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Abstract. Localization of a needle’s tip in ultrasound images is often a
challenge during percutaneous procedures due to the inherent limitations
of ultrasound imaging. A new method is proposed for tip localization with
curvilinear arrays using local image statistics over a region extended
from the partially visible needle shaft. First, local phase-based image
projections are extracted using orientation-tuned Log-Gabor filters to
coarsely estimate the needle trajectory. The trajectory estimation is then
improved using a best fit iterative method. To account for the typically
discontinuous needle shaft appearance, a geometric optimization is then
performed that connects the extracted inliers of the point cloud. In the
final stage, the enhanced needle trajectory points are passed to a feature
extraction method that uses a combination of spatially distributed image
statistics to enhance the needle tip. The needle tip is localized using the
enhanced images and calculated trajectory. Validation results obtained
from 150 ex vivo ultrasound scans show an accuracy of 0.43 ± 0.31 mm
for needle tip localization.
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1 Introduction

Ultrasound (US) guidance is useful for many needle insertions, including biopsy,
therapy and anesthesia. The key is to observe the advancement of a needle tip
towards the target. Unfortunately, needle visualization in US images is strongly
dependent on the orientation of the specularly reflecting needle to the US beam
and is poorest when performing blocks with a steep needle insertion angle, such
as, typically femoral blocks in obese patients [1]. Medium frequency curvilinear
transducers are used to achieve the necessary depth of penetration and field
of view, but only a small portion or none of the needle gives a strong reflec-
tion. Needle visibility can be successfully enhanced by beam steering on linear
transducers, seen on commercial machines, but only a portion of the needle is
enhanced with curvilinear arrays so the tip is still indistinguishable. A solution
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is needed for enhancing and localizing a needle in US images obtained using
curvilinear transducers.

The following papers provide a brief overview of the general history of needle
enhancement in US. Methods based on Radon transform and variants of Hough
transform were proposed by different groups [2, 3]. The needle tip localization
error results varied between 0.45 mm and 1.92 mm for ex vivo or phantom
scans. In [2], validation on clinical scans achieved a mean needle targeting error
value of 0.19 mm. However, tip localization accuracy was not reported. Parallel
integral projection based algorithms, based on the fact that needles appear as the
highest intensity line-like features in US images, were used in [4–6]. The reported
needle tip localization results on turkey breast [4], gel phantom [5] and in vivo
animal study [6] were 0.69 mm, 0.26 mm and 1.4 mm respectively. Uhercik et
al. [7] used intensity thresholding, a robust randomized search procedure using
random sample consensus (RANSAC), and tool axes optimization for needle
shaft localization. The tissue-mimicking phantom experiment resulted with a
mean tip localization accuracy of 0.64 mm. In recent work, Wu et al. [8] used
gradient orientation and magnitude information for localizing needles. Chicken
breast phantom experiments achieved a minimum tip localization error of <
0.85 mm. On In vivo patient scans the method achieved a needle tip localization
accuracy of 1.15 mm [8].

This paper focuses on the challenge of guiding a needle for epidurals, particu-
larly for lumbar blocks, where the needle shaft is poorly visible due to the steep
trajectory and variable strength reflections due to range of beam angles from
the curvilinear transducer. Our proposed method for needle trajectory estima-
tion is based on the extraction of local phase needle image projections obtained
using orientable Log-Gabor filters. The key innovation for extracting the needle
tip, is a new feature extraction method based on the combination of spatially
distributed image statistics into a compact feature descriptor using the informa-
tion extracted from the needle trajectory. We show qualitative and quantitative
validation results on ex vivo US scans obtained from bovine and porcine tissue
samples using a relative needle and transducer geometry suitable for lumbar
in-plane US guided needle insertion.

2 Methods

The proposed enhancement method is based on our previous experience with
in-plane guidance of lumbar injections in vivo where (i) the needle is inserted
in-plane and the insertion side (left or right) is known, (ii) the needle tip appears
as a characteristic but variable intensity echo, and (iii) only the portion of the
needle shaft close to the transducer surface is visible. Specifically, we focus on
the enhancement of in-plane needles with mid to steep insertion angles from 2D
US images obtained using a curvilinear transducer (Fig. 1 (a)). In this work,
we investigate needle insertion angles (α) ranging from 40◦ to 70◦, to the skin
surface. Due to the convex shape of the transducer and the mid to steep insertion
angle, the only visible part of the needle shaft is the part that is close to the
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Fig. 1. (a) Schematic drawing of the experimental imaging setup. The insertion angle
(α) is measured in relation to the phantom/skin surface (α = 0◦ is parallel to the skin
surface). (b) Flowchart of the proposed method. (c) B-mode US image. The yellow
arrow points to the partially visible needle shaft and the blue arrow points the needle
tip. (d) Zoom in of the upper right side of the mask image where ROI selected mask
image is shown in the red square. (e) B-mode US image corresponding to the selected
ROI (USROI). (f) Optimized local phase image of (e) (PSROI).

transducer surface where the needle is nearly perpendicular to the US beam
(Fig. 1 (c)). In the next section we provide an explanation how these imaging
features are used in our proposed method. The flowchart of the proposed method
is provided in Fig. 1 (b).

2.1 Needle Tip Localization Using Projection-Based Image Phase
Features

Optimized Phase Projections: The first step of the proposed method is to
automatically extract a region of interest (ROI) that covers that visible needle
section. This is achieved by producing a mask from the B-mode US image using
simple thresholding and selecting the pixel that is located on the far right top
corner of this mask image (Fig. 1 (d) green pixel). We define our ROI by creating
a rectangular region around this pixel where the pixel location is the centre of
the top side of the rectangle. The ROI US image will be denoted as USROI

(Fig. 1 (e)). In all the collected scans, the needle was inserted from the right side
of the B-mode image. A priori knowledge of the needle insertion side is used
during this step. Accurate selection of this ROI is not critical for the algorithm;
it only needs to contain a portion of the needle shaft.

Recently, intensity-invariant, local phase-based image processing methods,
based on filtering the US data with band-pass Log-Gabor filters, have shown
promising results for extraction of soft tissue and bone interfaces [9]. Phase-
based features are designed to be intensity-invariant and therefore insensitive
to US imaging parameters such as imaging depth, as evidenced in previous
work on bone detection [9]. In order to extract the needle shaft, we filter the
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Fig. 2. (a) Estimated initial trajectory (green line) overlaid on the B-mode US image.
(b) The extended ROI trajectory(TRROI) overlaid on the B-mode US image. (c) The
PSTRROI image calculated from the B-mode US image by limiting the local phase fea-
ture extraction to the region defined by TRROI . (d) Inliers detected using the MLESAC
algorithm (blue pixels) overlaid on top of the B-mode US image.

USROI image with a Log-Gabor filter whose transfer function is defined as

LG(ω, θ) = exp(−log(ω/κ)2

2log(σω)2 )exp(−(θ−θm)2

2(σθ)2
). Here ω and θ are related to the scale

and orientation of the filter. κ is the centre frequency of the filter, σω is related
to the spread of the frequency spectrum in a logarithmic function, and σθ defines
the angular bandwidth of the filter. θm is the specific orientation of the filter.
These filter parameters were selected automatically using the framework pro-
posed by Hacihaliloglu et al. [9]. The output of this filtering operation is used to
construct a phase-based descriptor called phase symmetry (PS) [9]. The PSROI

image extracted by processing the USROI image shows a distinct local phase
feature for the needle shaft (Fig. 1 (f)).

Initial Trajectory Estimation: In order to estimate the initial trajectory we
calculate the Radon Transform (RT) of the PSROI image. The initial needle
trajectory is estimated by performing an inverse RT operation using only the
peak RT value (Fig. 2 (a)). In order to account for a possible bending of the
needle during the insertion and provide a more accurate initial trajectory esti-
mate, we extend this estimated trajectory to an initial trajectory ROI which we
call TRROI . TRROI is calculated by keeping the maximum RT and its angle
value constant but expanding the corresponding distance (ρ) by Δρ pixels in
each direction in the RT space and calculating the inverse RT (Fig. 2 (b)). The
diameter of the needle used in this study is 1.47 mm; to select a safe zone we
expand this diameter value to 5.47 mm (2 mm from each side) which accounts
for a Δρ value of 20 pixels, accommodating common anesthesia needles.

Final Trajectory Estimation: The TRROI , calculated in the previous step,
provides a region in the B-mode US image which includes the needle shaft and
tip. To enhance these two features, the local phase-based PS calculation is per-
formed on the full sized US image but by limiting the extraction process to the
region defined by TRROI . We define this new PS image as PSTRROI . Limiting the
PS calculation to the TRROI eliminates the extraction of unwanted soft tissue
interfaces and focuses on the ROI where the needle shaft and the tip is expected
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Fig. 3. (a) Final needle trajectory, (shown in red) obtained after geometric optimization
approach, overlaid on the disconnected MLESAC point cloud (shown in blue). The line
segments ’a’,’b’ and the black circle (knot) are used during the needle tip detection.
(b) Band-pass filtered B-mode US image used as input for tip estimation. (c) Output
obtained from the needle tip enhancement approach.(d) Enhanced needle tip (shown
in red) overlaid on the B-mode US image.

to be (Fig. 2 (c)). Investigating Fig. 2 (c) we can see that there are still some
false positive local phase features in the PSTRROI image. In order to eliminate
the final remaining false positive local phase features we perform a randomized
search procedure by modifying the traditional RANSAC (Random Sample Con-
sensus) algorithm. The traditional RANSAC approach fits a model the point
cloud based on a threshold value. Therefore, the accuracy of the RANSAC al-
gorithm, for needle axis localization, is limited to this selected threshold value
[7]. In order to overcome this problem we propose to use a new method called
Maximum Likelihood Estimation SAmple Consensus (MLESAC)[10]. MLESAC
evaluates the likelihood of the hypothesis, representing the error distribution as
a mixture model. The error is modeled as a mixture model of Gaussian and uni-
form distribution p(e) = (γ( 1√

2πσ
)exp(− e2

2σ2 )+
(1−γ)

ν ). Here ν is the diameter of

the search window, γ is the mixing parameter and σ is the standard deviation
of the error on each coordinate. The final step is to find the best estimate which
minimizes the negative log likelihood of the error function [10] using expectation
maximization (EM) algorithm. Parameter γ is estimated during the EM part
and ν is dependent on the data size. The MLESAC algorithm results are shown
in Figure 2 (d) where we can see a clear overlap of the detected inliers with the
needle shaft as well as the needle tip. The final trajectory estimate is obtained
by connecting these extracted inliers using a geometric optimization approach
[11]. Given a collection of F curves and n inlier points (xi, yi), i = 1, ..., n,
the optimization approach tries to find the size of the largest subset of points
(Nn(F)) lying on a curve in F. Based on the a priori knowledge that the needle
shaft is a rigid object and should follow a straight path with minimal bending,
we define the curve as a monotonic Lipschitz function. If we define M(i) as the
maximum number of points from (x1, y1), ..., (xi, yi) on a curve ending at (xi, yi),
during the optimization, we compute M(i) = 1 + maxj<i,yj<yiM(j) and then
Nn(F) = max[M(i)]. The estimated final trajectory obtained is shown in Fig. 3
(a) as a red line.
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Needle Tip Enhancement and Localization Using Spatially Distributed
Image Statistics:The needle tip estimation is based on the RT, but instead of in-
tegrating the US image intensity values along a line L, they are distributed among
various line segments along L (e.g. Fig. 3 (a) segments ’a’ and ’b’) [12]. The line
segments are defined by a set of salient points, called knots (Fig. 3 (a) black circle),
along L which are the intersection points of L and the trajectory estimated in the
previous step. By using the trajectory we eliminate the extraction/enhancement
of the soft tissue interfaces that have similar intensity values as the needle tip, but
are not aligned with the trajectory. Similar to the original RT method, each line
also has an associated direction, which is given by an angle θ. However, the output
for each angle is an image, which is the main difference from the traditional RT
where the output in such a case is a 1D function. If the set of knots along L is given
as (t1, ..., tn), the value of the new extracted feature is given by:

USneedle(USB, L(t)) =

∫ ti+1

ti
USB(L(t))dt

‖L(ti+1)− L(ti)‖2
; t ∈ [ti, ti+1]. (1)

Here, USB represents the band-pass filtered US image (Fig. 3 (b)). We obtain
USB using the Log-Gabor filter without the orientation selectivity LG(ω) =
exp(−log(ω/κ)2/2log(σω)

2). L is the line along which features are obtained. The
function USneedle assigns all the pixels between the knots t1 and ti+1 along L,
the mean value of function USneedle along L, between the same two knots. Inves-
tigating the calculated USneedle image we can see that the pixel corresponding
to the estimated needle tip is enhanced after this feature extraction operation
(Fig. 3 (c)). Fig. 3 (d) shows the overlay of the maximum intensity pixels of
USneedle (colour coded in red) on the B-mode US image. The needle tip local-
ization was achieved by selecting the first maximum intensity needle tip pixel,
lying along the calculated final needle trajectory and outside of USROI , from
the enhanced needle images.

2.2 Data Acquisition and Experiments

The US images used in the evaluation of the proposed method were obtained
using an iU22 ultrasound system (Philips Ultrasound, Bothell, WA) with a 2D
curvilinear transducer (C5-1). Freshly excised ex vivo porcine and bovine tis-
sue samples, obtained from a local butcher, were used as the imaging medium.
Standard 17 gauge Tuohy anesthesia needles (Arrow International, Reading, PA,
USA) were inserted to this setup. A total of individual 150 2D US images (75
porcine and 75 bovine) were collected where the imaging depth setting varied
from 5 cm up to 9 cm. The needle was inserted at different angles (40◦ − 70◦),
and various insertion depths (2 cm - 9 cm). In all the collected images the inser-
tion angle was steep enough so that the only visible portion of the needle in the
collected US image was the end part of the shaft and the needle tip. Quantita-
tive validation was obtained by comparing the segmented needle tip, performed
using the proposed method, against the gold standard manual segmentation.
The manual segmentation was also confirmed by the known depth at which the
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needle was inserted. ”The error was calculated by measuring the Euclidean dis-
tance (ED) between these points and calculating root-mean-square (RMS) and
95% confidence intervals. The proposed method was implemented in MATLAB.
The Log-Gabor filter parameters were automatically optimized using the frame-
work proposed in [9]. For the MLESAC algorithm σ = 1 provided successful
inlier estimation results while avoiding the estimation of unwanted outliers. The
angle θ for the needle tip enhancement ranged from 0◦−300◦ with 6◦ increments.
Throughout the experimental validation these parameters were not changed.

3 Results

Figure 4 shows sample results. Investigating the B-mode US images, we can see
that the proposed method successfully enhances the needle tip in the presence
of disconnected and partially visible needle shaft. Due to the directionally opti-
mized local phase features, the proposed method is not affected by the soft tissue
interfaces with higher intensity values (Fig. 4 (a) second row). Furthermore, the
method appears unaffected by the intensity variations present in different US
scans. If the needle shaft has a similar intensity value as the tip the proposed
method results in the enhancement of both features (Fig. 4 (a) second row).
The processing time in MATLAB was 0.8 seconds for a 450 × 450 2D image.
Needle scans inside the bovine and porcine tissue resulted with an overall mean
ED error value of 0.43 mm (RMS 0.53 mm SD 0.31 mm and 95% CI 0.51 mm)
and 0.4 mm (RMS 0.49 mm SD 0.29 mm 95% CI 0.47 mm), respectively (Fig. 4
(b)). The maximum localization errors were 1.19 mm and 1.24 mm for bovine
and porcine scans, respectively.

Fig. 4. (a) Sample results of porcine tissue ex vivo. First column: B-mode US images.
Second column: Result of needle tip enhancement. Third column: Overlay of enhanced
needle tip on top of the B-mode US image. Fourth column: Expanded view of the third
column.(b) Quantitative results for needle tip localization.

4 Discussions and Conclusions

We propose a method to localize the tip using both echo information from the
tip and the partially visible needle shaft. The quantitative experiments indicate
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a mean RMS error of 0.53 mm and 0.49 mm for for bovine and porcine tissue
respectively. The accuracy of the method is improved using the available prior
information before the insertion of the needle. The method is tested on epidural
needles with no or minimal bending. For situations where needle bending occurs,
tool models incorporating this bending information can be incorporated to the
framework. If the US transducer is placed further from the needle, the ROI
selection step can be eliminated since for these situations the visible section of
the needle shaft would be longer. Future work will focus on validation of the
method on in vivo scans and different application of image guided interventions
where visualization of needles from US data is of importance.
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