
V–Bundles: Clustering Fiber Trajectories

from Diffusion MRI in Linear Time

Andre Reichenbach1, Mathias Goldau1,
Christian Heine2, and Mario Hlawitschka3

1 Image and Signal Processing Group, Computer Sience Institute,
Leipzig University, Germany

[reichenbach,math]@informatik.uni-leipzig.de
2 Visual Computing Group, Department of Computer Science,

TU Chemnitz, Germany
christian.heine@informatik.tu-chemnitz.de

3 Scientific Visualization Group, Computer Sience Institute,
Leipzig University, Germany

hlawitschka@informatik.uni-leipzig.de

Abstract. Fiber clustering algorithms are employed to find patterns in
the structural connections of the human brain as traced by tractography
algorithms. Current clustering algorithms often require the calculation of
large similarity matrices and thus do not scale well for datasets beyond
100,000 streamlines. We extended and adapted the 2D vector field k–
means algorithm of Ferreira et al. to find bundles in 3D tractography data
from diffusion MRI (dMRI) data. The resulting algorithm is linear in the
number of line segments in the fiber data and can cluster large datasets
without the use of random sampling or complex multipass procedures. It
copes with interrupted streamlines and allows multisubject comparisons.

Keywords: diffusion MRI, fiber clustering, vector field.

1 Introduction

Tractography allows estimating the physical paths of neuronal connections in the
human brain from diffusion–weighted magnetic resonance imaging (dMRI) data.
Existing methods typically generate up to millions of streamlines for a single
subject and then group them into bundles. These bundles represent a macro–
scale wiring scheme of the brain and thus play a big role in generating atlases
of the human white matter. They are also of general interest to neuroscience, in
particular the study how structural as well as functional bundle characteristics
relate to brain development, aging, and diseases.

To find fiber bundles, many popular methods use similarity measures and
employ clustering, e.g., hierarchical clustering [4,9]. This typically requires the
computation and storage of pairwise similarities, which grow quadratically in
the number of streamlines and thus quickly limit the dataset sizes that can be

c© Springer International Publishing Switzerland 2015
N. Navab et al. (Eds.): MICCAI 2015, Part I, LNCS 9349, pp. 191–198, 2015.
DOI: 10.1007/978-3-319-24553-9_24



192 A. Reichenbach et al.

processed. General strategies to reduce this complexity include random sam-
pling [5,7], culling [10], or preclustering using a faster algorithm. Methods us-
ing similarity measures often require the data to be resampled to a fixed num-
ber of points or fixed segment length, and thus may loose information. Most
similarity measures are not very resistent to interrupted streamlines typically
arising from fiber tracers. Among other subquadratic algorithms are greedy ap-
proaches (e.g. [3]), procedures based on stochastic processes (e.g. [9,8]), and
multiprocedure schemes including voxel–based clustering such as [4]. In con-
trast to these predominantly data–driven approaches, which are important for
inferring structural connectivity without bias, there also are approaches that in-
corporate anatomical priors, as well as those working directly on the diffusion
model omitting the tractography; a thorough review can be found in [6]. Al-
though anatomical priors are designed to help to identify plausible white matter
tracts, only little is known on white matter variability, hence essential subject
differences may not be regarded.

Determining correspondence between identified clusters among subjects or
image acquisitions allows population–averaged atlases or comparing diffusion
indices along bundles. In prior work, this has been attempted by means of
clustering subjects in unison in a common space [5], by bundle similarity mea-
sures [9,10], by using priors learned from training datasets [8,9], or by clustering
an inter–subject similarity matrix [1].

In this paper, we adapt the vector field k–means algorithm by Ferreira et al. [2].
It is designed to find movement patterns in 2D directed trajectories by learning
“latent” vector fields; we extend it to 3D and undirected streamlines. The result
has a runtime complexity linear in the number of input points and naturally
copes with interrupted streamlines. The learned vector fields can be used to
classify new data or subjects.

2 Methods and Material

We first provide an overview of the vector k–means algorithm by Ferreira et al. [2]
and then discuss our changes to make it applicable to streamline data.

2.1 Vector Field k–Means

The input to the algorithm is a set of 2D trajectories, given as lists of points and
time stamps. The output is each trajectory’s cluster and optionally the regular
rectilinear vector fields which serve as cluster descriptors and can be used to
classify trajectories not in the training set. The algorithm has three parameters:
the vector field resolution Rv, i.e., the number of grid points along each axis, the
number of clusters k, and the regularization strength λ to avoid overfitting. The
algorithm first splits each trajectory i into a list of line segments s

(i)
1 , . . . , s

(i)
mi ,

each lying in exactly one grid cell and having its own duration w
(i)
l .

The algorithm then proceeds iteratively, alternating between assigning the
best vector field to each trajectory and fitting each vector field to its currently



V–Bundles: Clustering Fiber Trajectories 193

assigned trajectories. The vector fields V (1), . . . , V (k) are represented as R2
v × 2

matrices, each line coding the x, y velocity at one grid position. To find the best
vector field for a given trajectory the algorithm computes, in terms of squared
error, the average match of its line segments with each vector field as follows:

e(S(i), V (j)) =

m(i)∑

l=1

w
(i)
l (C

(i)
l V (j) −B

(i)
l )2 , (1)

where C
(i)
l and B

(i)
l are suitably constructed matrices for each segment that take

within–cell interpolation into account. We refer to Ferreira et al. [2] for details.
To fit a vector field V (j) to its currently assigned trajectories, the algorithm

computes the coefficients of V (j) that minimize:

c(V (j)) = λ‖LV ‖2 + 1− λ

W

∑

i∈{i|φi=j}
e(S(i), V (j)) , (2)

where W is the total time length over all line segments and L denotes the
Laplacian of the grid. Its purpose is to prefer smooth vector fields. The algorithm
is initialized by fitting each cluster to a single trajectory in turn. The first cluster
is fitted to a random trajectory and each next cluster is fitted to the trajectory
maximizing e(S(i), V (j)) for all clusters already fitted. The algorithm finishes as
soon as the assignment of trajectories to clusters no longer changes or a fixed
number of iterations is reached. The computational complexity of the algorithm
is linear in the total number of line segments, clusters, and grid size.

2.2 V–Bundles

To adapt vector field k–means to streamline data, we first need to extend the
algorithm to 3D. Changing the dimension of the matrices suffices, but the size
of the grid changes from O(R2

v) to O(R3
v), affecting computational complexity.

We avoid unnecessary computations due to empty grid cells by initializing the
grid using a voxel size parameter rv instead of the number of points. Second,
streamlines lack time information. We therefore replace the time parameter by
arc length parameterization in the original trajectory–to–field match cost, im-
plemented by replacing each line segment’s duration w

(i)
l by its length.

The lack of a direction in streamlines causes a more substantial change. Re-
placing vector fields by orientation fields is difficult because the latter lack a
suitable and fast interpolation scheme. Instead, to determine the match cost be-
tween a streamline and a vector field, we treat each streamline as being directed
but take the smaller value for both possible directions. The flip is implemented
by negating B

(i)
l in Equation 1. When fitting the vector field, we originally al-

lowed streamlines to change their direction. Since we observed that only a few,
typically outlying, streamlines change their direction and cause only marginal
difference in cost, we decided to assign each streamline its direction in each as-
signment step and keep it fixed during fitting steps. This allows us to use the
same technique as Ferreira et al., to stack the matrices C

(i)
l and B

(i)
l to C(i) and



194 A. Reichenbach et al.

B(i) in the fitting step and end up with a sparse linear system suitable for effi-
cient solution by conjugate gradient. We also do not use the squared Laplacian,
thus we solve the equation system (L+ C(i)TC(i))V (i) = C(i)TB(i) to compute
our vector fields. In order to keep the algorithm deterministic, we use the longest
streamline to initialize V (0) instead of a random one.

Finally, we observed that spatially distant bundles were represented by the
same vector field due to Laplacian smoothing. To avoid them being added to the
same cluster, we employ additional scalar fields Z(i) of voxel size rz describing the
streamline density of each cluster. They are calculated by counting the number
of streamlines crossing each cell, normalizing by their total number, smoothing
using a Gaussian kernel and then inverting by subtracting each value from 1.0.
By changing the assignment cost to (1− γ)e(S(i), V (j)) + γ‖C(i)Z(j)‖2, we can
choose close by streamlines over distant ones as γ gets larger.

2.3 Material

We tested our algorithm on multiple datasets. To judge the robustness regarding
interrupted streamlines, we created two artificial datasets: a crossing with 150
streamlines and a fork with 100 streamlines. In both datasets, runs of succes-
sive segments were removed randomly (overall one third of all segments) from
the streamlines, breaking them into multiple pieces. We employ the FiberCup
phantom1, which is a hardware phantom that was originally developed in order
to benchmark tracking algorithms through various types of complex fiber con-
figurations: bundles crossing, forking, and touching. To assess clustering quality
on real data, HARDI data of five healthy subjects aged 24 to 31 was acquired
using a 3T Siemens Trio MRI scanner, single echo spin echo EPI sequence with
GRAPPA on a 32 channel coil, 128× 128× 72 image matrix, 1.7× 1.7× 1.7mm3

voxel size, 60 gradient and six non–gradient images at b = 1000. The datasets
were corrected for motion artifacts and linearly registered to one subject using
FLIRT (fsl2). Registration used fractional anisotropy maps computed from the
HARDI data. We traced streamlines using the tensor toolkit3(ttk, version 1.4)
and its default parameters (except for FA1 = 0.2 and FA2 = 0.3) and its stan-
dard interpolation for both the FiberCup as well as the human brain data. Fur-
thermore, we created a 500 000–streamline dataset using mrtrix 4(version 0.2.11)
using its default pipeline, parameters, and interpolation scheme. We resampled
this dataset to 1mm segment length (around 28× 106 segments).

For the purpose of comparison, we implemented four clustering algorithms:
Garyfallidis et al. [3] (QuickBundles), a spectral clustering by O’Donnell and
Westin [5], a point–based clustering by Zhang et al. [10], and a stochastic–
process–based algorithm by Wassermann et al. [9]. The implementations make
use of multiple cores where applicable. If not stated otherwise, streamlines were

1 http://www.lnao.fr/spip.php?rubrique79
2 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT/UserGuide
3 https://gforge.inria.fr/projects/ttk/
4 http://www.brain.org.au/software/mrtrix/

http://www.lnao.fr/spip.php?rubrique79
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT/UserGuide
https://gforge.inria.fr/projects/ttk/
http://www.brain.org.au/software/mrtrix/


V–Bundles: Clustering Fiber Trajectories 195

resampled to 20 points per streamline in order to save time or because the
resampling is required by the algorithm, as in the case of QuickBundles. For
V–Bundles, we usually set the maximum number of k–means iterations to 3,
λ = 0.1, γ = 0.6, rv = 15mm and rz = 9mm. All algorithms were run on a dual
Intel E5-2630v3 CPU, 32GB RAM, NVIDIA GeForce GTX 980, 4GB VRAM.

3 Results

We tested the five clustering algorithms’ ability to resolve clusters even in the
presence of gaps and short lines using the synthetic datasets. Each parameter
was tuned to give a good match with the three, respectively two, contained
bundles. The results are shown in Fig. 1. V–Bundles showed the best results,
perfectly discerning the bundles in both experiments, but required γ = 0 to
correctly resolve the fork. Spectral clustering came close to resolving the crossing
configuration, missing only a few short lines. In all other cases, we did not find
parameters that provided reasonable clusters. The similarity-based methods tend
to cluster lines by proximity rather than orientation and often put isolated small
lines into their own cluster.

We tested the ability to resolve common fiber configurations using the Fiber-
Cup phantom (Fig. 2). V-Bundles is able to separate lines into meaningful clus-
ters, while QuickBundles easily becomes confused by outliers and interrupted
lines. From the dataset we selected only those lines which exactly correspond to
the seven known ground truth bundles of the FiberCup in order to measure pre-
cision and recall (using the clusters that share the largest number of lines with
the respective ground truth cluster). V-Bundles shows a perfect recall score of
1 for all ground truth clusters when computing 16 clusters for the dataset using
standard parameters. Precision, however, is low due to short fibers getting added
to those few clusters. QuickBundles reaches high recall and precision values of
0.97 and 0.75 when creating a large number of clusters (e.g. 73 clusters, θ = 230),
but then, most of those fail to capture the patterns inherent to the phantom.

Furthermore, V-Bundles was also able to reliably extract major fiber bun-
dles from a set of full brain tractography data (approx. 88 000 lines). We used
the fields output by a run of V-Bundles on a single subject to identify the cor-
responding clusters in three other subjects. Figure 3 shows clusters located in
three well–known fiber bundles in the four subjects.

The computation times for different datasets are shown in Table 1. Note the
large influence of the vector grid length rv, but V-Bundles scales linearly in the
number of segments. The scalar grid resolution has little impact on computation
time. The algorithms of O’Donnell et al., Zhang et al. and Wassermann et al.
fail to cluster moderately large datasets due to resource limitations.



196 A. Reichenbach et al.

V-Bundles QuickBundles Spectral Zhang Wassermann

Fig. 1. The best three and two clusters for the crossing and the forking datasets re-
spectively.

Fig. 2. Partitioning 883 lines tracked on the FiberCup dataset into 15 clusters using
V–Bundles (rv = 15mm, rz = 9mm, γ = 0.6, λ = 0.001, left) and QuickBundles
(θ = 620, right), respectively. The background shows all lines for context.



V–Bundles: Clustering Fiber Trajectories 197

Fig. 3. Corresponding clusters calculated for the uncinate fasciculus (top row), parts of
the cortico–spinal tract (mid row), and forceps major over four subjects. Each row has
the same camera position. Parameters were rv = 15mm, rz = 9mm, λ = 0.1, γ = 0.6,
500 clusters. lines were resampled to 3 mm per segment to improve speed.

Table 1. Computation times, a single run each. The number of lines is denoted in
brackets. When an algorithm exceeded 32GB of RAM, it was aborted (marked by –).

V-Bundles QuickB. O’Donnell Zhang Wassermann

FiberCup (441) 2.5s 0.025s 0.31s 1.11s 0.67s
FiberCup (883) 3.3s 0.043s 1.08s 1.19s 3.03s

Human Brain (11k) 113s 2.23s 1770s 20.0s 531s
Human Brain (22k) 205s 4.88s 15500s 96.8s –
Human Brain (44k) 368s 10.8s 108600s 428s –
Human Brain (88k) 681s 17.0s – 2260s –

Human Brain (500k) 2290s 75.3s – – –

4 Discussion and Conclusion

We described an adaption of the vector field k-means algorithm for clustering
neuronal pathways. The algorithm handles short and interrupted streamlines,
which can make up a significant part of a tractogram, without special treatment.
This avoids generating a large number of “outlier”–clusters which need to be
removed from the clustering afterwards. However, this property can also lead
to bundles that share a common path for a significant part of their lengths
to be erroneously clustered into the same cluster. Both increasing the locality
parameter γ and reducing the number of clusters aggravates the problem.

As demonstrated, computation time and memory consumption scale linearly
in the overall number of streamline segments, whis makes the algorithm appli-
cable to dense sets of 100 000 or more streamlines while keeping computation
times reasonably short. It may thus prove to be a useful tool in clinical settings



198 A. Reichenbach et al.

or group studies. Computation time can be significantly reduced by resampling
the streamlines to have longer segments. However, the grid resolution currently
also has a high impact on performance; thus, in future work, we plan to address
this problem by finding a sparser representation of the vector field which could
be computed more quickly.

V–Bundles is also capable of finding corresponding clusters in different sub-
jects in a common space, which is done by initializing the algorithm with the
output fields of one subject (or possibly the result of combined tractograms of
multiple subjects). It would also be conceivable to initialize the algorithm with
a clustering created by an expert.

Also, we plan to evaluate different strategies for picking the first streamline
in the initialization step. The source code of our reference implementation will
be made available at www.openwalnut.org.

Acknowledgements. We thank Marcus Stuber for his initial coding effort, Marc

Tittgemeyer for providing T1 and HARDI data of human subjects, and the anonymous

reviewers for their excellent feedback.

References

1. Dodero, L., Vascon, S., Murino, V., Bifone, A., Gozzi, A., Sona, D.: Automated
multi-subject fiber clustering of mouse brain using dominant sets. Frontiers in
Neuroinformatics 8, 87 (2015)

2. Ferreira, N., Klosowski, J.T., Scheidegger, C.E., Silva, C.T.: Vector field k–means:
Clustering trajectories by fitting multiple vector fields. Computer Graphics Fo-
rum 32(3), 201–210 (2013)

3. Garyfallidis, E., Brett, M., Correia, M.M., Williams, G.B., Nimmo-Smith, I.: Quick-
bundles, a method for tractography simplification. Front. Neurosci. 6 (2012)

4. Guevara, P., Poupon, C.: Inference of a hardi fiber bundle atlas using a two-level
clustering strategy. In: Jiang, T., Navab, N., Pluim, J.W., Viergever, M. (eds.)
MICCAI 2010. LNCS, vol. 6361, pp. 550–557. Springer, Heidelberg (2010)

5. O’Donnell, L., Westin, C.F.: White matter tract clustering and correspondence
in populations. In: Duncan, J., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749,
pp. 140–147. Springer, Heidelberg (2005)

6. O’Donnell, L.J., Golby, A.J., Westin, C.F.: Fiber clustering versus the parcellation-
based connectome. NeuroImage 80, 283–289 (2013)

7. Visser, E., Nijhuis, E.H., Buitelaar, J.K., Zwiers, M.P.: Partition-based mass clus-
tering of tractography streamlines. NeuroImage 54(1), 303–312 (2011)

8. Wang, X., Grimson, W.E.L., Westin, C.F.: Tractography segmentation using a
hierarchical dirichlet processes mixture model. NeuroImage 54(1), 290–302 (2011)

9. Wassermann, D., Bloy, L., Kanterakis, E., Verma, R., Deriche, R.: Unsupervised
white matter fiber clustering and tract probability map generation: Applications of
a gaussian process framework for white matter fibers. NeuroImage 51(1), 228–241
(2010)

10. Zhang, S., Correia, S., Laidlaw, D.H.: Identifying white-matter fiber bundles in dti
data using an automated proximity-based fiber-clustering method. IEEE Transac-
tions on Visualization and Computer Graphics 14(5), 1044–1053 (2008)


	V–Bundles: Clustering Fiber Trajectoriesfrom Diffusion MRI in Linear Time
	1 Introduction
	2 Methods and Material
	2.1 Vector Field k–Means
	2.2 V–Bundles
	2.3 Material

	3 Results
	4 Discussion and Conclusion




