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Abstract. This paper presents a new method for classifying surface
data via spectral representations of shapes. Our approach benefits clas-
sification problems that involve data living on surfaces, such as in cor-
tical parcellation. For instance, current methods for labeling cortical
points into surface parcels often involve a slow mesh deformation to-
ward pre-labeled atlases, requiring as much as 4 hours with the estab-
lished FreeSurfer. This may burden neuroscience studies involving region-
specific measurements. Learning techniques offer an attractive computa-
tional advantage, however, their representation of spatial information,
typically defined in a Euclidean domain, may be inadequate for corti-
cal parcellation. Indeed, cortical data resides on surfaces that are highly
variable in space and shape. Consequently, Euclidean representations
of surface data may be inconsistent across individuals. We propose to
fundamentally change the spatial representation of surface data, by ex-
ploiting spectral coordinates derived from the Laplacian eigenfunctions
of shapes. They have the advantage over Euclidean coordinates, to be
geometry aware and to parameterize surfaces explicitly. This change of
paradigm, from Euclidean to spectral representations, enables a classifier
to be applied directly on surface data via spectral coordinates. In this
paper, we decide to build upon the successful Random Decision Forests
algorithm and improve its spatial representation with spectral features.
Our method, Spectral Forests, is shown to significantly improve the ac-
curacy of cortical parcellations over standard Random Decision Forests
(74% versus 28% Dice overlaps), and produce accuracy equivalent to
FreeSurfer in a fraction of its time (23 seconds versus 3 to 4 hours).

1 Introduction

The cerebral cortex is the center of major brain activities, including vision and
perception. Its study remains, however, challenging due to its highly complex
geometry, a densely convoluted surface with varying folds and fissures. In such
context, efficient algorithms for surface processing and analysis are often sought.
In particular, the accurate segmentation of cortical surfaces into major folds,
or sulcal areas, is fundamental to many applications involving region-specific
measurements. Two strategies exist for cortical parcellation and are either tem-
plate based [1–7], via iterative deformations of a pre-labeled atlas, or subject
based, via costly processing of sulcal data [8–10] or extracted sulcal lines [11–
13]. Present methods often suffer from a heavy computational burden. For in-
stance, FreeSurfer [6, 7], a leading software for cortical parcellation, requires 3 to
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Fig. 1. Algorithm Overview – Whereas Standard Forests (RF) rely on spatial fea-
tures derived from Euclidean coordinates (x,y,z), Spectral Forests (SF) build geometry-
aware features using spectral coordinates (U1..k). This change of paradigm from ex-
trinsic to intrinsic shape representation enables learning to be performed directly on
surfaces. Coloring indicates how spatial information is represented over the surface.

4 hours of computation to inflate cortices into spherical models and warp them
toward a pre-labeled atlas. Machine learning techniques now carry high expecta-
tions due to their promise in classifying various types of data in a fast manner.
Unfortunately, their use in cortical analysis [14] has been limited due to the
high geometrical variability of the folding pattern across individuals. Classifying
cortical data on larger training sets may capture additional shape variability,
however, one may wonder how to better exploit existing data, and how to cap-
ture maximal information on such complex surfaces. This raises the fundamental
question on how to learn data directly on surfaces. We propose to use a different
paradigm for representing spatial features in learning techniques.

Currently, a cortical point can be represented with pointwise data information,
such as its depth on the cortex or its MRI pixel intensity. Feature representa-
tions are typically augmented with spatial information to uniquely characterize
points in space, for instance, with its location in the Euclidean domain [15].
This, however, poses a problem since cortical surfaces highly vary in space and
shape. Moreover, neighborhood structures, often exploited in image segmenta-
tion [16], may be ambiguous on surfaces, and more challenging to interpret on
highly convoluted cortical surfaces. Neighboring positions in 3D space may in
fact not necessarily lie on a surface, and be even several folds away on the
cortex. Consequently, standard learning approaches that use features defined
in the Euclidean domain, may not be adequate for cortical parcellation. We
propose to represent instead spatial information with geometry-aware features.
The spectral decomposition of shapes provides means to efficiently parameterize
cortical surfaces with few spectral coordinates. More specifically, surface points
are uniquely characterized with the eigenfunctions of an associated graph Lapla-
cian. Whereas its eigenvalues capture subject-wise properties, and can be used to
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identify subjects [17, 18], the eigenfunctions capture pointwise information di-
rectly on surfaces, and can be used, for instance, to match points between cortical
surfaces [19, 20]. Such named spectral coordinates constitute, in fact, an explicit
parameterization of surfaces. A learning technique could thus exploit such spec-
tral coordinates to learn data directly on surfaces. In this paper, we improve,
for instance, the Random Decision Forests (RF) [21, 22], to process surface data
via spectral representations of shapes, and name our method Spectral Forests
(SF). The next section details the fundamentals of Spectral Forests, followed
by experiments evaluating the impact of using our spectral strategy over stan-
dard Euclidean approaches. We find a substantial improvement in accuracy in
terms of Dice metric (from RF: 28%, to SF: 74%) and boundary distance error
(RF/SF: 6.88/2.11mm).

2 Method

We begin by briefly reminding the fundamentals of Random Forests, and extend
them for classifying data directly on surfaces.

Random Forests (RF) – A standard RF consists of an ensemble of decision
trees, each making probabilistic decisions from input data, for instance, classi-
fying cortical points into cortical parcels. During training, trees are grown by
finding for each node, the binary test that best splits an input training data such
that information gain among the class distributions is maximized. Each tree t
learns a class predictor pt(c|f) for a feature representation f , for instance, the
sulcal depth and spatial coordinates of a cortical point, fi = (depth(i), (x, y, z)i)
at point i. During testing, unknown points are classified by passing down their
feature representations in ntree trees. The resulting class predictions are even-
tually averaged and a point is finally classified with the maximal prediction
ĉ = argmaxc

∑nT

i=1 pti(c|f). More details could be found in [21, 22]. In standard
RF, learning shape characteristics and locating their boundaries typically rely
on spatial features that are derived from Euclidean coordinates, and neighbor-
hoods are often implemented using random rectangles on a Cartesian grid [16].
Such features are not geometry aware, and rely on extrinsic shape information.

Spectral Forests (SF) – We extend RF beyond the Euclidean domain, to
classify surface data. To do so, spatial features are represented using spectral
coordinates rather than Euclidean coordinates. They uniquely characterize sur-
face points using the Laplacian eigenfunctions of a spectral shape decomposition
[23]. These surface basis functions are geometry aware and have the property to
be invariant to shape isometry. This is, for instance, exploited in cortical sur-
face matching [19, 20], where, conveniently, corresponding points have similar
spectral coordinates, even if they may not share the same location in space.
Spectral representations effectively capture intrinsic shape information. Loca-
tion and neighborhoods are defined explicitly on surfaces, which contrasts with
the implicit representation of surfaces with Euclidean coordinates.

Spectral Coordinates – Let us build the graph G = {V , E } from the set of ver-
tices with position x, and edges of a surface model S. We may define the |V |×|V |
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weighted adjacency matrixW in terms of node affinities, e.g., Wij =‖ xi−xj ‖−1

if ∃eij ∈ E (inverse distance between neighboring points), 0 otherwise. The di-
agonal node degree matrix D is the sum of all point affinities Di =

∑
j Wij . The

graph Laplacian operator is defined [24] as a |V |× |V | matrix L = D−1(D−W ).
Its spectral decomposition, L = UΛU−1, provides the sorted eigenvalues Λ =
diag(λ0, ...λ|V |) and associated eigenfunctions U = (u(0), ..., u(|V |)), where u(·) is
a column of U and depicts in fact a vibration mode of shape S [25]. The spectral
coordinates of points p ∈ V are defined as the eigenfunction values normalized

by their eigenvalues [23], spectral(p) = {λ− 1
2

0 u(0)(p), ..., λ
− 1

2

|V |u
(|V |)(p)}, which is

a row of matrix Λ− 1
2U . Since these coordinates are defined on surfaces, navigat-

ing with them would move us over the surface, whereas an increase in Euclidean
coordinates may bring us away from the surface. For additional coherence, we
further correct for slight perturbations in shape isometry, often observed as mis-
alignment of spectral representations between subjects [26]. All representations

are, therefore, realigned to an arbitrary reference, Λ− 1
2UTi�→ref , where the trans-

formation T is found, for instance, with Iterative Closest Points (ICP) between
spectral representations [26, 27]. In practice [19, 27], only the first k = 5 spectral
coordinates are sufficient to capture the main geometrical properties. This keeps
the computational expenses low, in the order of 2 seconds for a spectral decom-
position and 1.5 seconds for an ICP refinement on a standard laptop computer.
The spectral coordinates spectral(p) for a point p of subject i, are therefore

the first k elements of the pth row of matrix Λ− 1
2UTi�→ref .

Cortical Parcellation – The labeling of cortical points into major sulci and
gyri, is an application where learning should be performed on surfaces. Our Spec-
tral Forests algorithm represents spatial information with spectral coordinates,
which naturally parameterize surfaces in an intrinsic spectral domain rather
than in an extrinsic Euclidean space, as shown in Fig. 1. The simplest form
of feature representation could be, for instance, fp = (depth(p), spectral(p)),
which includes data information, such as the sulcal depth at each point, and
spatial information, where standard (x, y, z) point values are replaced with k
spectral coordinates. This change of paradigm enables a standard RF classifier
to be applied on the spectral representation fp for learning and infering the
major parcels over the brain surface.

3 Results

We now evaluate the performance of Spectral Forests (SF), with respect to stan-
dard Forests (RF) and FreeSurfer (FS), a leading software in cortical parcella-
tion. Our dataset consists of 16 surfaces of white-grey matter interfaces gener-
ated from MRI, ranging from 109k to 174k vertices, each labeled into 77 cortical
parcels obtained from a manual segmentation.

3.1 Euclidean versus Spectral Coordinates

The calcarine sulcus is of interest to studies in vision, however, its localization on
the cortex remains difficult as it is deeply buried in a highly convoluted area of
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Fig. 2. Segmentation of the Calcarine Fissure – which is deeply buried in a
highly convoluted area. (Left) Learning surface data with forests on standard Euclidean
features produces low Dice scores, and a segmentation that is spatially inconsistent.
(Right) Spectral Forests directly learn surface data via spatial features that are geom-
etry aware. Surfaces are inflated only for visualization.

the visual cortex. Current methods, such as FS, typically involve a costly mesh
deformation toward a labeled atlas. Learning approaches could be an alternative,
however, their use of spatial features derived from spatial coordinates may pose
problems in representing location and neighborhoods. One could augment the
representation of cortical points with extra information such as their sulcal depth
on the cortex. This is the strategy adopted by FS.

Standard RF – To illustrate the benefits of using spectral coordinates over
Euclidean coordinates, we choose to segment the calcarine sulcus in a binary
classification, i.e., calcarine or not-calcarine. We first use standard RF with a
simple feature representation, fi = (depth(i), (x, y, z)i), with the sulcal depth of
a point i and its location in an Euclidean space. We use 50 trees, with 50k data
points represented with the feature set f , and keep our parameters constant in all
further experiments. We perform a leave-one-out evaluation, where 15 surfaces
are used for each training, and test on the remaining surface. The average Dice
overlap (2|A ∩ B|/(|A| + |B|)) for all 16 calcarine segmentations is 36.1% (±
10.5, min/max = 11.3/51.3). The average distance error between boundaries is
on average 7.39mm (± 1.92, max (Hausdorff) 53.0). As seen on Fig. 2, the best
case shows, in fact, mitigated results with an overlap of 51.3%, and boundary
errors of 5.63mm (± 3.85, max 26.8). The consistent location of the predicted
sulcus in deeper areas suggests that sulcal depth is a prominent feature during
learning, however, spatial coherency of the resulting segmentation appears to
be ambiguous. Despite a correct coarse positioning of the calcarine sulcus in
the vision cortex, its precise location and delineation is imprecise. Euclidean
features may not be adequate for learning on such convoluted surface. Indeed,
two neighboring points in space, may not necessarily be close in term of geodesic
distance on the surface, and may, in fact, even be several sulci apart.

Spectral Forests – We now only modify the spatial features in order to fully
appreciate the impact of this fundamental change in Spectral Forests. We use
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Fig. 3. Cortical Parcellation – (Left) Best cortical parcellation using RF (31.0%),
which reveals the limitation of using spatial features based on Euclidean coordinates,
(Middle) Parcellation on same subject using SF (77.6%, our method), which shows
an improved learning on cortical surfaces, (Right) using FS, considered here as gold
standard. Inflated surfaces show 77 color-coded parcels. Central sulcus circled for vi-
sualization.

fi = (depth(i), spectral(i)), with sulcal depth and k = 5 spectral coordinates.
With this simple change, surface data is now represented using geometry-aware
features. The average overlap of the 16 calcarine segmentations is now improved
to 89.4% (± 3.9%, min/max = 81.0/92.1), and the average boundary distance
error is decreased to 1.56mm (± 0.39, max (Hausdorff) 11.25). This is a 147%
improvement in overlap, and 78% decrease in boundary error. A closer look
on Fig. 2 shows indeed that this simple change of paradigm from Euclidean to
spectral features produces a spatially coherent segmentation over the cortical
surface. The computation time for RF and SF in this binary segmentation is
2.7 seconds for training, and 1.1 seconds for testing. Timing is measured on a
2.6GHz Core i7 with 16GB of RAM.

3.2 Full Cortical Parcellation

We now segment all 77 cortical parcels, and validate using the same leave-one-
out approach with the same parameter set. Running standard RF produces
an average overlap, for all 77 parcels on 16 surfaces, of 27.9% (± 17.0, min/max
parcels = 4.9/65.9), and an average boundary error of 6.88mm (± 2.30, max
(Hausdorff) 60.8). The required computation time is 21 seconds for training and
66 seconds for testing. Running Spectral Forests (SF) produces an average
overlap of 74.3% (± 8.32, min/max parcels = 38.9/94.9), and a boundary er-
ror of 2.21mm (± 0.55, max (Hausdorff) 28.9). The computation time is 17
seconds for training and 23 seconds for testing. Fig. 3 shows the best scoring
parcellation of RF, with an average overlap of 31.0% (± 15.5), which contrasts
with the SF parcellation on the same subject of 77.6% (± 11.41). One can ob-
serve the improvement in spatial consistency of the surface segmentation between
RF and SF, where, for instance, the central sulcus (circled in yellow) is barely
distinguishable using RF. In comparison, FreeSurfer (FS), which is consid-
ered here as a gold standard, performs with an average overlap of 74.4% (±
9.7, min/max parcels = 41.2/96.6) among all possible transfers of parcellation
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Fig. 4. Evaluation per parcel – (Top) Dice Metric and (Bottom) Boundary Distance
Error for all 77 cortical parcels, using RF (Red), SF (Blue, our method), and FS
(Green curve, given for comparison). SF provide consistently higher Dice scores than
RF (74.3% vs. 27.9%), and has an equivalent accuracy than FS, but only at a fraction
of its cost (23 seconds vs. 3 to 4 hours for FS).

maps from all subjects onto all possible reference subjects. The average bound-
ary distance error between all possible transfers of cortical maps is 2.21mm
(± 0.75, max (Hausdorff) 37.5). This evaluates the variability of FS in mapping
cortical parcellations. The performances of SF (74.3%, 2.21mm) and FS (74.4%,
2.21mm) are arguably similar, however SF have a clear speed advantage over
FreeSurfer. Full cortical parcellation in SF takes on average 23 seconds at test
time, whereas FS requires 3 to 4 hours of computation due to its slow mesh in-
flation process. We also observed that trees have roughly 9k nodes with SF, and
23k nodes with RF. This may explain the computational advantage of SF over
RF (17+23secs over 21+66secs, for training+testing time), and perhaps indicate
that information may be better structured with spectral features, producing less
tree nodes than with Euclidean features. Fig. 4 summarizes the overlap and
boundary errors for all 77 parcels in our leave-one-out validation. It is interest-
ing to observe that with the unique change of spatial features, from Euclidean to
spectral coordinates, the average parcel overlap is consistently higher in SF than
RF (74.3% vs. 27.9%). Similarly, the boundary error is consistently lower in SF
than RF (2.21mm vs. 6.88mm). In addition, SF shows equivalent performance
than the state-of-the-art (FreeSurfer in green) but at a significant fraction of its
costs (23 seconds for SF vs. 3 to 4 hours for FS).

4 Conclusion

In this paper, we tackled the difficult problem of learning data on complex sur-
faces, such as the cerebral cortex. Whereas conventional approaches would repre-
sent spatial information with extrinsic, or implicit, representations, we proposed
to use geometry-aware features that are based on the spectral decomposition
of shapes. This change of paradigm from extrinsic to intrinsic shape represen-
tations, or from implicit to explicit surface parameterization, enables learning
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techniques to process data directly on surfaces. We implemented this new strat-
egy using the Random Decision Forests model, and named our method Spectral
Forests. We illustrated its impact with an application to cortical parcellation,
which involves complex surfaces with highly varying folding patterns across in-
dividuals. We found that revisiting the fundamentals of spatial representations,
from Euclidean to spectral-based features, improves the parcellation accuracy
from 27.9% to 74.3%, which is comparable to the present state-of-the-art, but
with a clear speed advantage (23 seconds vs. hours). Our experiments showed
that simple spatial representations with pure spectral coordinates, on a relatively
small dataset, can already track the accuracy of FreeSurfer. We may possibly
expect further improvements with more advanced spectral features, for instance,
by exploiting neighborhoods on surfaces. Nonetheless, our approach highlights
the pertinence of using geometry-aware features in learning techniques. The use
of Spectral Forests may also be relevant beyond the analysis of cortices, for in-
stance, in studying surfaces of other organs, or more generally, in applications
where data lives on surfaces.
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