 
potentially play similar roles in brain 
function. Therefore, integrating those 
group-wise consistent parcellated 
regions across subjects as the group 
structured constraint can effectively handle the above-mentioned two challenges and 
improve the functional network reconstruction by constraining both intra-group 
homogeneity and intra/inter-group sparsity. 

2 Materials and Methods 

2.1 Data Acquisition and Pre-processing 

We used the high-quality rsfMRI [8] and DTI [9] data in the Human Connectome 
Project (HCP) (Q1 release) to develop and evaluate the proposed framework (Fig. 1). 

 

Fig. 1. The flowchart of our proposed 
framework. 
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Ten subjects were adopted as a test bed in this paper. The major acquisition 
parameters of rsfMRI data are 220mm/0.72s/33.1ms of FOV/TR/TE, 1200 time 
points, 90×104×72 dimension, and 2.0mm isotropic voxels. The pre-processing of 
rsfMRI data is referred to [8]. The major acquisition parameters of DTI data are 
210×180/5520ms/89.5ms of FOV/TR/TE, 90 directions, 168×144 matrix, and 
1.25mm isotropic voxels. Pre-processing of DTI data is referred to [6]. 

2.2 Dictionary Learning of Whole-Brain rsfMRI Signals 

In our framework (Fig. 1), an over-complete dictionary DϵԹ௧ൈ௞  (t is the signal time 
points and k is the dictionary atoms) was firstly learned from the whole-brain rsfMRI 
signals X=[x1, x2,…,xn]ϵԹ௧ൈ௡  (n is the cortical vertices, k>t and k<<n [10]) of each 
subject using an effective online dictionary learning algorithm [10] assuming that the 
rsfMRI signals X can be represented as sparse linear combination of a set of signal 
basis (dictionary atoms) [10]. Specifically, for each subject, the whole-brain rsfMRI 
signals were extracted, normalized to zero mean and standard deviation of 1 [10], and 
aggregated into a matrix XϵԹ௧ൈ௡ . An empirical cost function considering the average 
loss of regression to n signal vectors was then defined in Eq. (1): 

௡݂ሺ۲ሻ ؜ 1݊ ෍ ℓሺܠ௜, ۲ሻ௡
௜ୀଵ  (1) 

ℓሺܠ௜, ۲ሻ ؜ ݉݅݊હ೔ఢԹೖ 12 ௜ܠ|| െ ۲હ௜||ଶଶ ൅ હ௜||ଵ||ߣ  (2) 

where the ℓଵ regularization in Eq. (2) was adopted to generate a sparse resolution of હ௜. D and હ were alternatively updated and learned [10]. The learned D was adopted 
as the regressors to perform conventional sparse representation and the proposed 
structured sparse representation of brain rsfMRI signals as detailed in Section 2.4. 

2.3 Fiber Connection Pattern Based Cortical Parcellation for Constraint 

We performed fiber connection pattern based cortical parcellation based on DTI data 
using our methods in [6]. Briefly, for each cortical vertex, we extracted the white 
matter fiber bundle consisting of fiber tracts emanating from the neighborhood (5 mm 
sphere) of the cortical vertex. The connection pattern of the extracted fiber bundle 
was then described as a 144 dimensional connectional descriptor using the trace-map 
model developed in [11]. Based on the fiber connectional descriptor of each cortical 
vertex, the cortical parcellation was performed to group-wisely and gradually 
parcellate cortical surfaces into consistent fine-granularity patches across subjects 
under a hierarchical scheme. The initial cluster centers and cluster numbers within 
each hierarchical level were determined via adaptive affinity propagation [6] based on 
the recently publicly released 358 cortical landmarks [11] which possess consistent 
white matter fiber connection patterns across subjects. Other cortical vertices were 
then classified into correspondent clusters based on the similarity of the connectional 
descriptors to achieve intra-level parcellation using the group-wise implementation of 
expectation maximization [6] under the spatial constraint of a group of subjects.  
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The same intra-level parcellation procedure was repeated in the next hierarchical level 
based on the parcellation results of the previous level. A group-wise hidden Markov 
random field smoothing approach [6] was also adopted to prevent the potential 
disconnected clusters. The resulted consistent parcellated cortical regions across 
subjects were employed as the group structured constraint to guide the sparse 
representation of rsfMRI signals as illustrated in Fig. 2 and detailed in Section 2.4. 

2.4 Structured Sparse Representation of Whole-Brain rsfMRI Signals 

The LASSO [12] has been widely used for sparse representation, and is defined as: હෝ ൌ ℓሺહሻ݊݅݉݃ݎܽ ൅ ሺહሻ (3)߶ߣ

where ℓሺહሻ is the empirical loss function, ߶ሺહሻ is the penalty term, and 0<ߣ is the 
regularization parameter. As illustrated in Fig. 2a, once we learned dictionary 
DϵԹ௧ൈ௞  (Section 2.2), the conventional LASSO to perform regression of rsfMRI 
signals XϵԹ௧ൈ௡ to obtain a sparse coefficient matrix હ߳Թ௞ൈ௡ was defined as: હෝ ൌ ݊݅݉݃ݎܽ ෍ 12 ௜ܠ|| െ ۲હ௜||ଶଶ ൅ ߣ ෍ ෍หહ௜௝ห௞

௝ୀଵ
௡

௜ୀଵ
௡

௜ୀଵ  (4)

where ℓሺહሻ  is defined as the least square loss, and ߶ሺહሻ  is the ℓଵ -norm 
regularization term to induce sparsity. હ௜௝ is the coefficient element at the i-th column 
and j-th row. k and ߣ were experimentally determined (k=400 and 1.5=ߣ). This 
conventional LASSO approach in Eq. (4) is pure data-driven. 

 
Fig. 2. The illustration of (a) conventional LASSO and (b) the proposed structured LASSO. 

In this paper, we proposed a novel structured sparse representation (or structured 
LASSO) approach. As shown in Fig. 2b, the group-wise consistent parcellated 
cortical regions (Section 2.3) were adopted as the group structured constraint to guide 
LASSO. Based on the premise that vertices within the same parcellated cortical 
region which have similar fiber connection patterns should potentially play similar 
roles in brain function, the rsfMRI signals of those vertices should share similar 
regression weights for functional network reconstruction. We aimed to constrain both 
intra-group homogeneity and intra/inter-group sparsity for LASSO, and defined the 
structured LASSO as follows: હෝ ൌ ݊݅݉݃ݎܽ ෍ 12 ௜ܠ|| െ ۲હ௜||ଶଶ ൅ ߣ ෍ ෍หહ௜௝ห௞

௝ୀଵ
௡

௜ୀଵ
௡

௜ୀଵ ൅ ሺ1 െ ሻߣ ෍ ෍ ߱௦ฮહீೞ௝ ฮଶ
ௌ

௦ୀଵ
௞

௝ୀଵ  (5)

where the rsfMRI signals X are categorized into S structured groups ሼܩଵ, ,ଶܩ … , ݏ ௦ሽܩ ൌ 1, … , ܵ based on the S parcellated cortical regions (Fig. 2b). ߱௦ is the weight 
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coefficient of ฮહீೞ௝ ฮଶ. The conventional LASSO adopted the ℓଵ-norm regularization 

term to induce sparsity (Eq. (4)), while our proposed structured LASSO introduced a 
ℓଶ-norm penalty term to improve the intra-group homogeneity, and also kept the ℓଵ-
norm penalty to induce both intra- and inter-group sparsity (Eq. (5)). The detailed 
parameter selection and solution of Eq. (5) was referred to [7]. We adopted the public 
SLEP software package (http://www.public.asu.edu/~jye02/Software/SLEP/) to solve 
the problem and to obtain હ߳Թ௞ൈ௡ . The values of two major parameters k and ߣ 
were experimentally determined using cross-validation (k=400 and 0.15=ߣ). From 
brain science perspective, each learned dictionary can be viewed as the temporal 
pattern of a functional network, and each row of learned હ (non-zeros coefficients) 
were mapped back to cortical surface (Figs. 2a-2b) to obtain the cortical spatial maps 
of the network. To identify and quantitatively characterize the meaningful functional 
networks, we adopted the functional networks templates provided in [13]. The 
specific row of હ  with the most spatial pattern similarity (defined as Jaccard 
similarity coefficient [14] JሺA, Tሻ ൌ  |A ת T|/|A ׫ T|, A and T are spatial maps of a 
specific row of હ and a template, respectively) with a specific network template was 
identified as the corresponding functional network. More details are in [3]. 

3 Experimental Results 

3.1 Comparison of Identified Functional Networks 

We compared the identified functional networks via the structured LASSO and 
conventional LASSO. The widely known ‘default mode network’ (DMN) [13] was 
adopted as the example here for demonstration. First, Fig. 3 shows that the spatial 
patterns of DMN via the structured LASSO (Fig. 3a) have better group-wise 
correspondence and higher similarity with the DMN template [13] across subjects 
compared with those via the conventional LASSO (Fig. 3b). Quantitatively, the mean 
spatial similarity of identified DMNs for each individual subject is 0.31±0.03 via the 
structured LASSO, which is larger than the conventional LASSO (0.18±0.01). The 
spatial similarity of group-averaged DMN with the structured LASSO (0.53) is also 
improved compared with the conventional LASSO. 
 

 

Fig. 3. Spatial patterns of identified DMN via (a) the proposed structured LASSO and (b) 
conventional LASSO of two example subjects and across all ten subjects. (c) shows the spatial 
pattern of the DMN template. The six major regions of DMN are labeled as R1 to R6, 
respectively. The color bar of the spatial patterns is shown in (c). 
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Fig. 4. (a)-(b): Parcellated cortical regions of the two example subjects. The corresponding 
regions are labeled by the same color. (c)-(d): Co-visualization of the cortical parcellation 
(white curves delineate the boundaries of regions) and spatial pattern of DMN via the (c) 
structured LASSO and (d) conventional LASSO of the two subjects. (e)-(f): DTI-derived white 
matter fiber bundles connecting to the six regions of DMN (R1 to R6 in Fig. 3c) via the (e) 
structured LASSO and (f) conventional LASSO of the two subjects. 

Second, Figs. 4a-4b show that the parcellated cortical regions (65 in total) of the 
two example subjects have reasonable correspondence as reference. The co-
visualization of the cortical parcellation and the spatial pattern of DMN in Figs. 4c-4d 
shows that all six major regions of DMN (Fig. 3c) have reasonable coincidence with 
specific parcellated regions via the structured LASSO (Fig. 4c), as expected, while are 
not well matched with the parcellated regions via the conventional LASSO (Fig. 4d). 
We further showed the DTI-derived white matter fiber bundles connecting to each of 
six major regions of DMNs in Figs. 4e-4f. We see that the global fiber shape patterns 
are reasonably consistent between the two subjects for each of the six regions via the 
structured LASSO (Fig. 4e), while with considerate variability between those via the 
conventional LASSO (Fig. 4f). Quantitatively, we represented the connection pattern 
of a fiber bundle as a 144 dimensional vector descriptor (Section 2.3), and defined the 
connection pattern consistency of two fiber bundles as the Euclidean distance of the 
two 144 dimensional vectors. The mean fiber connection pattern consistency across 
the six regions and across any pair of all subjects is 0.46±0.05 via the structured 
LASSO and 1.55±0.54 via the conventional LASSO. In conclusion, the identified 
functional networks via the proposed structured LASSO have both reasonable spatial 
pattern correspondence and fiber connection pattern consistency across subjects 
compared with those via the conventional LASSO. 
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3.2 Functional Networks Guided by Multiple Levels of Cortical Parcellation 

We further parcellated the cortical surfaces into finer-granularity group-wise 
consistent patches under the hierarchical scheme detailed in Section 2.3. Another four 
levels (159, 222, 243, and 250 regions in total based on [6], respectively) besides the 
first level (Figs. 4a-4b) were obtained and illustrated in Fig. 5. Here we examined the 
stability and consistency of reconstructed DMNs via the four different levels of 
cortical parcellation guided structured LASSO in Figs. 5a-5d. The co-visualization of 
the cortical parcellation with the spatial pattern of identified DMN at each level (the 
first row of Figs. 5a-5d, respectively) shows that the major regions of DMNs are 
reasonably matched with specific parcellated regions at each level. Quantitatively, the 
mean spatial similarity and fiber connection pattern consistency of DMNs across all 
ten subjects at each level are shown in Fig. 6. In conclusion, the DMNs based on 
different hierarchical levels of cortical parcellation guided structured LASSO have 
both higher spatial pattern similarity with the DMN template and fiber connection 
pattern consistency across subjects compared with those via the conventional LASSO. 
 

 

Fig. 5. (a)-(d): Identified DMNs based on another four levels of cortical parcellation guided 
structured LASSO, respectively. In each sub-figure, the first row shows the co-visualization of 
the cortical parcellation (white curves delineate the boundaries of regions) and the spatial 
pattern of DMN, and the second row shows the cortical parcellation at the specific level. The 
corresponding parcellated regions across subjects are labeled by the same color. Note that there 
is no correspondence of cortical parcellation color labels across different levels. 
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Fig. 6. (a) Mean spatial pattern similarity and (b) fiber connection pattern consistency (defined 
as the distance in Section 3.1) of DMNs across all ten subjects based on the five levels (indexed 
by L1 to L5) of cortical parcellation guided structured LASSO and the conventional LASSO. 

3.3 Co-visualization of Other Identified Functional Networks 

We identified nine functional networks based the network templates in [13]. Note that 
more networks can be identified if more templates are provided. Fig. 7 co-visualizes 
the nine functional networks of two example subjects. Specifically, RSNs #1, #2 and 
#3 are all located at visual cortex. RSNs #4, #5, #6 and #7 are DMN, sensorimotor, 
auditory, and executive control network, respectively. RSNs #8 and #9 contain middle 
frontal and superior parietal regions. We see that the major regions of the nine 
networks have reasonable spatial pattern correspondence and coincidence with 
specific corresponding parcellated cortical regions across the two example subjects. 
 

 

Fig. 7. (a)-(b) Co-visualization of nine functional networks via the structured LASSO of two 
example subjects. In each sub-figure, the first row co-visualizes the cortical parcellation (black 
curves delineate the boundaries of regions) and the spatial pattern of nine functional networks. 
The corresponding functional network is labeled by the same color across subjects as illustrated 
in (c), and the second row shows the cortical parcellation. The corresponding parcellated 
regions are labeled by the same color across subjects. Note that there is no correspondence of 
color labels between functional networks and parcellated regions. 

4 Discussion and Conclusion 

We proposed a novel fiber connection pattern-guided structured sparse representation 
of whole-brain rsfMRI signals to infer functionally consistent regions. Experimental 
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results demonstrated that the identified functional networks achieved both reasonable 
group-wise spatial pattern correspondence and fiber connection pattern consistency 
across subjects, which were not well addressed in previous functional atlas. Our 
future work includes adopting our method to identify network nodes based on the 
orthogonal dictionary atoms and ‘network node hubs’ based on the non-orthogonal 
atoms for conventional functional connectivity network analysis. 
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