
Integrating Multimodal Priors in Predictive

Models for the Functional Characterization
of Alzheimer’s Disease

Mehdi Rahim1,2,3, Bertrand Thirion1,2, Alexandre Abraham1,2,
Michael Eickenberg1,2, Elvis Dohmatob1,2,
Claude Comtat3, and Gael Varoquaux1,2

1 Parietal Team, INRIA Saclay-̂Ile-de-France, Saclay, France
2 CEA, DSV, I2BM, Neurospin bât 145, 91191 Gif-Sur-Yvette, France

3 CEA, DSV, I2BM, SHFJ 4, place du Général Leclerc, 91401 Orsay, France
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Abstract. Functional brain imaging provides key information to char-
acterize neurodegenerative diseases, such as Alzheimer’s disease (AD).
Specifically, the metabolic activity measured through fluorodeoxyglu-
cose positron emission tomography (FDG-PET) and the connectivity ex-
tracted from resting-state functional magnetic resonance imaging (fMRI),
are promising biomarkers that can be used for early assessment and prog-
nosis of the disease and to understand its mechanisms. FDG-PET is the
best suited functional marker so far, as it gives a reliable quantitative
measure, but is invasive. On the other hand, non-invasive fMRI acquisi-
tions do not provide a straightforward quantification of brain functional
activity. To analyze populations solely based on resting-state fMRI, we
propose an approach that leverages a metabolic prior learned from FDG-
PET. More formally, our classification framework embeds population pri-
ors learned from another modality at the voxel-level, which can be seen
as a regularization term in the analysis. Experimental results show that
our PET-informed approach increases classification accuracy compared
to pure fMRI approaches and highlights regions known to be impacted
by the disease.
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1 Introduction

Alzheimer’s disease (AD) is characterized by a progressive impairment of brain
structures and their connections, which leads to a loss of cognitive function. Mild
cognitive impairment (MCI) is frequently seen as a prodromal stage of AD. The
anatomical and functional changes caused by AD or MCI can be detected via
various neuroimaging modalities and machine learning techniques.

Indeed, anatomical measures performed on Magnetic Resonance Images
(MRIs) such as hippocampus volume or cortical thickness [8] [6] [5], amyloid-β
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deposition [12], the quantification of metabolism on fluorodeoxyglucose positron
emission tomography (FDG-PET), or cerebrospinal fluid (CSF) measures, can
all bring precious biomarkers to help to distinguish AD subjects or MCI subjects
who convert later to AD [10].

There is abundant prior art on classification models based on multi-modal
images and non-imaging data. For instance [14] used a kernel to combine FDG-
PET, anatomical MRI and CSF biomarker measures to obtain a high AD detec-
tion accuracy. Here we focus on functional imaging biomarkers involved in AD.
Several studies have shown that FDG-PET imaging on MCI and AD subjects
reveals significantly reduced metabolic activity. Whether based on brain regions
[2] or voxels [9], prediction of AD on FDG-PET yields 90% accuracy. The major
drawback of this modality is that it is invasive and involves exposition to gamma-
ray radiation. On the other hand, resting-state fMRI captures brain activation
via fluctuations of the blood oxygenation level dependent (BOLD) contrast. It
is used to estimate functional connectivity, which is measured through the cor-
relation between time courses. As studied in [13] and [4], AD is characterized
by widespread decreases in connectivity, especially in the default mode network
(DMN). Resting-state fMRI acquisitions are non-invasive and can be easily in-
tegrated within a clinical imaging protocol. However, their low signal-to-noise
ratio reduces the sensitivity with regards to AD prediction. Also, the selection
of prior seed regions for connectivity mapping involves a subjective choice which
may lead to inaccuracies when analyzing groups of subjects.

Recently, [7] reported a close relationship between the DMN functional con-
nectivity and its metabolic activity at rest, thanks to a study on FDG-PET
and resting-state fMRI performed on a PET-MRI scanner. In this paper, we
leverage this relationship in a rest-fMRI-based classification framework, con-
strained by a metabolism-based discriminative pattern learned from a distinct
and large FDG-PET dataset. We show that regularization with an FDG-PET
prior improves the fMRI classification accuracy and the discriminative pattern
identification, compared to various state-of-the-art regularizers applied to the
functional connectivity maps. We address the issue of the arbitrary selection
of a reference region of interest (ROI) when computing connectivity by using
several seed-based correlations of ROIs extracted from a functional atlas, fol-
lowed by a model that stacks their predictions. The resulting predictor, based
on multiple ROIs, gives better accuracy than a single selected ROI. The pa-
per is organized as follows. In section 2, we present our classification framework
with the integration of priors. Section 3 presents experiments in which different
approaches are compared. Finally section 4 summarizes the results.

2 Multimodal Prior Integration for Model Enhancement

The proposed approach relies on the assumption that information on metabolism
alterations measured with FDG-PET images can improve the accuracy of resting-
state fMRI-based predictive models. Rather than a multi-modal PET-fMRI pre-
diction in each subject, we derive a population-level PET prior, to avoid as much
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as possible the recurrent use of PET, since it is invasive. The first step of the
proposed framework is to estimate a connectivity-based classification model reg-
ularized by a learned metabolic prior, which involves a complementary coupling
parameter to adapt this prior. Besides the metabolic prior, we also investigate
the usefulness of a spatial prior called the total-variation TV-�1 prior proposed in
[1]. It is composed of a sparse regularization scheme �1 that displays few salient
regions, combined with a TV scheme which promotes spatially grouped regions.
The second step combines the predictions computed from the prior-integrated
models of all ROIs involved thanks to a stacking model. Typically, a given set
of seed-regions are used to compute signal correlations.

Let X ∈ R
n×p denote a voxel-level connectivity matrix relative to a specific

ROI, where n and p are respectively the numbers of samples (subjects) and
variables (voxels). Let y ∈ {0, 1}n denote the class (diagnosis) vector of each
sample. Our model builds on ridge regression. The classical ridge regression
estimates the coefficients ŵridge ∈ R

p so that

ŵridge = argminw‖Xw − y‖22 + α‖w‖22, (1)

where α > 0 is a parameter of the coefficient penalization that controls the
amount of shrinkage. The proposed model integrates the prior within the penal-
ization term yielding

ŵ = argminw‖Xw− y‖22 + α‖w − λwprior‖22, (2)

where wprior is the prior coefficient vector that has already been learned. λ > 0
is a scaling parameter that adapts the prior to the actual setting. By substituting
b = w−λwprior, one falls back to a classical ridge regression formulation. Each
of the model parameters λ and α are empirically estimated through a nested
cross-validation procedure.

The coefficient vector ŵ of the predictive model is a spatial map that can be
regularized with the TV-�1 spatial prior, in order to obtain more stable discrim-
inative patterns. So the estimation problem is formulated as

ŵ = argminw
1

2
‖Xw− y‖22 +

α

2
‖w− λwprior‖22 + βJ(w), (3)

where J(w) is the TV-�1 regularization term expressed as

J(w) = ‖∇w‖21 + ρ‖w‖1. (4)

In the stacking stage, the unthresholded prior-model predictions of all ROIs are
concatenated, yielding a matrix S ∈ R

n×s, where s is the number of ROIs. This
summary is used in a logistic regression model to predict the subject class y.

The pipeline corresponding to our model is depicted in Fig. 1. The inputs
are the quantitative metabolism on 3D FDG-PET which is used for the prior
estimation, the 4D resting-state fMRI and a set of ROIs from which the con-
nectivity is estimated. First, the prior is estimated from FDG-PET thanks to a
ridge classifier. Regarding the resting-state fMRI features, ROI-based connectiv-
ity maps are computed based on fMRI data as correlations between each voxel
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Fig. 1. Overview of the proposed classification pipeline: The inputs are ROI-to-voxel
connectivities computed from the rs-fMRI time-series. FDG-PET model weights are
integrated as prior for the classification. Then, predictions of all ROIs are the inputs
of a stacking model to predict the clinical group.

and signals from the ROI. Unlike what is commonly done, we took as ROIs
several regions extracted from a functional brain atlas. Actually, we compared
two widely used functional brain atlases. The first atlas (called Atlas 1 below),
comprises 68 seed ROIs extracted from a functional dataset and proposed in
[3]. This atlas has been constructed on 892 subjects, and was successfully used
to characterize differences between AD subjects and cognitively normal ones.
The second functional atlas (Atlas 2 ) has been proposed in [11], it contains 39
ROIs learned from resting-state fMRI data. Then, the regression model informed
by the FDG-PET prior is estimated. This yields one model per ROI. Finally,
the global classification on fMRI is performed via a logistic regression which
estimates the target from the stacked predictions of each ROI-based model.

3 Experiments

Datasets. Data used in this study are taken from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (adni.loni.ucla.edu). In this work, two
subject-distinct subsets were extracted for each modality (FDG-PET and fMRI)
at baseline. We wish to study and predict conversion of MCI subjects to AD.
However, the resting-state fMRI protocol has been integrated only recently in
the ADNI study (from ADNI-GO phase), and we have merely 5 MCI convert-
ers that have fMRI acquisitions, which is not sufficient for estimation. We thus
consider a proxy, namely the classification between MCI and AD subjects.

We applied a preprocessing pipeline which is composed of the following steps:
removing the three first frames, motion correction, normalization to the MNI
template, spatial smoothing (Gaussian, FWHM 5mm) and temporal detrending.
After a quality check, we selected 94 subjects (21 AD and 73 MCI) out of 110
from ADNI-GO and ADNI-2 phases. Regarding the FDG-PET acquisitions, the
downloaded data had already been preprocessed and quality-checked. The FDG-
PET data used are 3D averaged images which have undergone co-registration,
intensity standardization and a spatial normalization. Overall, we have images
from 627 subjects (147 AD and 480 MCI) acquired mainly during ADNI-1 phase.
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(a) (b)

Fig. 2. Classification accuracies of : (a) PET prior and TV-�1 prior classifiers compared
to pure connectivity classifier (no prior). (b) Atlas based stacking approach compared
to a single ROI connectivity.

Note that the datasets of the two modalities are from two completely distinct
groups of subjects.

Experiment settings. We evaluate the impact of : i) The regularization (metabolic,
spatial, both, none). ii) The selection of the ROIs (Atlas 1, Atlas 2, posterior cin-
gulate cortex region) on the connectivity-based classification. The model without
regularization relies on a ridge regression on each ROI stacked under a logistic re-
gression classifier. The evaluation of the two models is done by cross-validation,
which consists of a stratified-shuffle split loopwith 100 iterations and a test fold size
of 20% of the whole dataset. The classification hyper-parameters (α, λ, β, ρ) are
estimated by a nested 4-fold cross-validation. Moreover, the accuracy differences
between test folds across iterations are measured through a two-sided Wilcoxon
test.

4 Results and Discussion

Classification accuracy. Fig. 2a shows the accuracy of the cross-validated classifi-
cation for the classical connectivity, the TV-�1 prior and the proposed metabolic
prior. These results show that the proposed prior method outperformed the pure
functional connectivity method. Indeed, the mean gain is relatively substantial
(around 8%), as reported in Table 1, which summarizes the mean differences and
the p-values calculated from the two-sided Wilcoxon test between each pair of
models. The spatial TV-�1 prior does not improve the connectivity classification
accuracy, although it produces a more stable model as the cross-validation accu-
racies have a lower variance. From these results, we conclude that the metabolic
prior is more powerful to classify AD subjects than the spatial prior. One could
expect that combining both metabolic and spatial priors would increase the
connectivity-based prediction. In fact, the spatial penalty limited the metabolic
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Table 1. Comparing accuracies on cross-validation folds when including the metabolic
and the spatial priors or not. The last three rows report the differences when stacking
predictions of ROI set from two functional atlases, and when using a selected ROI
(posterior cingulate cortex). P-values from the two-sided Wilcoxon test between each
pair of methods are in the last column.

Comparison Mean difference (%) p-value

TV-�1 prior − no prior −1.9± 7.6 6.7× 10−3

PET prior − no prior +7.9± 9.5 1.3 × 10−10

(PET + TV-�1) prior − no prior +4.1± 9.4 1.8× 10−4

PET prior − TV-�1 prior +9.7± 8.8 1.6 × 10−13

(PET + TV-�1) prior − TV-�1 prior +5.9± 7.1 4.4 × 10−11

(PET + TV-�1) prior − PET prior −3.7± 9.6 2.7× 10−4

Atlas 1 − PCC +9.3± 9.8 2.6 × 10−12

Atlas 2 − PCC +10.7± 12.2 6.6 × 10−12

Atlas 1 − Atlas 2 +1.4± 9.3 3.5× 10−1

prior influence in terms of accuracy, but decreased the variance. While these re-
sults should be interpreted with caution, given the size of the dataset, the overall
accuracy increase is significant. It suggests that the metabolic prior estimated
from FDG-PET data (whose consistency has been validated) permits the high-
lighting of biomarkers that the small fMRI dataset alone fails to bring. Spatial
regularization does not enhance the scarce information provided by fMRI maps.

Regarding the stacking approach, Fig. 2b represents the accuracy distribu-
tion when stacking ROIs-based connectivity estimates compared to single-ROI
connectivity. We note that, despite a higher variance introduced, calculating the
connectivity from various ROIs and combining them allows a significant predic-
tion accuracy enhancement: in Table 1, the accuracies are 10% higher than the
PCC connectivity usually used in the analysis of resting-state fMRI connectivity.
The comparison between the two atlases reveals that the models produced by
each of them are quite similar in terms of accuracy. This shows that, in order
to set up more robust connectivity-based models that classify AD, it is impor-
tant not to restrict the analysis to a single region, but to extend it to several
functional regions that bring complementary information.

Discriminative spatial patterns. Since we perform a voxel-level brain analysis, it
is easy to visualize discriminant patterns between AD subjects and MCI subjects
to interpret the estimated classification model coefficients. Learned brain spatial
models, which consist of averaged classifier weights across cross-validation folds,
are shown in Fig. 3.

Fig. 3a shows the spatial distribution map of the learned FDG-PET prior
model, the map values are the coefficients of a cross-validated ridge classifier,
with an overall accuracy of 88.0±5.7%. This difference map clearly outlines some
cerebral regions, such as the posterior cingulate cortex (PCC), the precuneus,
and parts of the parietal lobe. These structures, which are part of the DMN, are
known to characterize AD with a decreased metabolism.
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(a) (b)

(c) (d)

Fig. 3. Maps of AD discriminative spatial patterns extracted from : (a) the FDG-PET
model used as prior. (b) the fMRI seed-to-voxel connectivity. (c) the fMRI with the
spatial prior. (d) the fMRI with the metabolic prior.

The regions formed by the weights of the classification model estimated from
PCC functional connectivity are plotted in Fig. 3b. Although the patterns are
quite noisy, these regions describe some meaningful functional structures such
as the default mode network, and parts of the parietal lobe.

The spatial TV-�1 prior in Fig. 3c did not bring supplementary information,
but as expected, the sparse �1 constraint yielded less noisy patterns and the
total-variation constraint produced more focused regions.

The impact of the FDG-PET prior is shown in Fig. 3d, where we see that the
metabolic prior overcame the limitations of the connectivity-based discriminant
patterns. We observe in particular patterns that are smoother than fMRI only,
e.g. the clearly outstanding default mode network. This finding is in agreement
with AD studies that showed the functional connectivity differences observed on
resting-state fMRI, but it is hard to obtain from functional connectivity only.

5 Conclusion

We introduced in this paper a learning framework that integrates multi-modal
prior knowledge from a distinct cohort. We addressed the ROI selection issue
when computing the functional connectivity by proposing a stacking model that
couples a set of ROIs. Experimental results confirm that the metabolism activity
of brain structures measured on the FDG-PET images is linked to the connec-
tivity measured by resting-state fMRI. In our experiments on the ADNI fMRI
dataset, within the context of AD/MCI prediction, we validated the proposed
method, since it improved the accuracy of the classification of AD subjects bet-
ter than a spatial prior, and highlighted meaningful functional regions related to
state-of-the-art studies on AD. It overcomes the limitations of fMRI data (small
dataset, noisy data) with a pre-established model validated on a consistent fold
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of subjects. We showed that the stacking approach has a significant impact on
the prediction accuracy, and using a validated functional atlas allowed us to be
insensitive to the ROI selection. Moreover, our experiments showed that existing
datasets are a very useful resource to investigate more difficult questions such
as the prognosis of conversions from MCI to AD.
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G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 562–573. Springer, Heidel-
berg (2011)

12. Villain, N., Chételat, G., et al.: Regional dynamics of amyloid-β deposition in
healthy elderly, mild cognitive impairment and Alzheimer’s disease: a voxelwise
PiB–PET longitudinal study. Brain 135(7), 2126–2139 (2012)

13. Wang, K., Liang, M., Wang, L., Tian, L., Zhang, X., Li, K., Jiang, T.: Altered
functional connectivity in early Alzheimer’s disease: A resting-state fmri study.
Human Brain Mapping 28(10), 967–978 (2007)

14. Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D.: Multimodal classification of
Alzheimer’s disease and mild cognitive impairment. NeuroImage 55, 856 (2011)


	Integrating Multimodal Priors in Predictive Models for the Functional Characterization of Alzheimer's Disease
	1 Introduction
	2 Multimodal Prior Integration for Model Enhancement
	3 Experiments
	4 Results and Discussion
	5 Conclusion




