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Abstract. In this paper, we explore the use of deep convolution and
deep belief networks as potential functions in structured prediction mod-
els for the segmentation of breast masses from mammograms. In partic-
ular, the structured prediction models are estimated with loss minimiza-
tion parameter learning algorithms, representing: a) conditional random
field (CRF), and b) structured support vector machine (SSVM). For the
CRF model, we use the inference algorithm based on tree re-weighted be-
lief propagation with truncated fitting training, and for the SSVM model
the inference is based on graph cuts with maximum margin training. We
show empirically the importance of deep learning methods in producing
state-of-the-art results for both structured prediction models. In addi-
tion, we show that our methods produce results that can be considered
the best results to date on DDSM-BCRP and INbreast databases. Fi-
nally, we show that the CRF model is significantly faster than SSVM,
both in terms of inference and training time, which suggests an advantage
of CRF models when combined with deep learning potential functions.

Keywords: Deep learning, Structured output learning, Mammogram
segmentation.

1 Introduction

Screening mammogram is one of the most effective imaging modalitites to detect
breast cancer, and it is used for the segmentation of breast masses (among other
tasks), which is a challenging task due to the variable shape/size of masses [1]
and their low signal-to-noise ratio (see Fig. 1). In clinical practice, lesion seg-
mentation is usually a manual process, and so its efficacy is associated with the
radiologist’s expertise and workload [2], where a clear trade-off can be noted
between sensitivity (Se) and specificity (Sp) in manual interpretation, with a
median Se of 83.8% and Sp of 91.1% [2].

The main goal of this paper is to introduce and evaluate a new methodology
for segmenting masses from mammograms based on structured prediction models
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Fig. 1. Structured prediction model with a list of potential functions that include two
deep learning methods and two structured prediction models

that use deep learning as their potential functions (Fig. 1). Our main contribu-
tion is the introduction of powerful deep learning appearance models, based on
CNN [3,4] and DBN [5], into the following recently proposed structured output
models: a) a conditional random field (CRF), and b) structured support vector
machines (SSVM). The CRF model performs inference with tree re-weighted
belief propagation [6] and learning with truncated fitting [7], while the SSVM
model uses graph cuts [8] for inference and cutting plane [9,10] for training. We
show that both structured output models produce comparable segmentation re-
sults, which are marginally superior to other recently proposed methods in the
field in public datasets, and we also show that the use of both deep learning
models is essential to reach such accurate results. Finally, we also demonstrate
that the CRF model is significantly faster in terms of training and inference
time, which suggests its use as the most efficient method in the field.

2 Methodology

Let us assume that the model parameter is denoted by w, the image of the
region of interest (ROI) containing the mass is denoted by x : Ω → R (Ω ∈ R

2

denotes the image lattice of size M×M) , the labeling is represented by y : Ω →
{−1,+1}, the training set is referred to as {(xn,yn)}Nn=1, and the graph that
links the image and labels is defined with V nodes and E edges between nodes.
The learning process is based on the minimization of the empirical loss [11]:

w∗ = argmin
w

1

N

N∑

n=1

�(xn,yn,w), (1)

where �(x,y,w) is a continuous and convex loss function that defines the struc-
tured model. We explore CRF and SSVM formulations for solving Eq.(1), de-
scribed in Sections 2.1 and 2.2. In particular, CRF uses the loss

�(xn,yn,w) = A(xn,w)− E(yn,xn;w), (2)
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where A(x;w) = log
∑

y∈{−1,+1}M×M exp {E(y,x;w)} is the log-partition func-
tion that ensures normalization, and

E(y,x;w) =
K∑

k=1

∑

i∈V
w1,kφ

(1,k)(y(i),x) +
L∑

l=1

∑

i,j∈E
w2,lφ

(2,l)(y(i),y(j),x), (3)

with φ(1,k)(., .) representing one of the K potential functions between label (seg-
mentation plane in Fig. 1) and pixel (image plane in Fig. 1) nodes, φ(2,l)(., ., .)
denoting one of the L potential functions on the edges between label nodes, and
w = [w1,1, ..., w1,K , w2,1, ..., w2,L]

� ∈ R
K+L with y(i) being the ith component

of vector y. Alternatively, the SSVM minimizes the loss function

�(xn,yn,w) = max
y∈Y

(Δ(yn,y) + E(y,xn;w)− E(yn,xn;w)) , (4)

where Δ(yn,y) returns the dissimilarity between yn and y, satistfying the con-
ditions Δ(yn,y) ≥ 0 and Δ(yn,yn) = 0.

2.1 Conditional Random Field (CRF)

The solution of Eq.(1) using the CRF loss function in Eq.(2) involves the com-
putation of the log-partition function A(x;w). Tree re-weighted (TRW) belief
propagation provides an upper bound to this log-partition function [6]:

A(x;w) = max
µ∈M

wTμ+H(μ), (5)

where M = {μ′ : ∃w, μ′ = μ} denotes the marginal polytope, μ =∑
y∈{−1,+1}M×M P (y|x,w)f(y), with f(y) denoting the set of indicator func-

tions of possible configurations of each clique and variable in the graph [12]
(as denoted in Eq.(3), P (y|x,w) = exp {E(y,x;w) −A(x;w)} indicating the
conditional probability of the annotation y given the image x and parameters
w (where we assume that this conditional probability function belongs to the
exponential family), and H(μ) = −∑

y∈{−1,+1}M×M P (y|x;w) log P (y|x,w) is
the entropy. Note that for general graphs with cycles, the marginal polytope M
is difficult to characterize and the entropy H(μ) is not tractable [7]. TRW solves
these issues by first replacing the marginal polytope with a superset L ⊃ M that
only accounts for the local constraints of the marginals, and then approximating
the entropy calculation with an upper bound [7]. The learning of w in (2) is
achieved via gradient descent in a process called truncated fitting [7], and the
inference to find the label y∗ for an image x∗ is based on TRW.

2.2 Structured Support Vector Machine (SSVM)

The SSVM optimization to estimatew consists of a regularized loss minimization
problem formulated as w∗ = minw ‖w‖2 + λ

∑
n �(xn,yn,w), with �(.) defined

in Eq.(4), where the introduction of slack variable leads to [9,10]:
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(a) CNN model (b) DBN model

Fig. 2. (a) CNN and (b) DBN models with the given mass patch as input

minimizew
1
2‖w‖2 + C

N

∑
n ξn

subject to E(yn,xn;w)− E(ŷn,xn;w) ≥ Δ(yn, ŷn)− ξn, ∀ŷn 	= yn

ξn ≥ 0.
(6)

In order to keep the number of constraints manageable in Eq.(6), we use the
cutting plane for solving the maximization problem:

ŷn = argmax
y

Δ(yn,y) + E(y,xn;w)− E(yn,xn;w)− ξn, (7)

which finds the most violated constraint for the nth training sample given the
parameter w,

where Δ(.) denotes the Hamming distance [13]. The label inference for a
test mammogram x, given the learned parameters w from Eq.(6), is based on
y∗ = argmaxy E(y,x;w), which can be optimally solved with graph cuts [8].

2.3 Potential Functions

The model in Eq.(3) can incorporate a large number of unary and binary po-
tential functions. We propose the use of CNN and DBN in addition to the more
common Gaussian mixture model (GMM) and shape prior between the nodes of
image and segmentation planes (Fig. 1).

The CNN potential function is defined by [4] (Fig. 2-(a)):

φ(1,1)(y(i),x) = − logPc(y(i)|x, θc), (8)

where Pc(y(i)|x, θ) denotes the probability of labeling the pixel i ∈ M × M
with mass or background (given the input image x for the ROI of the mass)
and θc denotes the CNN parameters. A CNN model consists of multiple pro-
cessing stages, each containing a convolutional layer (where the learned filters
are applied to the image) and a non-linear subsampling layer that reduces the
input image size for the next stage (Fig. 2), and a final stage consisting of few
fully connected layers. The convolution stages compute the output at location
j from input at i using the learned filter (at qth stage) kq and bias bq with
x(j)q = σ(

∑
i∈Mj

x(i)q−1 ∗ kq
ij + bqj), where σ(.) is the logistic function and
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Mj is the input region location; while the non-linear subsampling layers calcu-

late subsampled data with x(j)q =↓ (xq−1
j ), where ↓ (.) denotes a subsampling

function that pools (using either the mean or max functions) the values from a
region from the input data. The final stage consists of the convolution equation
above using a separate filter for each output location, using the whole input from
the previous layer. Inference is simply the application of this process in a feed-
forward manner, and training is carried out with backpropagation to minimize
the segmentation error over the training set [3,4].

The DBN potential function is defined as [5] (Fig. 2-(b)):

φ(1,2)(y(i),x) = − logPd(y(i)|xS(i), θd,S), (9)

where xS(i) is a patch extracted around image lattice position i of size S × S
pixels (S < M , with M being the original patch size), θd,S represents the
DBN parameters. The inference is based on the mean field approximation of
the values in all DBN layers, followed by the computation of free energy on the
top layer [5]. The learning of the DBN parameters θd,S in Eq.(9) is achieved
with an iterative layer by layer training of auto-encoders using contrastive di-
vergence, followed by a discriminative learning using backpropagation [5]. In
addition to the CNN and DBN patch-based potential functions, we also use a
pixel-wise GMM model [13] defined by φ(1,3)(y(i),x) = − logPg(y(i)|x(i), θg),
where P (.) is computed from the GMM class dependent probability model,
learned from the training set; and the shape prior model [13] represented by
φ(1,4)(y(i),x) = − logP (y(i)|θp), which computes the probability of belong-
ing to the mass based only on the patch position (this prior is taken from the
training annotations). Finally, the pairwise potential functions between la-
bel nodes in Eq.(3) encode label and contrast dependent labelling homogeneity
as φ(2,1)(y(i),y(j),x) and φ(2,2)(y(i),y(j),x) [11].

3 Experiments

3.1 Materials and Methods

The evaluation of our methodology is performed on two publicly available
datasets: INbreast [14] and DDSM-BCRP [15].The INbreast dataset comprises
a set of 56 cases containing 116 accurately annotated masses. We divide this
dataset into mutually exclusive train and test sets, each containing 58 images.
The DDSM-BCRP [15] dataset consists of 39 cases (77 annotated images) for
training and 40 cases (81 annotated images) for testing. We used Dice index to
assess the segmentation accuracy. Efficiency is estimated with the training and
testing time of the segmentation algorithm, obtained on a standard computer
(Intel(R) Core(TM) i5-2500k 3.30GHz CPU with 8GB RAM). The ROI to be
segmented is obtained by a manual input of location and scale, similarly to other
works in the field [13,16,17]. It is important to realize that the segmentation of
masses from these manually labeled regions is an important step in mass clas-
sification, so it is still an open problem [18] because of the challenges involved,
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(a) CRF model in Eq.(2) (b) SSVM model in Eq.(4)

Fig. 3. Dice index over the test set of INbreast of the CRF (a) and SSVM (b) models,
using various subsets of the potential functions

such as spicules segmentation, low signal-to-noise ratio, and lack of robust shape
and appearance models. This ROI forms a rectangular bounding box that is re-
sized to 40 x 40 pixels using bicubic interpolation and pre-processed with Ball
and Bruce technique [1]. The model selection for the CNN/DBN structures is
performed via cross validation on the training set, and for the CNN, the net
structure of the first and second stages have filters of size 5 × 5 and a subsam-
pling based on max pooling. The final stage of the CNN has a fully connected
layer with 588 nodes and an output layer with 40× 40 nodes (i.e., same size of
the input layer). We use two DBN models, like the one shown in Fig. 2(b), where
each of the three layers contains 50 nodes and input patches of sizes 3 × 3 and
5× 5 (i.e., S = 3, 5, respectively).

3.2 Results

Fig. 3 shows the importance of adding each potential function in the model
Eq.(3) to improve the Dice index using both CRF and SSVM. We show these
results using several subsets of the potential functions introduced in Sec. 2.3
(i.e., the potentials φ(1,k) for k = {1, 2, 3, 4} with 3 × 3 and 5 × 5 denoting the
image patch size used by the DBN). The Dice index of our methodology using
all potential functions on the train set of INbreast is similar to test set at 0.93
using CRF and 0.95 using SSVM. It is also worth mentioning that the results
on the INbreast test set when we do not use preprocessing [1] falls to 0.85 using
all potential functions for both models (similar results are obtained on DDSM).

Tab. 1 shows the Dice index and average training (for the whole training
set) and testing times (per image) of our approach with all potential functions
(CNN+DBN3x3 + DBN5x5 + GMM + Prior + Pairwise) using the CRF and
SSVM models on DDSM-BCRP and INbreast test sets.
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Table 1. Comparison of the proposed and state-of-the-art methods on test sets

Method #Images Dataset Dice Index Test Run.Time Train Run. time
Proposed CRF model 116 INbreast 0.90(0.06) 0.1s 360s
Proposed SSVM model 116 INbreast 0.90(0.06) 0.8s 1800s

Cardoso et al. [16] 116 INbreast 0.88 ? ?
Dhungel et al. [13] 116 INbreast 0.88 0.8s ?

Proposed CRF model 158 DDSM-BCRP 0.90(0.06) 0.1s 383s
Proposed SSVM model 158 DDSM-BCRP 0.90(0.06) 0.8s 2140s

Dhungel et al. [13] 158 DDSM-BCRP 0.87 0.8s ?
Beller et al. [17] 158 DDSM-BCRP 0.70 ? ?

Fig. 4. Segmentation results by the CRF model on INbreast where the blue denotes
the manual annotation and red denotes automatic segmentation

4 Discussion and Conclusions

From the results in Fig. 3, we notice that the use of deep learning based poten-
tial functions provide a significant improvement when compared with the shape
prior alone. Also, the combination of GMM and deep learning models improve
both the CRF and SSVM models. Another important observation is the fact that
the image preprocessing [1] is important empirically. The comparison with other
methods in Table 1 shows that our methodology produces the best results(0.90
v 0.88 and 0.90 v 0.87) for both databases. Our CRF and SSVM models demon-
strate equivalent results (0.90) on both data sets. However, assuming a stan-
dard deviation of 0.06, a t-test indicates that our methods perform significantly
(p<0.01) better than the previous methods [13,16,17]. The comparison in terms
of train and test times shows a significant advantage to the CRF model over
SSVM model. There are some important notes to make about the training and
testing processes in these results: 1) we tried different CNN structures and the
combination of more than one CNN model as additional potential functions, but
the single CNN model detailed in Sec. 3.1 produced the best cross validation
results; 2) for the DBN models, we tried different input sizes (3 × 3 and 7 × 7
patches), but the combinations of the ones detailed in Sec. 3.1 provided the best
cross-validation results; and 3) both CRF and SSVM models estimate a much
larger weight to the CNN potential function compared to others in Sec. 2.3, in-
dicating that this is the most important potential function, but the CNN model
alone overfits the training data (with a Dice of 0.87 on test and 0.95 on train-
ing), so the structural prediction models (CRF and SSVM) serve as a regularizer
to the CNN model. Finally, from the visual results in Fig. 4, our CRF model
produces quite accurate segmentation results even in the presence of moderately
sharp corners and cusps.
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