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Abstract. With the increasing maturity of optical biopsy techniques,
routine clinical use has become more widespread. This wider adop-
tion of the technique demands effective tracking and retargeting of the
biopsy sites, as no visible markers are left following examination. This
study presents a high-speed framework for intra-procedural retargeting
of probe-based optical biopsies in gastrointestinal endoscopy. A probe
tip localisation method using active shape models and geometric heuris-
tics, which eliminates the traditional dependency on shaft visibility, is
proposed for automated initialisation. Partial occlusion and tissue de-
formation are addressed by exploiting the benefits of indirect and direct
tracking through a novel combination of geometric association and on-
line learning. Robustness to rapid endoscope motion and improvements
in computational efficiency are achieved by restricting processing to the
automatically detected video content area and through a feature-based
rejection of non-informative frames. Performance evaluation in phantom
and in-vivo environments demonstrates accurate biopsy site initialisa-
tion, robust retargeting and significant improvements over the state-of-
the-art in processing time and memory usage.

1 Introduction

Gastrointestinal (GI) endoscopy together with histopathological tissue examina-
tion is the gold-standard for the diagnoses of pathologies in the digestive tract.
Endoscopy-guided probe-based optical biopsies, however, allow for in-vivo vi-
sualisation of tissues at a cellular level, forgoing the need for tissue excision.
Macroscopic retargeting of previously examined sites in this context is challeng-
ing due to the absence of physical scars at the biopsy sites [1]. Traditional retar-
geting, performed by tattooing the examined tissue with ink or Argon Plasma
Coagulation (APC), is limited as the ink tends to diffuse and APC causes tissue
damage. This study proposes a non-invasive alternative for automated intra-
procedural retargeting using purely vision-based techniques, seeking high-speed
performance and robustness to rapid endoscope movements, natural tissue de-
formation and partial site occlusion.

Mountney et al. [6] perform intra-procedural retargeting using a visual SLAM-
based approach (assuming large-scale rigidity) to generate a 3D model of the
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Fig. 1. Tip localisation: (a) Orientation constraint. (b) Major landmarks computation.

tissue surface. Initialisation is automated by a probe detection technique which
exploits the achromatic properties of the probe shaft. Atasoy et al. [2] address
tissue deformation using a geometrically-constrained MRF model, while Allain et
al. [1] propose retargeting based on epipolar lines, derived from multiple views
of a given biopsy site. Ye et al. [9] model tissue deformation as locally affine
and perform indirect retargeting by geometric association and online-learning.
Partial occlusion is addressed by reinitialising the associated sites when the
optical probe exits the field of view (determined by simple blob detection).

This work expands upon these prior studies, each of which addresses only
part of the retargeting problem, through the development of a novel, end-to-
end framework for high-speed, automated and robust retargeting. The principal
contributions include: real-time detection of non-informative frames; geometry-
independent content area detection; shape-based probe tip localisation for au-
tomated initialisation and hybrid retargeting for improved performance under
partial occlusion and tissue deformation.

2 Methods

An automated, high-speed solution for targeted optical biopsies in GI endoscopy,
comprised of the following five components, is proposed: 1) non-informative
frame rejection; 2) video content area detection; 3) probe tip localisation; 4)
retargeting under partial occlusion and 5) retargeting without occlusion.

Frame Rejection: Redundant processing is mitigated by discarding clinically
non-informative frames using a novel quantification of image saliency based on
the number of FAST keypoints detected [8] (Fig. 2). In particular, frames are
rejected by placing a lower bound, 7, on the number of detected keypoints. High
frame rates in endoscopic sequences (> 25fps) result in significant information
overlap between a certain number of consecutive frames, making the selection of
T, non-critical as information lost in incorrectly discarded frames is likely to be
recaptured in subsequent frames.
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Fig. 2. Number of FAST keypoints detected.

Content Detection: Subsequent processing is restricted to the automatically-
detected central content area (Fig. 3). While Munzer et al. [7] proposed a method
to automatically detect circular content regions, here a technique for annotating
the content area of all endoscopic sequences, regardless of the FoV geometry, is
presented. Binary thresholding is applied to a greyscale input image to eliminate
low-intensity noise in the background regions. The largest connected component
in the binary image is then found and refined via morphological opening, which
reduces unwanted spurious details.

Probe Tip Localisation: The initial biopsy site is assumed to be located at
the tip of the optical probe and is found via probe detection and tip localisation.
A limitation of prior work in vision-based endoscopic instrument detection is the
reliance on the visibility of the achromatic instrument shaft [6]. This limitation
is addressed via a markerless probe detection approach that combines colour-
based segmentation with active shape modelling and geometric heuristics. The
technique focusses directly on the detection of the probe tip, ignoring the in-
strument shaft and thereby compensating for scenarios where the shaft is not
visible. Candidate segmentations are obtained by thresholding and connected
component analysis in a texture-reduced image, obtained by greyscale morpho-
logical closing. Closing attenuates darker features in the image, reducing the
characteristic mucosal and vascular patterns (i.e. reducing the texture) with-
out impacting the appearance of the comparatively homogeneous probe tip and
thereby simplifies the segmentation task. The candidate set is refined by applying
two geometric constraints based on a priori knowledge of probe size and orien-
tation. All components falling outside of a predefined size range are eliminated,
while the orientation constraint is formulated based on the knowledge that the
optical probe is inserted through the operating channel of the endoscope and is
thus radially orientated. The constraint is enforced by placing a threshold on
the distance between the extended major axis of the component and the image
centre. The major axis is found by computing the longest straight line segment
in the component using the Hough transform. This line (which is expected to
represent one of the two longitudinal edges of the probe) is translated to pass
through the centroid of the component, yielding the major axis (Fig. 1). The fi-
nal coarse segmentation is that component with the longest straight line segment
satisfying these constraints.

The texture-reduced image is searched using an Active Shape Model (ASM)
[3] of the probe tip, the accuracy of which is optimised by initialising the search
with the coarse segmentation. This is achieved by defining four major landmarks
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in the ASM located at the end-points of the longitudinal edges of the probe. The
corresponding points in the coarse segmentation are estimated by centring the
probe at the origin (by translation) and rotating it according to the orientation
of its longest line segment (Fig. 1). The height and width of the probe are esti-
mated as the maximum differences in the (z,y) components of any two points
in the probe. The landmarks are then approximated as the corresponding off-
sets from the probe centroid, translated and rotated back to the initial pose. A
linear transformation that minimises the Procrustes distance between the major
landmarks in the mean and initial shapes is used to align the ASM with the
coarse segmentation. This approach significantly improves segmentation accu-
racy, compared to the traditional approach of initialising the search with the
mean shape and a fixed pose.

Pathological Site Retargeting (PSR): A hybrid retargeting approach is
proposed, whereby the underlying methodology is based on the degree of partial
site occlusion. A site is considered occluded if the overlap O between its bounding
box (defined by the set of pixels A) and the optical probe (defined by the set B)
exceeds a predefined threshold where O = |A‘2‘B|.

PSR with Partial Occlusion is performed by geometric association (Fig. 3).
Similarly to [9], the associated sites are defined as the vertices of a set of n con-
centric, fixed radius pentagons. The set is constructed by incremental rotation
of an initial pentagon by {0, 6,20, ..., (n — 1)0} such that nf = 72. Based on the
assumption that tissue deformation is locally affine [9], the biopsy site location
is computed using the perspective transformation that minimises the reprojec-
tion error between the associated sites in the previous and current frames. The
critical difference to [9], where each associated site is retargeted independently
using TLD [5], is that the sites are tracked directly using Lucas-Kanade opti-
cal flow, which significantly reduces computational overhead. This approach is
motivated by the fact that initial tracking of the site, while the probe is visible,
does not generally involve endoscope motion and is thus unlikely to require site
re-detection. This makes a short-term tracking solution more suitable in terms
of computational overhead.

PSR without Partial Occlusion: The retargeting methodology switches to
TLD when the overlap between the optical probe and the local neighbourhood
of the biopsy site falls below a threshold (Fig. 3). TLD is an established long-
term tracking method that integrates a median flow tracker, a cascaded classifier
and online learning. In [9] tissue deformation is addressed by modelling the local
neighbourhood with 180 separate bounding boxes. Here it is proposed that the
same local information is captured by initialising TLD with a single, suitably-
sized bounding box centred on the biopsy site. Since TLD is robust to affine
transformations, the tracking of this bounding box is not affected by affine tis-
sue deformation. This direct retargeting approach offers a significant reduction
in computational overhead (1 site vs. 180 sites). In order to avoid corrupting
the positive training samples of the cascaded classifier (generated online), the
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Table 1. Probe tip localisation results.

Method P R FPR ALE (pixels) FPS
TipLoc 0.91 0.89 0.05 3.84 + 1.80 10
Mount [6] 0.09 0.05 0.41 43.26 £ 49.30 25

retargeting methodology reverts back to geometric association at any stage that
the probe re-enters the local neighbourhood of the site.

3 Results

Performance was evaluated using both phantom and in-vivo gastrointestinal
data, captured with an Olympus Narrow Band Imaging (NBI) endoscope. Two
phantoms (modelling the textural mucosal and vascular characteristics of the
human oesophagus) were used. Ground-truth annotations were performed by an
experienced observer. Since probe-based optical biopsies are not currently prac-
tised in GI endoscopy in the UK, the procedure was simulated in the phantom
environment using a Cellvizio optical probe manufactured by Mauna Kea Tech-
nologies. Tissue deformation was simulated by manually applying an external
force to the phantom. All components of the proposed methodology related to
probe tip localisation were evaluated in this environment.

Probe Tip Localisation: The ASM model was built using 50 training im-
ages and the number of search iterations was restricted to 10, such that overall
processing times were not significantly compromised. Accuracy was measured
as the Average Localisation Error (ALE) in pixels between the computed and
ground-truth probe tip positions. Performance was quantified further according
to the recall rate (R), False Positive Rate (FPR), and precision (P). Localisa-
tion errors of less than 10 pixels were considered true positives. Performance of
the proposed method (denoted TipLoc) was compared to [6] (denoted Mount) -
chosen as its methodology is representative of the majority of the related vision-
based methods that rely on the visibility of the achromatic instrument shaft.
With reference to Tab. 1, the proposed technique significantly outperformed [6]
in terms of both tip localisation and detection accuracy. The poor performance
of [6] is attributed to the failed initial segmentations and not to inaccurate tip
localisations, as the current dataset consists predominantly of images where the
shaft is not visible. Despite the lower average frame rate, Tab. 1 highlights the
advantages of the proposed technique over the popular shaft-based segmentation
approaches.

Retargeting: Performance was evaluated using three phantom and three in-

vivo sequences and quantified using precision, recall and the ALE between the

centres of the ground-truth and predicted bounding boxes. In particular, an

object-based evaluation (c.f. pixel-based) was considered, whereby a true posi-
G T

tive instance is defined as an overlap o; = gcggT of greater than a threshold 7,

between the ground-truth and predicted bounding boxes (B, BT respectively).
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Fig. 3. Sample in-vivo (left) and phantom (right) PSR results. Content areas in white.

It is worth noting that ALE is not scale-invariant [ 77 | and that it is thus
not generally possible to perform ROC analysis using object-based metrics (as
the false-positive rate cannot be computed) [4]. Therefore, in accordance with

[4,5, 77 ], the scalar-valued F'1-measure (F1 = 2 f;ﬂ;)) was computed in addi-

tion to P, R and ALE, to provide an objective overall performance measure. The
in-vivo performance of the proposed methodology (denoted PSR) was compared
to the baseline intra-procedural approach of Ye et al. [9] (denoted PSR Ye).
A direct comparison was not possible in the phantom environment as PSR Ye
does not consider probe detection, thus requiring manual initialisation. Optimal
parameter values were determined empirically, based on performance in a single
sequence (not included in the results). The chosen parameter set was used for
all tests (in-vivo and phantom).

PSR performed well in the phantom environment (Tab. 2), with perfect preci-
sion and a worst-case F1 of 0.91. Retargeting localisation accuracy was high for
all three sequences (9.75-13.72 pixels). Performance is comparable to the state-
of-the-art [9] (achieved in a similar phantom environment). PSR maintained high
precision (0.91-0.96), recall (0.80-0.94) and F1 (0.85-0.94) scores in-vivo (Tab. 2).
In contrast, PSR Ye performed poorly, particularly with regard to recall (0.12-
0.44), resulting in considerably lower F1 scores (0.23-0.61). In all three cases,
PSR Ye lost track of the biopsy site before it had exited the FoV and was not
able to re-detect it in subsequent frames. As noted in [9], a decrease in textural
saliency and an increase in the number of out-of-focus frames relative to the
phantom data (due to rapid endoscope motion) negatively affects the feature-
based classification in TLD. PSR Ye, which relies on multi-site TLD and does
not discard non-informative frames, is thus affected more significantly by these
factors than PSR. The relative decline in performance of PSR in-vivo may be
further attributed to the absence of partial probe occlusion, which biases overall
phantom performance due to the relative ease of short-term tracking in partially
occluded frames. The in-vivo and phantom results suggest that direct tracking
is favourable to geometric association in non-occluded scenarios.

Content detection used in conjunction with frame rejection was found to yield
optimal performance, when considering F1 scores in conjunction with processing
times (Tab. 3). Although a negligible drop in recall was caused by the inevitable
rejection of a small number of informative frames, frame-rejection crucially im-
proved precision by reducing the number of false-positive containing frames and
significantly decreased processing times by eliminating redundant sliding window
searches.

Computational Performance: The improvements in computational efficiency
of PSR relative to PSR Ye were evaluated according to CPU usage, memory



Hybrid Retargeting for High-Speed Targeted Optical Biopsies 477

Table 2. Phantom and in-vivo performance.

Name Method P R F1 ALE (pixels)
Phantom 1 PSR 1.00 0.98 0.99 13.72
Phantom 2 PSR 1.00 0.96 0.98 13.06
Phantom 3 PSR 1.00 0.91 0.95 9.75
In-vivo 1 PSR 0.96 0.81 0.88 10.94
PSR Ye 1.00 0.27 0.43 4.60
In-vivo 2 PSR 0.94 0.94 0.94 15.89
PSR Ye 1.00 0.44 0.61 3.40
In-vivo 3 PSR 0.91 0.80 0.85 12.24
PSR Ye 1.00 0.13 0.23 14.19

Table 3. Impact of content detection (CD) and frame rejection (FR). Optimal results
in bold.

Name CD FR (discarded) P R F1 T(irr)le
S
no no 0.79 0.37 0.50 131.87
In-vivo 1 yes no 0.94 0.83 0.88 120.73
no yes (275) 0.77 0.87 0.82 101.00
yes yes (325) 0.96 0.81 0.88 91.12
no no 0.94 0.67 0.78  46.73
In-vivo 3 yes no 0.87 0.80 0.83  41.18
no yes (6) 0.63 0.69 0.66  41.47
yes yes (15) 0.91 0.80 0.85 39.00

usage and processing time for single-site retargeting in a 419-frame in-vivo se-
quence. Additionally, the feasibility of multi-site PSR was evaluated by mea-
suring computational performance for one, two, three and five sites. Multi-site
PSR was implemented by brute-force, whereby each site was retargeted inde-
pendently (resource sharing and/or parallelisation were not considered). Pro-

cessing was performed on an Intel® Core' i7, 3.4GHz quad-core CPU with
16GB of RAM. PSR outperformed PSR Ye in every aspect of computational
performance for single-site retargeting with reductions of approximately 50% in
mean CPU usage and 90% in mean memory usage (Fig. 4a-c). Most significantly
(with regard to clinical feasibility), PSR gave an improvement of two orders of
magnitude in frame rate over PSR Ye (10-30fps vs. &~ 0.5fps). These are signifi-
cant improvements in computational efficiency and highlight the benefits of the
proposed hybrid retargeting approach. Fig. 4d shows the results of regression
analyses for each metric (averaged over the entire sequence) for multi-site PSR.
Memory usage and CPU usage exhibited quadratic and linear relationships with
the number of retargeted sites respectively, while frame rate decreased exponen-
tially. While this is not encouraging for clinical feasibility (where approximately
10-20 sites would need to be retargeted), it is proposed that parallelisation and
resource sharing would improve performance significantly. This claim is substan-
tiated by the results for single-site PSR Ye (Fig. 4a-c). PSR Ye, which has been
parallelised, simultaneously retargets 180 associated sites for a single biopsy site,
yet operates with manageable computational overhead and maintains a frame
rate of approximately 0.5fps.
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Fig. 4. Computational performance: (a) Single-site memory usage. (b) Single-site CPU
usage. (c) Single-site frame rates. (d) Multi-site regression analyses.

4 Conclusion

This study has presented a high-speed, automated solution for targeted optical
biopsies in GI endoscopy. Initialisation is performed via a novel probe tip local-
isation method using active shape modelling and geometric heuristics. Partial
occlusion and tissue deformation have been addressed by adopting a hybrid re-
targeting approach which combines indirect tracking by geometric association
and direct tracking by online learning. Additionally, a method for the detection
of non-informative frames using the FAST feature detector has been presented,
improving robustness to rapid endoscope motion and facilitating high-speed im-
plementation. Computational efficiency has been optimised further by restrict-
ing processing to the automatically-detected video content area. State-of-the-art
probe tip localisation accuracy has been presented with an average error of 3.84
pixels and consistently high recall (0.89) and precision (0.91) rates. Crucially,
the traditional dependency on the visibility of the probe shaft has been elimi-
nated. Retargeting is achieved with consistently high F1 scores (0.85-0.99) for
both phantom and in-vivo data. Together with an improvement of two orders of
magnitude in processing time, this corresponds to a significant improvement over
the state-of-the-art [9]. Future work will seek to further improve computational
efficiency to facilitate the implementation of multi-site retargeting.
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