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Abstract. We present a novel approach to investigate the properties of
diffusion weighted magnetic resonance imaging (dMRI). The process of
restricted diffusion of spin particles in the presence of a magnetic field is
simulated by an iterated complex matrix multiplication approach. The
approach is based on first principles and provides a flexible, transparent
and fast simulation tool. The experiments carried out reveals funda-
mental features of the dMRI process. A particularly interesting obser-
vation is that the induced speed of the local spatial spin angle rate of
change is highly shift variant. Hence, the encoding basis functions are
not the complex exponentials associated with the Fourier transform as
commonly assumed. Thus, reconstructing the signal using the inverse
Fourier transform leads to large compartment estimation errors, which
is demonstrated in a number of 1D and 2D examples. In accordance
with previous investigations the compartment size is under-estimated.
More interestingly, however, we show that the estimated shape is likely
to be far from the true shape using state of the art clinical MRI scanners.

1 Introduction

The field of diffusion weighted magnetic resonance imaging (dMRI) has devel-
oped rapidly over recent years and continues to attract a lot of attention. The
dMRI observables can be taken as rough measures of tissue micro-structure, cell
shape and general directions of the nerve fiber bundles. To move towards more
precise measurements require a thorough understanding the process of restricted
diffusion in the presence of a magnetic field gradient. To be able to correctly in-
terpret the measurements attained by any given diffusion MR scan is of crucial
importance. The commonly used q-space concept is equivalent to assuming a
constant rate of spin angle phase change, i.e. constant local spatial frequency,
across the compartment. A number of results exist showing that this concept
holds an oversimplification of the process [1,2,3,4,5,6]. We present a novel simu-
lation approach enabling a local spatial frequency analysis of the process which
demonstrates that this is indeed the case. This fact and the intractability of
analytic solutions have prompted a number of researcher to develop dMRI simu-
lator tools [7,8,9,10,11]. Many simulators, however, invoke a boundary condition
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Fig. 1. Left - The process of diffusion can be formulated as an iterative matrix multi-
plication. Right - Color coded simulation matrices: A pure diffusion matrix is shown
to the left. The matrix to the right shows how the strength of the local magnetic field
increments the phase of the proton spins at each location. Zero phase is coded green,
a phase of π is coded red. Blue and yellow codes for π/2 and −π/2 respectively. The
same color code is used in figures 2 and 4.

motivated, demodulation type, variable change, which is directly linked to the
concept of q-space. Our approach is free from this type of a-priori modeling.

We believe the main advantages of our iterated complex matrix approach to
be: First principles – Directly models local diffusion and spin phase change at
all points, no additional boundary conditions needed. Flexibility – Any com-
partment shape can be easily specified as a function on a discrete grid and the
gradient can be individually specified for each time step. Transparency – The
development of the local magnetization can be monitored at all points and all
times. Speed – A matlab simulation providing 10.000 measurements can typi-
cally be performed in less than a minute on a modern laptop computer.

We have taken advantage of features listed above and continue to discuss some
important consequences of the analysis carried out.

2 Theory and Method

Our method simulates the process of restricted diffusion of spin particles in the
presence of a magnetic field by iterated matrix multiplications. To design the
simulation matrix and carry out the experiments we used a nearest neighbor
approach. The assumption made is that a quantized space-time can provide a
good approximation of the continuous process. As illustrated in figure 1, the
quantized diffusion process can be expressed as:

m(tk+1) = Am(tk). (1)

Here m is a complex vector of length N holding the magnetization vectors for
each unit. The simulation matrix, A, is an N ×N complex matrix and k is an
integer indicating the diffusion time step number. This time step can be large,
but initially A is constructed for small time steps (see section 2.1) where A then
factors into two matrices: One matrix, D simulating the diffusion process and
one matrix, G, simulating the effect on the particle spin angles due to the applied
magnetic field. Symmetrizing the process yields:

A = G1/2DG1/2 (2)
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The diffusion matrix, D, is a real-valued matrix simulating only nearest neigh-
bour interactions thus making it tri-diagonal in the 1-dimensional case. The
construction is done in two steps: First the off-diagonal terms are set to specify
the amount of particles that flow from the center unit to the neighbouring units.
Conservation of mass requires that the columns of the resulting matrix are nor-
malized to unity, i.e. D is a left stochastic matrix. This implies that the columns
will hold the probabilities for the new locations of the center unit particles after
one time step. The rows specify the relative amount of particles in the adjacent
units that move to the center unit. Thus, in general, D will not be symmetric.
The spin matrix, G, specifying the spin phase increment occurring during one
time step, is a complex diagonal matrix: G = diag[ exp( (iγgxΔt) ], where γ is
the gyromagnetic ratio, g is the applied magnetic gradient strength and x is the
spatial position of the corresponding unit.

2.1 The Short Time Limit, Δt → 0

Letting the time step become infinitely small by introducing a variable n → ∞
we can express A for finite times as:

A = A
n

0 = (G
1/2
0 D0 G

1/2
0 )n where D0 = I +B Δt

n

and G0 = I + i γ g diag [x1, ..., xn]
︸ ︷︷ ︸

C

Δt
n

(3)

Here B is tri-diagonal, and C is diagonal. Note that the diffusion mass conserva-
tion requirement of D implies that the column sums of B equal zero. Examining
A0, which depends on n, leads to:

A0 = G
1/2
0 D0 G

1/2
0 ≈ (I + iCΔt

2n )(I + BΔt
n )(I + iCΔt

2n )

≈ I + (B + iC)Δt
n

(4)

In the limit Δt → 0 equation 4 can analytically be shown to be equivalent to
the left equation below. Further, by combining equations 1 and 4 in the limit
Δt → 0, the process can be expressed as the differential equation to the right
below.

A = e(B+iC)Δt ←→ ∂m

∂t
= (B + iC)m (5)

This highlights the fundamental structure of the process of diffusing spin parti-
cles in the presence of a magnetic field gradient. The differential equation above
can, in fact, be seen as equivalent to the Bloch-Torre equation, [1], on a discrete
grid, which is an indication of the soundness of our matrix simulation approach.

2.2 From Compartment Shape to Simulation Matrix

A major advantage over traditional simulation approaches is that our simulation
matrix approach allows compartments of any shape to be specified. The com-
partment is specified as a function on a grid in any dimension and the matrix
components can then be directly found. Work aiming in a similar direction can
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Fig. 2. Left - Positions in the complex plane of 60 magnetization vectors across the
compartment for one gradient strength and δ = 0.05 Δ. Colors indicate phase angle.
The real part is plotted on the back plane and the imaginary part on the bottom plane.
The same color code as in figure 1 is used for both plots. Right - Magnetization across
the compartment (positions 1 to 60) for δ from 10−4 Δ to 1.0 Δ (log10 scale). Z-axis
shows magnitude and color shows phase. The black line marks δ = 0.05 Δ.

be found in [7,10,11]. In the 1D experiments presented here the compartment
was quantized to consist of 60 adjacent units. The compartment sizes were found
by equidistant sampling of a specified continuous compartment function. The in-
terface sizes were found as the harmonic mean of the flanking compartment sizes.
The off diagonal terms in D were set to be proportional to the interface size.

The principles behind the simulation matrix design are readily generalized to
higher dimensions. In 2 dimensions we use 4-connectivity and both the diffusion
matrix, D, and the spin matrix, G, become block matrices. As before D hold
the probabilities of a particle moving from the center unit to an adjacent unit
but is now a block tri-diagonal matrix. Further, the gradient, g, and the spatial
position, x, become vectors, g and x. Thus, in 2D, the components of the spin
matrix will be given by:

G = blockdiag
[

ei γ gTxΔt
]

(6)

3 Results

The results presented below are from simulations in one and two dimension. The
method is, however, equally applicable in three (and higher) dimensions. Results
on local frequency are for visualization purposes shown using 1-dimensional com-
partments. The simulations studying compartment estimation are carried out for
2-dimensional compartments.

Simulated Sequences – The sequences simulated in the experiments were the
standard single PFG sequences with encoding parameters δ and Δ and gradient
strength g. The length of δ was varied logarithmically from 10−4Δ to 1 Δ,
corresponding to the number of time steps, K, ranging from 50 to 500 000. The
simulation time for 2000 instances (40 δ, 50 g) was 13 seconds running matlab
on a mac book pro.
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Fig. 3. Left - Color and height shows the local spatial frequency of the magnetization
for a given gradient strength. x- and y-axis same as in figure 2 right. The black line
marks δ = 0.05 Δ. Right - Color and height shows the local frequency for different
positions across the compartment for δ = 0.05 Δ. Spatial position (1-60) is indicated
on the x-axis. The y- axis indicates the applied gradient strength. The black lines mark
the δ and g used in figure 2.

Local Spatial Frequency – To analyze the diffusion process, the local spatial
frequency of the magnetization ω(x) was computed. The standard definition of
local frequency, i.e. the rate of change of the magnetization spin angle, is:

ω(x) =
∂ arg(m)

∂(x)
(7)

Figure 2 (left) visualizes compartment magnetization for g corresponding to
2.60 cycles across the compartment using the short pulse approximation (SPA).
SPA predicts a complex exponential magnetization across the compartment, i.e.
constant local spatial frequency. Even though δ is very short the simulated mag-
netization clearly deviates from the perfect spiral of a complex exponential and
the total number of cycles is only 2.20. Figure 2 (right) shows the compartment
magnetization when varying δ. The well known edge effects [2,3,4,5] are notice-
able already for δ = 10−3 Δ and increase to be extreme roughly at δ = 0.1 Δ.
For longer δ the averaging effect of the diffusion effectively prevents a build up of
a strong local magnetization. The black line indicates the location of δ = 0.05 Δ,
the value used to render the left plot.

Figure 3 (left) shows the local frequency dependency on δ for the same g as in
figure 2. For lengths up to δ = 10−3 Δ the SPA is valid and the local frequency
constant across the compartment. For longer δ the local frequency consistently
decreases as the position approaches the compartment edges. The distance from
the edge at which the decrease begins increases with increasing δ and at δ = 0.1Δ
this edge effect reaches all the way to the center of the compartment. For longer
δ the local frequency is everywhere much lower than predicted by the SPA.
Figure 3 (right) shows the local frequency dependence on g for δ = 0.05 Δ. For
reference the transparent plane shows the SPA prediction. As g increases the
local frequency drop gets more pronounced and the effect spreads toward the
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Fig. 4. A spiral compartment
demonstrating the effect of ge-
ometry on local magnetization
for one measurement point in q-
space. The magnetization mag-
nitude is given by the height and
color indicates phase (the same
color code as in figures 1 and 2).
The ideal case is shown on top,
the lower plot shows a realistic
case.

Spatial position

Fig. 5. Reconstructions in
1-dimension using the ‘short-
long’ single PFG sequence:
The different curves represent
reconstructions when δ is varied
logarithmically over a range
of 105 keeping the product gδ
constant.

compartment center. At a g corresponding to 7
cycles across the compartment the edge effect
reaches all the way to the center. The black lines
in figure 3 indicate the location of δ = 0.05 Δ,
thus showing the same function but in different
contexts.

Simplistically summarized – High b-values do
not necessarily lead to high q-values.

Magnetization and Geometry – To il-
lustrate the generality of our approach and
the interplay between geometry and local
magnetization during a dMRI scan a more
elaborate 2-dimensional compartment was de-
signed. Figure 4 shows the local magnetiza-
tion for a spiral compartment at one mea-
surement point in q-space. The lower plot
clearly demonstrates that the encoding ba-
sis functions are far from the top plot com-
plex exponentials commonly assumed. It is
clear that the basis created will be depen-
dent on the geometry of each individual
compartment present in one voxel. Thus, to
quote a giant in the field, ‘...the concept of
q-space no longer has any meaning...’ [1] p356.

3.1 Compartment Estimation

In this section we present results showing how a
Fourier transform based estimation of the spatial
compartment shape will appear for in a number
of different situations. The results presented cor-
respond to the use of a sPFG sequence consist-
ing of a first gradient, g, applied during a time δ
followed by a very weak gradient, gl, of the op-
posite sign during a long time, δl, where glδl =
−gδ. This type of ‘short-long’ sPFG pulses will
lead to that the measurement attained give the
Fourier transform of the compartment [6]. Hence
deviations can be studied by making ‘reconstruc-
tions’ using an inverse Fourier transform.

Compartment Estimation in one Dimen-
sion – To show the general features of the dMRI
measurement protocol 1D simulations followed by an inverse Fourier transform
were performed. Figure 5 shows the reults when varying δ logarithmically over
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Fig. 6. 2D reconstruction results for two different compartment sizes and three different
scanner settings. Top row compartment size = 14× 40μm. Bottom row compartment
size = 7× 20μm. Parameters from left to wright: (1) δMax = 80mS, g = 150mT/m,
(2) δMax = 8mS, g = 1500mT/m, (3) δMax = 0.8mS, g = 15T/m.

a range of 105 keeping the q-values, i.e the products gδ, identical. The results
are consistent with the findings studying local frequency and show that very
short delta, δ = 10−3Δ or shorter, are needed for a good reconstruction. At
δ = 5 10−3 Δ (the black curve) the edge effect is clearly visible and at δ = 0.3 Δ
(the cyan curve) the reconstruction distortion is severe.

Compartment Estimation in Two Dimensions – Results from different 2D
reconstructions of two compartments having the same shape, a super-quadric
with exponent 1.5, but different sizes are shown in figure 6. The leftmost plots
show results using parameters corresponding to a good MR scanner. The mid-
dle and right plots show the results if 10 (middle) or 100 (right) times higher
gradients were available. It is clear that the distorting ‘edge effects’ seen in 1D
become much more complex in 2D and here also radically changes the apparent
shape of the compartment. Only at the unrealistic g-value of 15T/m are the
compartment reconstructions good replicas of the true shapes. Interestingly, the
distortions clearly increases compartment anisotropy.

4 Conclusion and Discussion

We have presented a novel simulation tool to study diffusion weighted magnetic
resonance imaging (dMRI). The flexibility, transparency and speed of our it-
erated matrix approach has allowed us to investigate a number of important
properties of dMRI. We have shown that there is a significant decrease of the
local spatial frequency of the magnetization at the compartment at clinical val-
ues of δ and that this will have a major impact on compartment size and shape
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estimates using traditional modeling. However, diffusion MRI scans will continue
to hold a lot of information and following the leads presented above we feel con-
fident that better models for extracting micro structure properties will be put
forward. The power of these models can then be tested using simulations and,
when found to be improvements on state of the art, find their way into clinical
practise.
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