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Abstract. Laser ablation is a widely adopted technique in many con-
temporary medical applications. However, it is new to use a laser to cut
bone and perform general osteotomy surgical tasks with it. In this pa-
per, we propose to apply the direct linear transformation algorithm to
calibrate and integrate a laser deflecting tilting mirror into the affine
transformation chain of a sophisticated surgical navigation system, in-
volving next generation robots and optical tracking. Experiments were
performed on synthetic input and real data. The evaluation showed a
target registration error of 0.3mm ± 0.2mm in a working distance of
150mm.
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1 Introduction

Laser ablation is a tissue cutting technique that is widely adopted in ophthal-
mology and dentistry. Although such a contact-free cutting method would also
be beneficial when cutting bones, i.e. in osteotomy, only little research has been
invested in this area so far. One major reason for this was the lack of a compact
laser source able to efficiently cut bone without carbonizing it.

With the proposed laser osteotome, see Fig. 1, we try to bridge this gap.
To guarantee a high cutting precision, the laser source is directly mounted on a
robot’s end effector and is optically tracked using a stereo optical tracking device.
A reflective mirror mounted on a 2-axes tilting mirror stage was introduced to
deflect the laser beam. This tilting mirror permits quickly changing the direction
of the laser beam. Large displacements are covered by the robot arm, whereas
the small changes in the target location are handled by the tilting mirror. The
question remains on how to align a voltage controlled mirror with the coordinate
systems (CS) of the optical tracker, patient, and robot.

In this paper, we present a robust method to calibrate the tilting mirror and
integrate it into the affine transformation chain. The essence of our approach is
to apply a projective camera model to the given situation. In reference to Fig. 2,
the camera center C corresponds to the mirror’s laser deflecting spot D, from
where light rays are received or emitted in a conical manner. In the case of an
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Fig. 1. Navigated laser system. Arrows
denote affine transformations.

Fig. 2. Analogy of a laser tilting mirror
(top) and a camera (below).

actual digital camera, the projective plane is an equidistant grid of photosensors
u1, u2, whereas the mirror operates in a virtual voltage space v1, v2.

In the field of computer vision, well established camera calibration methods
exist. In 1971, Abdel-Aziz and Karara introduced the Direct Linear Transforma-
tion (DLT) [1], which was a commonly used but rudimentary calibration tech-
nique. The main difference to contemporary calibration algorithms is that DLT
does not consider nonlinear lens distortion effects, such as radial or tangential
distortion. However, this is not required in the case of reflective optics as only
mirrors and no lenses are involved. An interesting property of the DLT is that
the extrinsic and intrinsic mirror parameters can be determined simultaneously.

In robotics, comparable work has been done on laser rangefinders, which per-
form depth measurements by triangulation of a moving laser beam and a camera
[5]. Unfortunately, they focus only on extrinsic parameters and take the laser’s
steering properties (intrinsic) as given. The same pattern can be observed in
many other applications. Often, the optical path and the mechanics, such as the
steering mirror, are known very accurately. It makes sense to use this informa-
tion and lock as many degrees of freedom as possible. In our system, the intrinsic
parameters of the tilting mirror are known as well. But for two reasons we can-
not use them: First, the optical setup of our prototype laser head is changing
frequently. Second and more importantly, the regulatory authorities require the
system to be calibrated on a regular basis when used in clinical practice, which
certainly involves the determination of the mirror’s overall properties.

Interesting related publications can be found in the field of catadioptric sys-
tems. From there we learned that it is common to apply a pinhole model to
describe a moving mirror with a fixed center of reflection. A comparable situa-
tion is described in [4]. However, the setup there involves a hyperbolic mirror and
a camera, which has to be calibrated with a non-linear approach. Our situation
is comparably simple and we show that applying the DLT is appropriate.
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2 Methods

2.1 Tilting Mirror Calibration with the DLT

As an input, the DLT algorithm requires several 2D–3D point correspondences.
Using the pinhole camera model (Fig. 2), the projection of the i-th point from 3D
spatial coordinates HXi = [x, y, z, 1]Ti to 2D pixel coordinates ui = [u1, u2, 1]
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with the intrinsic parameter matrix K̃ and the affine transformation MTH , where
K̃ holds the focal distances f̃j and the principal point coordinates c̃j (j = 1, 2),
MTH consists of a rotation part r11, . . . , r33 and a translation part t1, t2, t3, and
κ is a normalization constant. In our model, MTH represents the rigid transfor-
mation of the mirror’s CS {M} with respect to the optical marker’s CS {H}
(Fig. 1). The corresponding spatial coordinate HXi is expressed in the {H} CS
and denotes the 3D point where the laser beam impacts.

Choosing the distance from the projective center to the projective plane dp =
1, uj (j = 1, 2) can be rewritten as uj = tan(αj), where αj denotes the angles of
the two axes in which the deflection mirror is tilted. The angles are unknown, but
they are linear to the known applied voltages vj , enabling us to rewrite them as
αj = ajvj + bj with the linearity parameters aj , bj. Putting these reformulations
together, we can rewrite the projection as
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The small-angle approximation enables us to simplify tan(αj) ≈ αj (αj < 10◦),
thus tan(ajvj + bj) ≈ ajvj + bj , which we use to simplify the projection as
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Combining Ĉ and K̃ leads to the final approximative projection from spatial
coordinates to voltage space:
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where K holds the new intrinsic parameters fj (=
f̃j
aj
) and cj (=

c̃j
aj

− bj
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).
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We would like to point out two important aspects of the final model. First,
it is feasible for small tilting angles only. This holds in our case, as our mirror
is operated in a range of ±6◦, resulting in a relative approximation error of
0.4%. Second, the actual angle–voltage relation need not be known, in fact: K
and MTH are calculated solely from correspondences between voltage pairs vi
and 3D points HXi, both of which are known. Showing the relationship between
vi,K and ui, K̃ was only necessary to establish the model.

The vector vi is proportional to the vector [K · MTH · HXi], see Eq. (4). As
a consequence, their crossproduct (×) is 0. Applying the DLT, we find K and
MTH by solving for their product P = K · MTH , which leads to
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with p11 . . . p34 as unknowns and [v1, v2]
T
i , [x, y, z]

T
i given by the point corre-

spondences. This can be converted into a linear system of equations
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Each correspondence results in three equations, one of which is redundant due
to linear dependence. Thus, a number of N ≥ 6 correspondences is required to
solve for the 12 unknowns. The resulting product P can then be decomposed
into K and MTH as described in [3].

Input Data Normalization: The algorithm described above is the basic DLT.
To enhance the numerical stability, we first transform the 2D–3D point corre-
spondences in order to reach certain spatial properties. In [3], this can be found
as Normalized DLT. In the presence of measurement noise, it is highly recom-
mended to normalize the input data.

2.2 Calibration Errors

Due to the small-angle approximation and measurement noise, the computed so-
lution K, MTH will not map the givenN input 2D–3D correspondences perfectly.
Several error measures can be applied to quantify the quality of the calibration
procedure. The algebraic error is the residual of the underlying least squares
problem in Eq. (6). The backprojection error E is a geometric error quantity in
the voltage plane. With the computed calibration result, the acquired 3D points
HXi are virtually projected as v

′
i and compared with corresponding voltage pairs

vi by computing their Euclidean distances, as

Ei =
∥∥∥vi − v

′
i

∥∥∥ with v
′
i ∝ K · MTH · HXi for i = 1, . . . , N . (7)
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Fig. 3. Acquiring correspondences with
a tracked calibration pattern.

Fig. 4. Synthetic input data generation
for the calibration.

The most important error measure for surgeons is the deviation from the
planned location on the target site, i.e. on the patient herself and in millimetre,
the so called target registration error (TRE). An error in the voltage plane Ei

can be extrapolated with the distance between tilting mirror and target di, which
is easy to determine after transforming the 3D points into the mirror CS. The
TRE Ti is then computed for all N point correspondences as

Ti = di
∥∥K−1 · [Ei, 0, 0]

T
∥∥ with di =

∥∥MTH · HXi

∥∥ for i = 1, . . . , N . (8)

2.3 Acquiring 2D–3D Correspondences

The accuracy of the mirror calibration depends strongly on the quality of its
input data. Figure 3 illustrates our acquisition setup. The robot is driven into
an appropriate position. Then Nv ≥ 1 predefined voltage pairs vi (i = 1, . . . , Nv)
are applied to the tilting mirror. Their laser impact on a chessboard is recorded
with a camera, and the standard blob-detector of OpenCV is used to recover
their pixel positions, which can be easily transformed into the given chessboard
CS SXi. It is important to notice that recovering SXi with the camera is an
independent process. Neither the relative position of the camera to the tilting
mirror nor the rest of the system matters. However, a focused image preferably
orthogonal to the chessboard enhances the accuracy of acquired positions.

In order to transform the laser position from the chessboard CS {S} into
the laser head CS {H}, first one has to resolve the transformation from the
chessboard to its tracked marker STQ. A common method based on fitting two
3D point sets [2] was applied for that purpose. The final transformation is

HXi =
(
OTH

)−1 · OTQ · (STQ

)−1 · SXi, (9)

where OTQ and OTH are given by the optical tracking system.
These steps are repeated from Np different robot positions. Therefore, the

total amount of collected 2D–3D correspondences is N = NvNp. A simple robot
trajectory is orthogonal to the chessboard surface.
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2.4 Integration of the Tilting Mirror

Using the notation introduced in Fig. 1, the transformations OTH and OTP are
given by the tracking system. The 3D–3D registration VTP from the patient
marker to the operation planning data (CT, MR) can be performed with the
method described in [2]. Given a cutting position VP on the patient, the two
voltages (v1, v2) for the mirror can be computed by

[
v1, v2, 1

]T ∝ K · MTH · (OTH

)−1 · OTP · (VTP

)−1 · VP , (10)

which finally forms the complete transformation chain.

3 Experiments and Results

In this section, the performance of the described calibration approach is exam-
ined in detail based on synthetic and real input data. These experiments were
performed by applying the normalized DLT approach.

Error Analyses with Synthetic Input Data: In these experiments, syn-
thetic data was produced to analyze the presented method in terms of error
behavior. As illustrated in Fig. 4, the calibration data generation can be con-
figured by the four parameters αmax (maximum angle for both mirror axes),
zmin and zmax (distance in principal direction between the mirror and the 3D
points), Nv (number of different voltage pairs applied in each robot position),
Np (number of different robot positions), and σ (standard deviation of zero-
mean Gaussian noise applied to the 3D points). The point correspondences are
generated in a deterministic way. For our simulated tilting mirror, v1, v2 are
chosen to be equal to α1, α2 (1◦/voltage). Based on a given αmax, an equidis-
tant voltage array of size Nv is generated, where values of both axes α1, α2

are in the range of −αmax ≤ α1,2 ≤ αmax. These are the 2D points. Their cor-
responding 3D coordinates are generated by applying this voltage array to the
mirror and projecting to Np different orthogonal planes with distance zp, so that
z0 = zmin, . . . , zNp = zmax. As already mentioned, this leads to a total number of
N = NvNp point correspondences. To simulate the presence of noise, zero-mean
Gaussian noise σ is added in all three dimensions to each 3D coordinate.

Maximum Deflection Angle Influence: Since the proposed method is based on
the small-angle approximation, calibrations with increasing maximum deflection
angle were performed. In particular, synthetic data sets with varying αmax =
2◦, . . . , 8◦ were generated, whereas the other parameters were kept constant at
zmin =140mm and zmax =160mm, σ = 0, Nv = 25, and Np = 5. Of each of these
data sets, the mirror calibration was computed and the TRE Ti was determined
and presented as a box plot, where the central mark is the median, the edges
of the box are the 25th and 75th percentiles and the whiskers extend to the
minimum and maximum errors. Figure 5 shows the results.



280 A. Schneider et al.

0

0.01

0.02

0.03

0.04

0.05

0.06

2 4 6 8
Maximum deflection angle [degree]

T
ar

ge
t r

eg
is

tr
at

io
n 

er
ro

r 
[m

m
]

Fig. 5. TRE with increasing
maximum mirror angle αmax.
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Impact of Noise: In this experiment, calibrations with increasing Gaussian noise
σ = 0.2mm, . . . , 0.8mm were made. Other parameters remained constant at
αmax = 6◦, zmin =140mm, zmax =160mm, Nv = 25, and Np = 5. For each noise
level, Nc = 100 calibrations were made. Figure 6 shows the resulting TRE.

Results: One can clearly see that the tangent approximation for small angles is
unproblematic. In our system, the maximum deflection angle αmax is 6◦, which
corresponds to a maximum TRE of about 30µm. Measurement noise, however,
is an issue. The reported accuracy of our used tracking system is 0.25mm. Based
on the simulation, this corresponds to a TRE of about 0.5mm.

Calibration with Real Data: In this experiment, the proposed calibration
method was tested within the actual laser ablation system. As a tilting mirror,
the OIM5001 (Optics In Motion) was used. The used optical tracking system
was the CamBar B2 (AXIOS 3D Services) and the robot was the iiwa (KUKA
Laboratories). The distance z between the chessboard and the tilting mirror was
around 150mm. The maximum deflection angle αmax was about 6◦. However,
since the extrinsic and intrinsic mirror properties MTH , K are unknown at this
time, the exact values of z and α can be determined only afterwards.

In the following,Nc = 8 independent tilting mirror calibrations were done. For
each calibration c, Np = 5 different robot positions along the chessboard normal
were used. In each position, Nv = 25 voltage pairs were applied. Therefore, the
maximum number of 2D–3D correspondences for each calibration c wasN = 125.
But due the regularly failure of the visual blob-detection within black chessboard
fields, N showed to easily drop to 80.

Results: The results of the 8 calibrations can be seen in Fig. 7. The average TRE
is 0.3mm, with a standard deviation of 0.2mm. The maximum error is 1.0mm.
The average distance z between the mirror and all involved correspondences was
141mm and the average αmax was 6.8◦. When comparing the measured error
with the results of noisy synthetic input data, this meets the expected error
when using an optical tracking device with a spatial accuracy of 0.25mm.
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Fig. 8. The laser system performing a
navigated cut on a sheep head.

Fig. 9. Enlarged view of the cutting re-
gion. The bright spot is the laser.

4 Conclusion

We showed that a voltage controlled tilting mirror can be accurately calibrated
by using the pinhole camera model and the direct linear transformation approach
to solve it. With a target registration error of 0.3mm ± 0.2mm at a working
distance of 150mm, our laser ablation system not only exceeds general osteotomy
requirements, but also opens up new surgical possibilities in terms of cutting
shapes. Although a maximum cutting error of 1.0mm is tolerable, it does not
meet our own demands. Currently we are designing non-planar optical markers
to increase the tracking accuracy. Preliminary results are promising.

To conclude, we would like to give the reader an impression of the presented
laser system in action. Figures 8 and 9 show a navigated cut on a sheep skull.
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