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Abstract. We propose a method to identify preterm infants at highest
risk of adverse motor function (identified at 18 months of age) using con-
nectome features from a diffusion tensor image (DTI) acquired shortly
after birth. For each full-brain DTI, a connectome is constructed and net-
work features are extracted. After further reducing the dimensionality of
the feature vector via PCA, SVM is used to discriminate between normal
and abnormal motor scores. We further introduce a novel method to pro-
duce realistic synthetic training data in order to reduce the effects of class
imbalance. Our method is tested on a dataset of 168 DTIs of 115 very
preterm infants, scanned between 27 and 45 weeks post-menstrual age.
We show that using our synthesized training data can consistently im-
prove classification accuracy while setting a baseline for this challenging
prediction problem. This work presents the first image analysis approach
to predicting impairment in motor function in preterm-born infants.

1 Introduction

Every year, an estimated 2.2 million babies worldwide are born very preterm
(born at 32 weeks gestation or younger) [6]. Very preterm birth puts newborns
at a high risk of long-term motor dysfunction (e.g. cerebral palsy), which places
significant burdens on the child, the family and the community [2,12]. Early
detection of motor dysfunction could enable more rapid identification of infants
who would benefit from rehabilitative interventions. While motor outcomes can
be assessed in preterm-born infants at 18 months of age using the Bayley Scales of
Infant and Toddler Development, Third Edition (Bayley-III) [4], we desire earlier
identification of infants at risk in order to inform care and ongoing monitoring.

Certain brain pathologies, such as white matter injury (WMI) and intraventric-
ular hemorrhaging (IVH) are detectable in a structural MRI scan of an infant’s
brain. It is also known that some of these pathologies, as well as findings from
more advancedMRmethods such as diffusion tensor imaging (DTI), are associated
with later neurodevelopmental outcomes [3,8]. However, most studies to date have
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focused on group differences or correlations between specific DTI measures and
motor outcomes. For example, Chau et al. recently reported that the trajectory of
brainmaturation from early in life to term-equivalent age, using region-of-interest-
based DTI measures, was associated with neurodevelopmental outcomes [8]. Ball
et al. examined the relationship between connectivity in the thalamo-cortical con-
nectome in preterm infants and Bayley-III scores [3]. They found that the strength
of certain connections were significantly correlated with outcomes.

In comparison to finding correlations, prediction is a harder problem. In order
to predict accurately, the complete set of factors contributing to outcome must
be modelled. Prediction of motor function from brain structure at birth is thus
very challenging due to the large number of confounding factors affecting brain
development, including potentially unknown genetic and environmental factors.
It is especially difficult in young infants due to the combination of limited image
resolution and small brain sizes, artifacts due to motion and rapid structural
change across a small temporal window [5]. Furthermore, datasets are often
class-imbalanced, containing fewer abnormal cases. This last issue is of particular
importance to prediction since many prediction models are highly sensitive to
imbalanced training data [10].

Strategies exist in the literature to alleviate this class imbalance problem by
augmenting the training set. For example, the synthetic minority over-sampling
technique (SMOTE) finds K nearest neighbours to each training instance and
interpolates new instances randomly along lines connecting neighbours [9]. An-
other method is to sample synthetic instances from an approximate distribution
of positive instances, learned using kernel density estimation (KDE). Alterna-
tively, the dominant modes of variation for positive training instances can be
learned using principal component analysis (PCA), then sampled to generate
new instances. The method that generates the most realistic synthetic instances
(i.e., those which improve prediction accuracy the most) is likely application
dependent, making class imbalance challenging for prediction problems.

Despite the challenges, prediction of long-term motor dysfunction within the
first few weeks of birth remains a desirable goal as it would enable better treat-
ment planning and a more informed assessment of patient outcome. Recently,
Ziv et al. used connectome based features from term infants scanned at 6 months
of age to predict general neurological outcome at 12 months [18]. Here we set
the goal of predicting motor outcome at 18 months from scans taken within the
first weeks after birth. In our study, the earlier post-menstrual age (PMA) at
scan and the larger temporal gap between scan and outcome makes our task
even more challenging. Similar to Ziv et al. we use dimensionality-reduced con-
nectome features and a support vector machine (SVM) classifier to achieve this
goal. However, we also introduce a novel method for generating synthetic training
samples designed to tackle the specific challenges in our data. Our training data
contains only a small number of positive instances existing in a high-dimensional
space, likely constrained to a complex manifold. In order to only generate re-
alistic data, we propose a data interpolation technique that generates synthetic
instances which are restricted to be more similar to individual known instances.
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Fig. 1. High level schematic representation of connectome and training pipeline.

In this paper, we show for the first time that 18-month motor outcomes, as-
sessed with the Bayley-III, can be predicted from an MRI taken in the first weeks
of a preterm neonate’s life. Our method achieves an accuracy of > 70%, which
establishes a baseline level of accuracy for this important yet very challenging
task. Further, we demonstrate that data augmentation can reliably improve pre-
diction scores and that our novel method for generating local synthetic instances
outperforms competing methods.

2 Methods

In Fig. 1, we present a schematic diagram of our supervised learning framework
for predicting motor function at 18 months from DTI scans acquired in the first
weeks of life. Details for this pipeline are presented below.

Dataset: The cohort used in this study was a group of 115 preterm infants born
between 24 and 32 weeks PMA. Neonates underwent a brain MRI between 27 and
45 weeks PMA on a Siemens (Erlangen, Germany) 1.5T Avanto using VB 13A
software. Each scan was a multi-slice 2D axial EPI diffusion MR acquisition (TR
4900 ms; TE 104 ms; FOV 160 mm; slice thickness 3 mm; no gap) with 3 averages
of 12 non-colinear gradient directions, with an isotropic in-plane resolution of
0.625 mm. Two such acquisitions were performed: one at b = 600 s/mm2 and one
at b = 700 s/mm2. The combined diffusion weighted image set was preprocessed
using the FSL Diffusion Toolbox (FDT) pipeline1 and tensors were fit using
RESTORE [7]. Nearly half of the subjects (53) were scanned twice for a total of
168 diffusion tensor images.

At 18 months, each subject was evaluated using the Bayley-III test which
produces three composite scores of cognitive, language and motor skills [4]. The
scores are normalized with mean of 100 and standard deviation of 15; we con-
sidered adverse motor outcomes as scores below 85 (i.e., −1 std.). In our cohort,
146 scans were of infants with normal motor function at 18 months, and 22 scans
were of infants with abnormal motor function.

Connectome Construction and Analysis: Each DTI was segmented using
a neonatal atlas of 90 brain regions from the IDEA group at University of North
Carolina (UNC) School of Medicine, Chapel Hill [15]. The atlas’ associated T2
template was aligned to the b0 image of each DTI scan in order to segment
each brain. Alignment was performed as a rigid registration using FMRIB’s

1 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT
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Linear Image Registration Tool (FLIRT) [11] followed by a deformable regis-
tration using the MATLAB Image Registration Toolbox (MIRT)2. Full-brain
tractography was performed on each scan using TrackVis [16]. Each connec-
tome was constructed by grouping tracts according to their endpoint regions.
Following [5], we constructed three connectome types for each scan, including
a mean-FA weighted connectome, a tract-count connectome and a normalized
tract-count connectome. Network measures summarizing the connectome’s topo-
logical properties were computed for each connectome type. Ten individual net-
work measures were extracted: 1) mean nodal degree, 2) transitivity, 3) global
efficiency, 4,5) raw and normalized modularity, 6,7) raw and normalized clus-
tering coefficient, 8,9) raw and normalized characteristic path length and 10)
small-worldness. Each measure was computed for mean-FA, tract-count and nor-
malized tract-count connectomes giving a total of 30 = 10× 3 measures. For a
comprehensive summary of network measures and their meanings, see [13].

Classification: For each DTI scan, metadata and connectome features were ex-
tracted. See Table 1 for a full list of feature types. Metadata features included
gender, age-at-scan and age-at-birth. Age-at-scan is included because we expect
it to be an important co-variate given the rapid development of the brain across
the age range of our cohort. Connectome features included mean FA across each
of the 4005 = 90×89/2 edges and other high-level network features as described
above. WMI severity (graded [0, 3]) and IVH severity (graded [0, 4]), assessed
from a T1 MRI by an experienced neuroradiologist (KJP), were included as
additional features. All features were concatenated into one feature vector.

Feature vectors from the training set were processed using PCA to extract,
at most, the top m modes of variation. At test time, instances were projected
into this PCA space. A linear dimensionality reduction method was used instead
of, for instance, a kernel based method in order to prevent over-fitting to our
sparsely sampled, high-dimensional training set. An SVM classifier was then
trained on the instances in this reduced space.

Local Synthetic Instances (LSI): Due to the limited number of cases in our
cohort that show motor dysfunction (22 out of 168), our training set has a severe
class imbalance (> 6:1). We compensate for this by both replicating existing
positive instances, ti (i.e., feature vectors), and by generating new synthetic
positive instances, sj . New instances are generated by interpolating instance
feature vectors within the training set of N positive instances.

We do not know the true distribution of positive instances but we assume
that it is locally smooth. Under this assumption, we can generate reasonable
synthetic instances as long as they are near existing positive training instances.
To this end, we seek an interpolant that satisfies two conditions: (i) gives the
majority of weight to one training instance and (ii) gives some non-zero weight to
other instances to ensure some variation. We achieve this by randomly assigning
elements from a normalized p-series as weights to each instance. Let P j be a
randomN×N permutation matrix and rj = P j[1, 2, ..., N ]T . Then, the elements,

2 https://sites.google.com/site/myronenko/research/mirt
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rji , of r
j are numbers from 1 to N and the vector rj is randomly ordered and,

sj =

N∑

i=1

w(rji )ti where w(i) =
i−p

∑N
n=1 n

−p
. (1)

Thus, for the jth synthetic instance, sj , r
j randomly assigns weights to training

instances without replacement. Note that
∑N

i=1 w(i) = 1. Also, note that ∀i >
1, w(1) ≥ 2pw(i) and for p = 2 (and in fact, any p > 1.7287), w(1) >

∑N
i=2 w(i)

for any N . In other words, the weight on one instance dominates the others
and each synthetic instance will be generated local to one training instance as
desired. Fig. 2a is a schematic example of synthetic instances generated from
three real instances.

The proposed LSI method has desirable properties compared to other exist-
ing methods in the case of high-dimensional data and small number of training
instances, as we have here. For instance, while samples from a KDE-estimated
distribution are likely to be near training instances, a fixed kernel is used, result-
ing in new instances that may not vary away from training instances in a realistic
way. Instead, LSI encourages new instances to be near training instances but re-
quires variation to be towards known training data. Furthermore, unlike KDE,
LSI does not allow extrapolation. This is adventageous since, given a small train-
ing size, extrapolation is unlikely to yield realistic samples (Fig. 2b(i)). SMOTE
generates instances local to a subset of known instances but fails where the
manifold of positive instances is too sparsely sampled to be approximated us-
ing nearest neighbours (Fig. 2b(ii)). Sampling from PCA modes ensures that
new instances only vary along primary modes of variation but may generate
samples that are anatomically implausible since they may not be near any train-
ing instance (Fig. 2b(iii)). In comparison, the proposed method offers a balance
between trusting local instances and using global information.

3 Results

We evaluated our method using a variety of feature subsets and instance syn-
thesis methods. We assessed classification accuracy for different sets of feature
types (Table 1) via 1000 rounds of cross-validation. In each round, one positive
and one negative instance were left out for testing. Test subjects were omitted
from training data and, since some subjects were scanned twice, the total train-
ing set varied between 164 and 166 scans. For these tests, we set m = 20, which
explains > 99% of the variance and set p = 2. SVM misclassification penalty
was set empirically to C = 2−7 but test accuracy was relatively insensitive to
this value, varying only about 1% for 2−8 < C < 2−6. Classes were balanced
by weighting positive instances via replication. Table 2 shows prediction results
for different sets of features and compares those tests run with synthetic train-
ing data versus those without. In the tests with synthetic data, the training set
was first doubled by generating synthetic instances, then real positive training
instances were replicated until the classes were balanced.
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Fig. 2. a) Schematic representation of LSI weights for 6
synthesized instances. b) Possible failure cases for other
data augmentation methods.

Fig. 3. Test accuracy
and 95% CIs for select
tests from Table 2.

Table 1. Name and description of each feature type.

Name Description (# features) Name Description (# features)

Meta Birth age, scan age and gender (3) MRI WMI and IVH scores at birth (2)

Edge Connectome edge FA values (4005) Network High-level network measures (30)

Table 2. Mean training (Tr) and test accuracy, sensitivity (Sn) and specificity (Sp)
for 1000 rounds of leave-2-out cross validation. Tests marked * are plotted in Fig 3.
Best test accuracy is in bold.

No Synth. Data With Synth. Data

Feature Types Used Tr Test Sn Sp Tr Test Sn Sp

Meta, MRI 69.0 64.2* 0.46 0.83 69.9 64.4 0.47 0.82
Meta, Edge 85.0 58.5 0.33 0.84 86.1 58.5 0.34 0.83

Meta, Edge, Network 85.5 61.2 0.34 0.82 85.7 62.8 0.43 0.83
Meta, Edge, Network, MRI 84.4 64.7 0.51 0.79 85.0 64.7 0.49 0.81

Meta, Network, MRI 77.5 69.0* 0.56 0.82 79.3 72.3* 0.66 0.79

Note that the addition of synthetically-generated instances improved our high-
est test accuracy by 3%. Furthermore, as expected, the inclusion of high-level
connectome features and MRI-based gradings (i.e. WMI & IVH grades) consis-
tently boosted accuracy on average by about 3% each. Interestingly, excluding
edge FA features causes the classification accuracy to improve when network
measures and MRI-based scores are included. This is likely because the edge
features are noisy and that much of the relevant structural information from the
edge features is captured more succinctly in the network measures, WMI grade,
and IVH grade. It may also suggest that no single white-matter fibre bundle is
strongly tied to motor-outcome and instead that more widespread factors are at
work. This finding is consistent with recent work in [2] which showed that the
causes of poor motor outcome are multi-faceted. Note also that while metadata
and MRI based information alone provides reasonable predictive power, it is
clearly advantageous to include connectome information derived from DTI. This
is shown in Fig. 3 with 95% confidence intervals (CI) for each result.

For the test using the subset of features that gave the highest test accuracy
(Meta, Network, MRI), test accuracy was 69% across an infant’s first scans and
74% across their second scans. This suggests that the later scans may be at some
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advantage in their ability to predict outcome. This is not surprising since the
temporal gap between scan-time and assessment for these scans is smaller.

Again using the same features and ratio of synthetic to training instances
that achieved the highest accuracy in the above experiment, we tested four
different instance synthesis methods (Table 3). For KDE, a Gaussian kernel was
used and, after checking a range of scales, a standard deviation equal to the
mean distance between samples was found to give the highest accuracy. SMOTE
with different costs (SDC) is a variant of SMOTE, improved to better handle
imbalanced classes [1]. For SDC, we set K = 1 as it was found to give highest
accuracy over range [1, 5]. For PCA, once the variation modes were learned, new
instances were generated by sampling the Gaussian distribution defined by the
variation modes. To be consistent with the PCA step used for classification,
again the top m = 20 modes of variation were used. We also compared these
synthesis methods against subset sampling optimization (SSO) [17], a state-of-
the-art undersampling method, and weighted Lagrangian twin SVM (WLT), a
classifier designed to natively deal with class imbalance [14]. No replicated or
synthetic instances were used with these methods. Note that since we use non-
image data in our feature vector, data augmentation methods which modify the
images directly are not applicable here, and so were not tested. Table 3 shows
that our proposed method outperforms the competing methods. These findings
agree with our hypothesis at the end of Section 2, that LSI is well suited to a
small sample size from a complex manifold in high-dimensional space.

Table 3. Comparison between class balancing methods. Test accuracies with 95% CIs
plotted on right.

Method Tr Test Sn Sp Method Tr Test Sn Sp

WLT 74.2 54.3 0.23 0.85 PCA 79.0 68.5 0.57 0.80
SSO 88.8 62.1 0.56 0.68 KDE 79.7 68.9 0.57 0.81
SDC 78.3 67.6 0.56 0.80 LSI 79.3 72.3 0.66 0.79

4 Conclusions

In this paper, we predicted preterm infant motor outcomes at 18 months using
structural connectome features from DTI scans taken at birth. In doing so, we es-
tablished a baseline accuracy of over 70% for this challenging but important task.
We also proposed a novel method to mitigate the effects of small positive sample
sizes common to normal/abnormal datasets. Our approach improved prediction
accuracy and outperformed a variety of other methods for this application. In
future works, we plan to more thoroughly explore the characteristics of our LSI
method and find ways (e.g. via other engineered or learned features and different
machine learning techniques) of improving prediction accuracy even further.
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