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Abstract. In this paper, we propose a novel method for modelling functional
dynamics in resting-state fMRI (rs-fMRI) for Mild Cognitive Impairment (MCI)
identification. Specifically, we devise a hybrid architecture by combining Deep
Auto-Encoder (DAE) and Hidden Markov Model (HMM). The roles of DAE
and HMM are, respectively, to discover hierarchical non-linear relations among
features, by which we transform the original features into a lower dimension
space, and to model dynamic characteristics inherent in rs-fMRI, i.e., internal
state changes. By building a generative model with HMMs for each class individ-
ually, we estimate the data likelihood of a test subject as MCI or normal healthy
control, based on which we identify the clinical label. In our experiments, we
achieved the maximal accuracy of 81.08% with the proposed method, outper-
forming state-of-the-art methods in the literature.

1 Introduction

Motivated by Biswal et al.’s study [1] that discovered different brain regions still ac-
tively interact while a subject lies at rest, i.e., not performing any cognitive task, resting-
state fMRI (rs-fMRI) has been widely used as one of the major tools for investigation
of brain networks. It provides insights to explore the brain’s functional organization and
examine the altered functional networks possibly due to brain disorders such as Mild
Cognitive Impairment (MCI). In this regard, functional connectivity analysis has played
core roles for brain disease diagnosis or prognosis [4,7,11,12, 15, 16].

While many existing methods for MCI diagnosis with rs-fMRI typically assumed sta-
tionarity on the functional networks over time [12, 16], recent studies in neuroscience
have shown that the functional organization of a brain is dynamic rather than static,
changing spontaneously over time [9]. Eavani et al. proposed to jointly model sparse
dictionary learning within a state-space model framework [2]. Leonardi et al. devised
a method to reveal hidden patterns of coherent functional connectivity dynamics based
on principal component analysis [11]. In this paper, we propose a novel method that
discovers non-linear relations among brain regions in a hierarchical manner and explic-
itly models the dynamic characteristics inherent in rs-fMRI. It is noteworthy that rather
than computing correlation matrices and extracting graph-theoretic features [14] such
as small-worldness and clustering coefficients as commonly performed in the literature,
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we directly model functional dynamics from regional mean time series of rs-fMRI. In
a testing phase, our model estimates the data likelihood of a test subject as MCI and
Normal healthy Control (NC), based on which we make a clinical decision. Although
different groups independently devised different types of state-space models to analyze
event-related fMRI data [3, 8, 10], due to their use of variables related to external stim-
ulus, i.e., event, those models cannot be applied to rs-fMRI based disease diagnosis.

2 Materials and Preprocessing

We used a cohort! of 37 subjects (12 MCI patients and 25 socio-demographically
matched NCs) [15]. The subjects were asked to keep their eyes open and to fixate
on a crosshair during scanning. The T1-weighted anatomical MRI images were also
acquired from the same scanner.

We discarded the first 10 fMRI volume images of each subject for magnetization
equilibrium. In order to remove extraneous sources of variation and to isolate the fMRI
signals, the remaining 140 fMRI volume images were processed by applying the pro-
cedures of slice timing, motion correction, and spatial normalization using SPMS. The
images were realigned with TR/2 as a reference time point to minimize the relative er-
rors across TRs. In the motion correction step, we realigned images to the first volume
across the subjects. We considered only the signals of gray matter for further process-
ing. The fMRI brain space was then parcellated into 116 Regions-Of-interest (ROIs)
based on the Automated Anatomical Labeling (AAL) template.

By following studies in the literature, we utilized the low frequency fluctuation fea-
tures in rs-fMRI with a frequency band of 0.025~0.1Hz. The representative mean time
series of each ROI was computed by averaging the intensity of all voxels in an ROI.
Lastly, we had a set of mean time series F € {F(") = [fl("), . ,fj(fl)] € RRXT}N
of the number N(=37) of subjects, the number R(=116) of ROIs, and the nurr;Ll;elr
T'(=140) of volumes.

3 Proposed Method

Unlike many existing methods that mostly assumed stationarity of a rs-fMRI time series
and explicitly constructed a functional connectivity map, in this paper, we propose a
novel probabilistic method that models functional dynamics inherent in rs-fMRI and
estimates the data likelihood of a test subject as NC and MCI to make a clinical decision.
Specifically, we devise a hybrid architecture by combining Deep Auto-Encoder (DAE)
and Hidden Markov Model (HMM) as illustrated in Fig. 1. The roles of DAE and HMM
are, respectively, to identify intrinsic networks in a hierarchical manner, from which
we extract low-dimensional feature representations, and to model dynamic functional
characteristics, i.e., internal functional state changes. It should be noted that HMMs are
trained for the classes of NC and MCI separately, while the DAE is shared between
classes, and thus it is guaranteed for features of the two classes to lie in the same space.

' 150 volumes, TR=2,000ms; TE=32ms; flip angle=77°; acquisition matrix size=64 x 64; field
of view=256 x 256mm?; 34 axial slices parallel to the anterior commissure-posterior commis-
sure plane; voxel size=4 x 4 x 4mm?®.
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Fig. 1. Illustration of (a) the proposed method for modelling dynamics in rs-fMRI, (b) graphical
representation of a deep auto-encoder used to find internal networks and to reduce dimensionality,
and (c) the state topology in HMM, where the hidden state variables [s1, .. ., st, ..., s7] change
over time.

3.1 Deep Auto-Encoder

Recently, Hjelm et al. [7] demonstrated that Restricted Boltzmann Machines (RBMs)
can be used to identify functional networks from fMRI and supported its use as a build-
ing block for deeper network models in neuroimaging research. Justified by their work,
we design a DAE, structured by stacking multiple RBMs, to discover an embedded
representation of functional patterns in a volume of rs-fMRI.

An RBM is a two-layer undirected graphical model with a number D of units in a
visible layer and a number F' of units in a hidden layer. It assumes symmetric inter-
layer connections, but no intra-layer connections. An RBM can be specified with a
parameter set O of inter-layer connections W = [W;;] € RP*F a visible layer’s bias
z = [z;] € RP, and a hidden layer’s bias q = [¢;] € RF, i.e., © = {W,z,q}, which
are learned by minimizing an energy function. In this work, we consider two different
energy functions, according to the value types of the visible units v, while using a
binary hidden units h. Specifically, when the visible layer has real continuous values,

we use a Gaussian-Bernoulli energy function defined as F (v, h; ©) = ZD: 1 (”7"2_02")2 -

2?:1 Zle i Wijhy — Zle g;h;, where o; denotes a standard deviation of the i-th
visible variable that should be learned from data. Meanwhile, for an RBM of binary

visible units, it is simplified to a Bernoulli-Bernoulli energy function as F (v, h; ©) =
D F D F
=it 2jmy viWiihy = 3200 zivi — 3050 ajhy.
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We construct a DAE by using RBMs as building blocks and taking the probability of
the lower layer as the inputs to the neighbouring upper layer. The conditional probabil-
ity of units in the [-th layer given the values of units in the (I — 1)-th layer is computed

as P (hWh(=1 00) = sigm (qj(-l) +3, Wi(jl)hl(-l_l)/ofl_l)) where sigm(-) de-

notes a sigmoid function, h(® = v, and 02(171) = 1 for a binary random vector h(=1),

Our DAE structurally consists of two parts, namely, ‘encoder’ and ‘decoder’ as shown
in Fig. 1(b), similar to Hinton and Salakhutdinov’s work [6]. Let L denote the number
of hidden layers in the encoder, thus the decoder also has L hidden layers. It should be
noted that, in our work, the units of bottom input layer, i.e., v in Fig. 1(b), is modelled
with a Gaussian function, while the units of hidden layers remain binary except for
those of the middle hidden layer h{), for which we use a linear continuous units with
Gaussian noises”.

To learn the parameter sets {1, ... @21}, we perform the following three steps
sequentially with a set of mean time series F' as training samples:

1. Pretrain the parameters {@(l)}lf;l of a deep encoder, i.e., network in a blue box in
Fig. 1(b), in a greedy layer-wise manner via contrastive divergence algorithm [5].
Note that the mean ROl intensities of the ¢-th fMRI volume of a subject n, i.e., ft("),
becomes the input to v.

2. Unfold the pretrained deep encoder to build a deeper network of encoder and de-
coder, which we call ‘DAE’, as shown in Fig. 1(b). For the decoder, i.e., network
in the green box in Fig. 1(b), we initially use the same weights of the encoder,
pretrained in the first step, i.e., (L% « @L—F+1) =1 L.

3. Fine-tune the parameter sets {O(1) ... O} of the whole deep neural network,
i.e., DAE, jointly by using a back-propagation algorithm [6] with the inputs v and
target outputs v’ kept identical.

Hereafter, we omit the subject index (™) for uncluttered. After completing our DAE
training, we use the lower half of our DAE, i.e., deep encoder, to transform the rs-
fMRI feature vectors F' = [fy,--- ,f;, .-, fr] into encoded representations X =
[x1," -+ ,X¢, -+ ,X7], which are further fed into HMMs to identify clinical status be-
tween NC and MCI. It is remarkable that by setting the number of hidden units in the
top hidden layer h(%) of a deep encoder smaller than the dimension of the input, i.e., R,
it naturally has the effect of reducing dimensionality of the input vector f; but still has
the rich information necessary to reproduce the input in a non-linear way.

However, note that a DAE is utilized to find the highly non-linear relations among
different regions at one time without considering the temporal information, which is
important to discriminate MCI from NC. We handle such temporal or dynamic infor-
mation with an HMM described below.

3.2 Hidden Markov Models

Based on recent studies in [4, 11], it is reasonable to assume that the groups of NC
and MCI exhibit different functional characteristics, depending on the unobservable

2 The rationale of using linear units with Gaussian noises is to obtain continuous values for
better representational power of the coded representations [6].
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functional states that spontaneously change over time. In this paper, we model such
dynamics inherent in rs-fMRI by the first-order Markov chain in HMMs [13] for NC
and MCI, separately.

An HMM is a doubly stochastic process of 1) hidden process {s1,- -+, s, , S}
that is latent but can be estimated by 2) observable process {01, - ,04, -+ ,07},
which produces a sequence of observations, where s; and o; denote random variables of
hidden state and observation at time ¢, respectively. A hidden process is represented by
two probability distributions, namely, state transition probability A = [aij]iJ: (1. K}
and initial state probability IT = [m;],_ (1, K} where K denotes the number of hidden
states, a;; = P (s = j|s;—1 =1), and m; = P (s; =1). Meanwhile, the observable
process is depicted by emission probability density function (pdf) B = {b;},_ (1. K}
where b; = p (o = x¢|s: = i). In this work, we use a mixture of Gaussians for an
emission pdf b;. Thus, an HMM is completely defined by the parameter set of A\ =
(A, B, IT). For simplicity, we denote, hereafter, HMMs for NC and MCI with Axc and
AmMci, respectively.

Note that a functional pattern of rs-fMRI at a time-point belongs to one of a finite
number K of states, which is represented by an observation probability B. Meanwhile,
the changes of the unobservable states in rs-fMRI are denoted by the state transition
probability A along with the initial state probability /7. By training HMMs with a
Baum-Welch algorithm [13] for NC and MCI individually, they can be used as a way
to represent the functional dynamic characteristics of the respective groups in a prob-
abilistic manner. In other words, given a sequence of functional features, i.e., encoded
representations X =[xy, ,X¢, - ,Xr| in our work, we infer that how likely the
sequence of functional features X is generated from HMMs of NC (Anc) and MCI
(Amacr)s respectively, as follows:

p(X\) =D p(XIS,A) P(S|Ae) )
S

where ¢ € {NC,MCI}, S = [s1,-+* , 8¢, - ,s7),and s € {1,..., K}. Eq. (1) can be
efficiently computed by the forward algorithm [13]. We identify the clinical label of the
rs-fMRI of a test subject to the class of the higher data likelihood.

4 Experiments and Discussion

4.1 Experimental Settings

With regard to the structure of our DAE, we considered four hidden layers, i.e., L =
4, to encode the input functional features by setting the number of hidden units as
200(h(M)-100(h®)-50(h())-2(h(¥). Thus, the decoder was structured as 50(h(®))-
100(h(®)-200(h(™)3. A Gaussian-Bernoulli energy function was used for the input
visible units, i.e., v in Fig. 1, while a Bernoulli-Bernoulli energy function was exploited
for the hidden layers by taking the outputs of the lower layer as inputs. But the units
of the top hidden layer in the encoder, i.e., h® in Fig. 1, had stochastic real-values,
allowing the low-dimensional codes to distribute in a continuous feature space [6].

3 Therefore, the complete structure of our DAE was 116-200-100-50-2-50-100-200-116.
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For the HMMs of NC and MCI classes, we varied the number of hidden states K
from 2 to 6 with different number of Gaussians for emission pdfs, varying between 1
and 4. Due to a small data set, a circular state topology in Fig. 1(c) was used for both
classes. In order to learn the parameters (A, B, IT), we used a BNT toolbox*.

To validate the effectiveness of the proposed method, we compared with four compet-
ing methods in the literature, namely, group Independent Component Analysis
(gICA) [12], group Sparse Representation (gSR) [16], Principal Component of Func-
tional Connectivity (PCFC) [11], and a joint framework of HMM and Sparse Dictio-
nary Learning (HMM+SDL) [2]. We also compared with a method of combining kernel
Principal Component Analysis (kPCA) with HMM to validate the effectiveness of DAE-
based dimension reduction.

— gICA: We applied a fastICA algorithm using a GIFT toolbox>. The number of
independent components was set to 30 by following Li et al.’s work [12]. After
performing group ICA, for each subject, we computed the correlation coefficients
of every pair of time courses and used them as features.

— gSR: For the regularization control parameter, we applied a grid search technique
in the space of {0.01,0.05,0.1,0.15,0.2,0.5}. We used clustering coefficients ob-
tained from a functional connectivity map as features.

— PCFC®: We used a sliding window-based Functional Network (FN) modeling with
a window size of 30 time points and a stride of 5 time points between consecutive
windows. The estimated FNs were then projected into eigen-networks, the number
of which was determined based on eigenvalues such that the transformed features
hold more than 85% of the total variance. The features from each FN were then
concatenated into a long vector.

— HMM+SDL’: We set the weighting parameters to the priors of the covariance ma-
trices to 1 by following the original work.

— kPCA+HMM: We used a Gaussian kernel. The dimensionality of a new space was
determined based on the eigenvalues so as to reflect more than 85% of the total
variance.

For the competing methods of gICA, gSR, and PCFC, we further applied feature selec-
tion based on the paired ¢-test and used a linear support vector machine as classifier. For
both HMM+SBL and kPCA+HMM, the number of hidden states was varied between 2
and 6 with a circular topology as the proposed method. To evaluate the performance, we
conducted a leave-one-subject-out cross-valuation technique due to small sample sizes.

4.2 Performance Comparison

We considered five different metrics to compare performance among the competing
methods and showed the results in Table 1. In a nutshell, the proposed method achieved
the best accuracy of 81.08% with a sensitivity of 85.71% and a specificity of 80%.

4 Available at ‘https://github.com/bayesnet/bnt’

5 Available at ‘http://www.nitrc.org/projects/gift’

® The codes are available at "http://miplab.epfl.ch/leonardi/’
7 The source codes were provided by the author of the original paper [2].
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Table 1. A summary of the performances of the competing methods. The boldface denotes the
best performance in each metric. (PPV: Positive Predictive Value; NPV: Negative Predictive
Value)

Methods Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)
gICA [12] 72.97 62.51 88.00 41.67 75.85
SR [16] 75.68 80.00 75.00 33.33 96.00
PCFC [11] 75.68 71.43 92.00 41.67 76.67
HMM+SDL [2] 70.27 100.0 69.44 8.33 100.0
kPCA+HMM 70.27 60.00 92.00 25.00 71.88
Proposed method 81.08 85.71 80.00 50.00 96.00

Note that compared to HMM+SDL and kPCA+HMM, our method enhanced the clas-
sification accuracy by 10.81%. From a clinical perspective, since it is important to con-
sider the prevalence of the disease, we also presented Positive Predictive Values (PPVs)
and Negative Predictive Values (NPVs). Statistically, PPV and NPV measure, respec-
tively, the proportion of subjects with MCI who are correctly diagnosed as patients
and the proportion of subjects without MCI who are correctly diagnosed as cognitive
normal. Our method achieved the PPV of 50% and the NPV of 96%, outperforming
gICA by 8.33% (PPV) and 20.15% (NPV), gSR by 16.67% (PPV), PCFC by 8.33%
(PPV) and 19.33% (NPV), and kPCA+HMM by 25% (PPV) and 24.12% (NPV). While
HMM+SDL achieved a high NPV of 100%, its PPV was significantly lower than that
of our method.

5 Conclusion

In this paper, we proposed a novel method to model functional dynamics in rs-fMRI for
MCI identification. Specifically, we designed a deep network, by which we could dis-
cover the non-linear relationships among ROIs in a hierarchical manner and effectively
reduce feature dimensionality. Meanwhile, by building generative models with HMMs
for each class individually, we could estimate the feature likelihood of a test subject
as MCI and NC, based on which we identified the clinical label. In our experiments,
we achieved the highest performance with the proposed method, outperforming state-
of-the-art methods in the literature. It is noteworthy that although it is not performed
in this paper because of the limited space, by decoding the state sequence for the rs-
fMRI data of a testing subject via Viterbi algorithm [13], we can construct functional
connectivities, one for each hidden state, based on which further neurophysiological
investigation can be conducted.
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[BO101-15-0307, Basic Software Research in Human-level Lifelong Machine Learning
(Machine Learning Center)].
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