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Abstract. Cardiac diffusion tensor MR imaging (DT-MRI) allows to
analyze 3D fiber organization of the myocardium which may enhance the
understanding of, for example, cardiac remodeling in conditions such as
ventricular hypertrophy. Diffusion-weighted MRI (DW-MRI) denoising
methods rely on accurate spatial alignment of all acquired DW images.
However, due to cardiac and respiratory motion, cardiac DT-MRI suffers
from low signal-to-noise ratio (SNR) and large spatial transformations,
which result in unusable DT reconstructions. The method proposed in
this paper is based on a novel registration-guided denoising algorithm,
that explicitly avoids intensity averaging in misaligned regions of the im-
ages by imposing a sparsity-inducing norm between corresponding image
edges. We compared our method with consecutive registration and de-
noising of DW images on a high quality ex vivo canine dataset. The
results show that the proposed method improves DT field reconstruc-
tion quality, which yields more accurate measures of fiber helix angle
distribution and fractional anisotropy coefficients.
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1 Introduction

Scanning time and subject motion is considered one of the most challenging
issues in DW-MRI of the brain [1]. In cardiac in vivo DW-MRI breathing and
cardiac motion requires shorter acquisition windows which lowers image SNR
relative to applications in the brain [2]. Most of DT-MRI denoising algorithms
are based on a model of the acquisition process, assuming spatial alignment of
the individual DW images. However, image registration is challenging for low
SNR. Moreover out-of-plane motion can occur during the acquisition process.

Most of the joint image denoising and registration methods apply explicit
or implicit image intensity averaging [3,4,5]. Yet direct averaging can degrade
denoising results and is not applicable for DW-MRI data. A novel graph-based
approach was proposed by Lombaert and Cheriet in [6], where registration and
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denoising are combined (via Cartesian product) for a joint label space. The
advantage of this method over independent denoising and registration has been
shown. Yet its applicability is questionable due to the size of the resulting label
space (e.g. 256 “denoising” labels × 1681 displacements ∈ {−20,−19, . . . , 20} =
4 308 736 labels). Logcut framework [7] might be able to efficiently solve the
problem in such a huge label space, but it needs nontrivial tuning for each
problem class, which has not been performed to date. Moreover, many image
registration regularization measures cannot be expressed with binary energy
potentials.

In our simultaneous registration and denoising method we impose the simi-
larity of image gradients instead of intensities using sparsity inducing �1-norm
and linear representation of the image warping operator. Our main motivation is
following: (a) gradients are less sensitive to intensity variations and (b) “sparse”
constraints automatically “allow” images to be different in some regions, which
helps us to correctly treat misalignments and heterogeneities of the images.

2 Methods

2.1 Denoising

The relation of intensity of DW image yi at spatial location s with diffusion
gradient gi and diffusion tensor Ds is given by the following equation:

yi[s] = y0[s] exp(−b g�
i Ds gi), (1)

where y0 is the image without diffusion weighting and b is the b-value. Given
a sequence of DW images degraded with noise, the set of aligned DW images
ŷi for N different gradient directions gi, is obtained using the following MAP
estimation formulation [8]:

minimize
y1,...,yN

−
N∑

i=1

log p(ŷi | yi) + λTVφ(y1, ...,yN ), (2)

here p(ŷi | yi) is a likelihood function that captures the image noise model, the
Rician distribution with parameter σ:

p(ŷi|yi) =
∏

s∈Pixels

ŷi[s]

σ2
exp

(
− (ŷi[s])

2 + (yi[s])
2

2σ2

)
× I0

(
ŷi[s]yi[s]

σ2

)
, (3)

where I0 is the zeroth-order-modified Bessel function of the first kind, and σ
is the standard deviation of the Gaussian noise in the real and the imaginary
images, which is assumed to be equal and spatially invariant. The modified total
variation (TVφ) of images is employed as image prior: , i.e. p(y1, . . . ,yN ) ∝
exp (−λ TVφ(y1, . . . ,yN )) , with

TVφ(y1, . . . ,yN ) =
∑

s∈Pixels φ
(∑

i=1,...,N ;k=1,2(∇kyi[s])
2
)
, (4)
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where φ(x) =
√
c+ x/τ2, τ scales the gradient magnitude, c controls the smooth-

ness of low contrast regions, ∇k ∈ R
P×P is the gradient operator in the k-th

direction, [.] indexes the vector (s-th element of ∇kyi in the formula above) and
parameter λ controls the amount of regularization.

This denoising formulation is extensively used in image processing, and incor-
porates the edge information from all components of the image. Rank constraint
on matrix [y1, . . . ,yN ] introduced by Lam et al. in [9] showed significant im-
provement compared to other methods, such as non-local means denoising [10],
and will be considered in this work as the state-of-the-art for denoising aligned
DW-MRI data and referred to as rank-edge denoising (RE-denoising).

2.2 Registration-Guided (RG) Denoising

Now consider that DW images yi are spatially misaligned and all pairwise map-
ping estimates are given {Tij}Ni,j=1, such that Tij(yi) ≈ yj . If all transformations
{Tij} were correct, we could use them to warp all images into the common coordi-
nate frame and perform RE-denoising. However, in practice the registrations are
not ideal. Moreover, if out-of-plane motion is present, these 2D transformations
do not even exist. Ignoring the registration inaccuracies can amplify noise near
misaligned edges, decrease denoising quality and create noisy structures. Ideally
we want to have a local registration accuracy estimation, that would indicate for
every image pixel, if we can use information from the other warped images. Here
we propose to enforce sparse image edges consistency across the images instead
of regularizing them directly. We use a compressed sensing approach to maxi-
mize the region of gradient consistency. Here we propose to extend (2), yielding
the following registration-guided (RG) denoising model:

min
{yi}

−
N∑

i=1

log p(ŷi|yi) + λ
N∑

i

TVφ(yi) + β
N∑

i,j

∑

k=1,2

‖∇kyj −∇kRijyi‖1︸ ︷︷ ︸
sparse gradients consistency

,

(5)
where parameter β weights the consistency of the gradients of images i and j.
Rij = R(Tij) ∈ R

P×P is a sparse matrix which warps an image with a given
transformation and depends on the image interpolation scheme Tij(yi) = Rijyi.
Since the �1-norm is a convex relaxation of the cardinality measure, this sparsity-
inducing term encourages the least number of non-aligned edges.

The problem (5) is not smooth and cannot be solved with ordinary gradi-
ent descent methods. We apply the theory of duality, and use the ADMM [11]
algorithm. Problem (5) can be transformed to the following equivalent form:

min
yi,fi,zijk

−
N∑

i

log p(ŷi|fi) + λ
N∑

i

∑

s

φ

⎛

⎝
∑

k=1,2

(ziik [s])
2

⎞

⎠+ β
N∑

i,j

2∑

k=1

‖tijk‖1,

s.t. fi = yi, zijk = ∇kRijyi, tijk = ∇kyj − zijk , ∀i, j, k
(6)

In this form the problem can be solved with an iterative ADMM scheme de-
scribed in [11].
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Algorithm 1. Proposed iterative registration and denoising scheme. The denois-
ing step with the RE-method is performed in the following manner: all images
are transformed to the i-th coordinate frame, then the i-th image is denoised

with the RE-method and stored as y
(k+1)
i . In practice the stopping criteria is

reached after 4-10 iterations with Ftol = 10−2.

Initialize {yi}(1) with single image denoising, k := 1
Repeat:

for i := 1 to N
for j := 1 to N

T (k+1)
ij ← register y

(k)
i to y

(k)
j with (7)

rof

rof

{yi}(k+1) ← denoise images with RG- or RE- method

k ← k + 1

F(k+1) = 1
N2(#Pixels)

∑
ij ‖y

(k+1)
j − T (k+1)

ij (y(k+1)
i )‖2

while ‖F(k+1) − F(k)‖ ≥ Ftol and k ≤ kmax.

2.3 Simultaneous Denoising and Registration

Given two images yi and yj the registration problem can be modelled as the
following optimization task:

minimize
Tij∈Affine

LNCC(yj , Tij(yi)), (7)

where LNCC is local normalized cross correlation image metric, a multi-model
image similarity metric which is insensitive to local linear contrast changes and
can be computed efficiently [12]. Image registration is a highly nonlinear and
non-convex problem. To deal with this problems, while aligning low SNR im-
ages, we propose to iteratively perform denoising and registration of denoised
images. Reducing the image noise should enhance image registration results. The
procedure is described in the Algorithm 1.

3 Results

To enable qualitative evaluation, we build on a high-resolution, high-quality,
motion-free ex vivo canine heart dataset [13] as ground truth and simulate data
of in vivo quality. The publicly available1 ex vivo data was acquired using a 3D
fast spin-echo sequence. Twenty diffusion encoding gradients were used for each
imaging slice with in-plane resolutions of 0.31×0.31mm2 and slice thickness of 0.8
mm. The imaging slices were then stacked and downsampled to 0.6×0.6×1.6mm3

resolution to produce a plausible in vivo gold standard tensor model, to evaluate
recovery from simulated noise and spatial transformations as described in the
next sections.

1 http://cvrgrid.org/data/ex-vivo

http://cvrgrid.org/data/ex-vivo
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Fig. 1. (a) Dependence between denoising quality (mean image PSNR), registration
accuracy and parameter β. The pixel displacement is considered to be wrong, if its
length is larger than 1 pixel. βopt = 0.02, β1 = 0.08, β2 = 0.003 (b) Mean image
denoising and registration performance on the synthetic dataset.

Registration-Guided Denoising. First, we test the ability of the proposed
RG-denoising to improve image quality despite inaccurate transformations. For
this purpose we fixed a reference imaging slice and created four DW images,
deformed with random in-plane ground truth affine transformation Mij such
that |det(Mij)−1| ≤ 0.05. Random affine transformation matrices with the same

properties were then added to produce erroneous transformations T̂ij . Finally,
images were degraded with additive Rician noise (σ = 10). We solve (5) to obtain
denoised images and compare the peak SNR (PSNR) of the images.

We compare our RG-denoising with two extreme denoising variants: inde-
pendent image TV denoising (I-denoising) e.g. solving (2) separately for each
image without rank constraint, and RE-denoising. Obviously, if all the trans-
formations are correct, then RE-denoising will give the best possible result for
a given edge prior. However, any misalignment will degrade averaging quality.
I-denoising does not use any registration information and therefore does not de-
pend on the registration quality. Large (see β in Figure 1a) values of β tend
to favor gradients consistency, which results in low restoration quality in cases
when there are misaligned images (β1 Fig. 1a). With small β values, the method
ignores gradients consistency and behaves like I-denoising (β2 Fig. 1a). We could
observe that there exist optimal values βopt, such that denoising quality is close
to the best when all registrations are correct, and a little worse than single image
denoising, when all are wrong (βopt Fig. 1a).

Second, we show that our method is able to improve registration and denois-
ing quality simultaneously. We took the same set of four images and executed
Algorithm 1 with RG- and RE- denoising methods. Figure 1(b) shows that our
method improves on RE-denoising and registration, which led to more accu-
rate registration estimates as well. Ignoring registration inaccuracies during the
denoising step can degrade the estimation results.

DTI Quantitive Assessment. To model the in vivo acquisition process ac-
curately, for each axial imaging plane, 10 noncollinear diffusion gradients were
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Fig. 2. Comparison of DW intensity, FA, helix and transverse angle maps, from differ-
ent iterative image registration and denoising schemes. The provided ventricle my-
ocardium segmentation is shown as red lines. Note the edge fuzziness of the RE-
denoising based method, caused by misalignments.

chosen. The proposed method was tested for affine transformations, as these cap-
ture the components of cardiac deformation due to respiration, e.g. [14], but can
also successfully be applied to non-affine deformations (tests not included). For
each gradient direction a random affine mapping Mi was applied to the imaging
plane, such that the inclination of the mapped plane to the original is less than
10◦ and |det(M)− 1| ≤ 0.05. Corresponding DW images were then computed ac-
cording to (1) using the finite strain (FS) reorientation strategy described in [15].
After that, Rician noise with σ = 12 was added to the image, yielding ŷi. These
10 DW images were denoised and spatially aligned using three methods: (i) regis-
tration and I-denoising, (ii) iterative registration and RE-denoising, (iii) iterative
registration and RG-denoising. Six iterations of the Algorithm 1 were executed
with the following denoising parameters: β = 0.012, λ = 0.2, τ = 3, c = 1 and
a 7 × 7px2 region was used for the LNCC. A standard least-squares approach
together with the FS reorientation strategy was applied to the denoised images
using the estimated transformations to produce DT maps of the reference plane.
To compare the results of the reconstruction we analyzed the following charac-
teristics of the DT map: (i) fractional anisotropy (FA) RMSE, (ii) mean affine-
invariant Riemannian distance [16] between reconstructed and ground truth ten-

sors:ΔAI(D1,D2) = ‖ log(D−1/2
1 D2D

−1/2
1 )‖F and (iii) myocardial fiber helix angle

(Hα) and transverse angle (Tα) [17] distributions.
The first row in Figure 2 shows the gold standard DW image together with the

denoising results for a single fixed diffusion gradient direction. As can be seen, the
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Fig. 3. Myocardial fibers helix and transverse angle distribution with respect to trans-
mural abscissa together with cyan lines showing mean and one standard deviation. a1

is the regression slope of the linear fit.

Table 1. DTI reconstruction measures computed in the myocardium. Columns Hα-σ
and Tα-σ state the standard deviation of the linear model fit for Hα and Tα.

Method PSNR FA-RMSE ΔAI Hα-RMSE Hα-σ Tα-RMSE Tα-σ

I-denoising 22.8 0.37 0.17 13.7◦ 28.4◦ 19.8◦ 29.1◦

RE-denoising 21.4 0.39 0.18 14.0◦ 28.1◦ 19.1◦ 29.8◦

RG-denoising 27.6 0.28 0.13 11.5◦ 20.4◦ 14.6◦ 25.8◦

No denoising 16.1 0.49 0.70 29.4◦ 39.1◦ 31.2◦ 43.1◦

proposed (REG+RG-denoise) noise reduction is more effective, especially at the
myocardiumedges. Tensor estimate quality and fibre geometry reconstruction also
benefit from the proposed method. Illustration of fiber inclination distribution is
shown in Figure 3. Studies indicate [18] that there should be linear dependence be-
tween helix angle and transmural myocardium distance. The transverse angle is
reported to be close to zero inside the myocardium. Standard deviations of these
angles from the linear models are reported in the Table 1 together with other per-
formancemetrics. We notice that iterative registrationwith RE-denoising outper-
forms independent image denoising, which illustrates the danger of ignoring the
misalignment errors. The proposed RG-denoising based method showed substan-
tial improvement in denoising and tensor estimation quality.

4 Conclusions

In this paper we have addressed the problem of alignment and denoising of DWI
data. Quantitative evaluation, based on simulations from ex vivo data, shows
that the standard DWI denoising methods can degrade reconstruction results,
when either poor alignment or out-of-plane motion occurs. Our proposed method
based on a robust groupwise denoising approach, allows to deal with foregoing
issues. The method showed qualitative improvement over standard techniques
both in the image denoising quality (+21% PSNR) and anatomical characteris-
tics, such as helix (-18% RMSE) and transversal angles of the myocardial fibers.
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