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Abstract. The identification of subtle brain changes that are associated with mild
cognitive impairment (MCI), the at-risk stage of Alzheimer’s disease, is still a
challenging task. Different from existing works, which employ multimodal data
(e.g., MRI, PET or CSF) to identify MCI subjects from normal elderly controls,
we use four MRI sequences, including T1-weighted MRI (T1), Diffusion Ten-
sor Imaging (DTI), Resting-State functional MRI (RS-fMRI) and Arterial Spin
Labeling (ASL) perfusion imaging. Since these MRI sequences simultaneously
capture various aspects of brain structure and function during clinical routine
scan, it simplifies finding the relationship between subjects by incorporating the
mutual information among them. To this end, we devise a hypergraph-based semi-
supervised learning algorithm. In particular, we first construct a hypergraph for
each of MRI sequences separately using a star expansion method with both the
training and testing data. A centralized learning is then performed to model the
optimal relevance between subjects by incorporating mutual information between
different MRI sequences. We then combine all centralized hypergraphs by learn-
ing the optimal weight of each hypergraph based on the minimum Laplacian. We
apply our proposed method on a cohort of 41 consecutive MCI subjects and 63
age-and-gender matched controls with four MRI sequences. Our method achieves
at least a 7.61% improvement in classification accuracy compared to state-of-the-
art methods using multiple MRI data.

1 Introduction

Alzheimer’s disease (AD) is the most common form of dementia in elderly over 65
years of age. The number of AD patients has reached 26.6 million in nowadays and is
expected to double within the next 20 years, leading to 1 in every 85 people worldwide
being affected by AD by 2050. Therefore, the diagnosis of AD at its at-risk stage of
mild cognitive impairment (MCI) [7] becomes extremely essential and has attracted
extensive research efforts in recent years [11, 9]. Previous studies [10] have shown that
structural and functional brain changes may start before clinically converted to AD and
can be used as potential biomarkers for MCI identification.

Recent studies [4, 11] show great promises for integrating multiple modalities, e.g.,
MRI, PET and CSF, for improving AD/MCI diagnosis accuracy, and semi-supervised
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Fig. 1. An overview of the proposed centralized hypergraph learning for MCI diagnosis.

learning for multimodal data has also been investigated [2]. However, in most previ-
ous works, modeling the relationship among subjects is often performed separately for
each modality, ignoring the crucial mutual information between different modalities. In
practice, integrating the information acquired from different modalities is a challenging
task, since the relationship among subjects may differ for different modalities.

On the other hand, multiple MR sequences, e.g., T1-weighted (T1), Diffusion Ten-
sor Imaging (DTI) and Resting-State functional MRI (RS-fMRI), can be used in clinical
routine scans to capture different aspects of the brain structures and functions. For in-
stance, T1 provides the tissue type information of the brain, DTI measures macroscopic
axonal organization in nervous system tissues, and RS-fMRI provides the regional in-
teractions that take place when the subject in the absence of an explicit task. As a rela-
tively new technique, Arterial Spin Labeling (ASL) [1] perfusion imaging is introduced
to measure brain perfusion without any injection of a contrast agent and demonstrated
consistent reduction in basal perfusion notably in the posterior cingulate cortex in MCI
and AD [1]. More recently, ASL was even able to predict very early cognitive decline
in healthy elderly controls, i.e., the earliest stage of neurodegeneration. Multiple MRI
sequences can be easily and simultaneously captured during clinical routine scans.

In this work, we propose a centralized hypergraph learning method (CHL) to better
model relationship among subjects with multiple MRIs for the purpose of MCI diagno-
sis. The basic idea of the proposed method is to estimate the relevance between different
subjects that reflects how likely two subjects belong to the same category by integrating
multiple imaging data in a semi-supervised manner. Then, the relationship information
among subjects is represented by a hypergraph structure that connects all subjects in
both training and testing sets. Compared to the simple graph, in which an edge can only
link two vertices, hypergraph [12] conveys more information through a set of hyper-
edges that connects more than two vertices at the same occasion. It has been success-
fully applied to various applications, such as image and object retrieval [3]. In this way,
a hypergraph structure is able to capture the higher-order relationship among different
subjects, i.e., whether a group of subjects share similar content. Then, MCI diagnosis
is formulated as a binary classification task in the hypergraph structure to classify each
subject as MCI patient or normal control (NC). Figure 1 presents the schematic diagram
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of the proposed framework. We first construct a hypergraph using both the training and
testing data for each of multiple MRIs separately to reflect the higher-order relation-
ship among subjects. In hypergraph construction, each time one subject is selected as
a centroid. It is then connected to its K nearest subjects in the feature space via a hy-
peredge. We then conduct a centralized hypergraph learning to explore the underneath
relationship of a set of samples, where the relevance among subjects and the hyperedge
weights are optimized simultaneously via an alternating optimization approach. Specif-
ically, each time one hypergraph is first selected as the core and the rest as auxiliary
information in the learning process. This procedure is repeated for each hypergraph,
producing a set of relevance scores for each subject for classification. To obtain the fi-
nal decision, we assemble the relevance scores based on the optimal weights learned by
minimizing the overall hypergraph Laplacian. Note that, for the training subjects, we
just use their imaging features to construct hypergraphs. Therefore, the relevance scores
are conveyed globally, leading to a semi-supervised learning model, and better avoiding
over-fitting to the training set.

2 Method

Data and Preprocessing - A dataset containing T1, DTI, RS-fMRI and ASL from 41
MCI patients and 63 normal controls was collected through the University Hospital of
Geneva in Switzerland. The T1 images were preprocessed by skull stripping, cerebel-
lum removal, and tissue segmentation [6]. The anatomical automatic labeling (AAL)
atlas, parcellated with 90 predefined regions-of-interest (ROIs) in cerebrum area, are
aligned to the native space of each subject using a deformable registration algorithm.
For T1 data, WM and GM tissue volumes in each region are computed and further nor-
malized to generate a 180-dimensional feature vector, i.e., 90 WM and 90 GM features.

The DTI were first parcellated into 90 regions by propagating the AAL ROISs to each
image using a deformable DTI registration algorithm. Whole-brain streamline fiber
tractography was performed on each DTI image. The number of fibers passing through
each pair of regions was counted and the averages of on-fiber fractional anisotropy (FA)
for each ROI pair were computed to form a structural connectivity matrix.

For RS-fMRI, a 9min ON-OFF CO2 challenge was employed, i.e.,1 min OFF, 2 min
ON, 2 min OFF, 2 min ON, 2 min OFF, during data acquisition. Slice timing correction
and head-motion correction were performed using the Statistical Parametric Mapping
software package. To ensure magnetization equilibrium, the first 10 acquired RS-fMRI
images of each subject were discarded. The remaining 170 images were first corrected
for acquisition time delays among different slices before they were realigned to the first
volume of the remaining images for head-motion corrections. A Pearson correlation-
based connectivity matrix of dimension 90 x 90 based on AAL atlas was constructed
for each subject.

Preprocessing of ASL images was performed using ASLtbx. Similar to RS-fMRI, a
symmetric connectivity matrix of dimension 90 x 90 was constructed for each subject.

For DTI, RS-fMRI and ASL, the local clustering coefficients, which quantify the
cliquishness of the nodes [8], are computed for the connectivity networks. For these
three MRI sequences, both the raw feature (8100-D) and the clustering coefficients-
based feature (90-D) are employed.
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Hypergraph Construction - For each type of multiple imaging data, a hypergraph
is constructed. For the i-th imaging with N subjects, a hypergraph G; = (V;, &;, W)
with N vertices is constructed where each subject is represented by a vertex. Here,
V; is the vertex set, & is the hyperedge set, and W is the corresponding weight for
the hyperedges. A star expansion method is employed to generate a set of hyperedges
among vertices. Specifically, in each feature space, a vertex is selected as the centroid
vertex and then a hyperedge is developed by connecting to its nearest neighbors within
(d distance, where d is the average distance between subjects in the feature space and
 is set as 1 in our experiment. Incidence matrix of the hypergraph is then generated to
represent the relationship among different vertices. The (v, e)-th entry of the incidence
matrix indicates whether the vertex v is connected via the hyperedge e to other vertices.
The incidence matrix H; of hypergraph G; = (V;, &;, W) is generated as

di(v,vc) :
H; (v,e) =4 P (* 0.1d; ) foee (1
0 ifuvde

where d; (v, v.) is the distance for the i-th imaging data between a vertex v and its
corresponding centroid vertex v, in hyperedge e, and d; is the average pairwise subject
distance for the i-th imaging data. Accordingly, the vertex degree of the vertex v € V;
and hyperedge degree of the hyperedge e € &; are calculated, respectively, as d; (v) =
Yece, Wi(e)H; (v,e) and 6;(e) = >_ ), Hi(v, e). Thus, we can define D} and D
as diagonal matrices representing vertex degrees and hyperedge degrees, respectively.
Note that all the hyperedges are initialized with an equal weight, e.g., 1.

Centralized Hypergraph Learning - To model the relationship of subjects with multi-
ple imaging data, we propose a centralized hypergraph learning method. MCI diagnosis
is formulated as a binary classification task in the hypergraph structure. Given four hy-
pergraphs, at each stage one hypergraph is selected as the core hypergraph, while the
rest are used to provide extra guidance for updating the hypergraphs.

During centralized learning, hypergraphs are assigned with different weights accord-
ing to their influences on the structure of the core hypergraph. The core hypergraph is
assigned with a weight of «;, while the other hypergraphs are assigned with an equal
weight, ao. Assume the j-th hypergraph is selected as the core hypergraph, we can have
the j-th centralized hypergraph. To learn the relevance among vertices and improve
the structure of the j-th centralized hypergraph, we optimize the following objective
function including the weights of hyperedges by imposing an f>-norm regularizer on
Wi (i=1,2,3,4) 88

arg min Q5 (Fj) + ARemp (Fj) + 1 Wi (e)?
F;i W, (i=1,2,3,4) { ! ! : ’ Ez: e%:&, }7 ()

s.t. H;diag (W;) = diag (DY), diag(W;) >0
where €2 (F;) is the regularizer for the j-th centralized hypergraph, aiming to smooth

the relationship among vertices on the hypergraph structure, W, (e) is the weight of
the hyperedge e € &;, F; is the to-be-learned relevance matrix, and Remyp (F;) is

the empirical loss, and 3" 5> W (e)? is the £ regularizer term to learn the weights
i e€&;



82 Y. Gao et al.

of hyperedges. The two constraints guarantee that the vertex degree is not changed
during the learning process and all the weights are non-negative, respectively. €25 (F,)
is defined as
Q5 (F) = 19, (F)) + Y 029 (F), 3)
1#]
where the first term is the regularizer for the core hypergraph and the second term is the
regularizer for the other hypergraphs. We define the regularizer term €2; (F;) as

1o W, (e)H;(u, e)H; (v,¢) (Fj(u, k) F;(v,k)
Q;(F;) = _
) 2;%;;1; die) (\/dz-(u) m(v)) )

=F; (I-0,)F;,

where ©; = Df_éHiWin_lHiTDi”_é. Q; (F;) can be accordingly obtained by
Q; (F;) = F (I-©;) F;. Then, 2§ (F;) can be simplified as

Q(F;) = FF (1- (010 + a2 Y ©))F; = FTASF,, (5)
i#£]
where A =1 — (210; + az ) ©;) is the j-th centralized hypergraph Laplacian.
i

The empirical loss Remyp (F;) is defined as

2

Remp (F;) =Y |F;(k) = Y (5, k)%, (6)
k=1

where Y € R"*? is the label matrix and each of its entry denotes the category a subject
belongs to. Y (:, k) is the k-th column of Y. If the vertex v belongs to the first category,
then the (v, 1)-th and (v, 2)-th entries in Y are set to 1 and 0, respectively.

Solution: To solve the optimization problem in Eq. (2), we employ an alternating opti-
mization approach. We first fix W; and optimize F; as follows

argmin {25 (F;) + NRemp (Fj) } 7

which leads to the following closed-form solution for

A 1 -1
Fj:1+>\<I—1+>\(a1®j+a2;®i)) Y. ®)

We then fix F'; and optimize W as follows

arg min {Q;(Fj) +/LZ ZWi(e)Q}

Wi (i=1,2,3,4) i ec&; (9)
s.t. H;diag(W;) = diag(D}), diag(W;) > 0.
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The above optimization task is convex on W; and can be solved via quadratic pro-
gramming. The learning process is repeated several times, once for each of the hy-
pergraphs as the core hypergraph, to generate a centralized relevance matrix for each
imaging modality.

2.1 Relevance Matrices Fusion

To optimally integrate information from multiple MRIs, we learn the weights of each
hypergraph by minimizing the overall hypergraph Laplacian. Let p; be the weight for
the i-th centralized hypergraph, we impose an £>-norm penalization on the weights of
all centralized hypergraphs as follows

argrr})in{Zpiﬂf (Fi) +T}ZP?} st dopi=1, (10)

where 7 is to balance the Laplacian and the weight regularizer. Eq. (10) can be solved
using the Lagrangian method. The final relevance matrix is then computed as F =
> piF;. Classification of a subject could therefore be determined by its corresponding
value in the final relevance matrix. If the relevance score to MCI is larger than that to
NC, a subject is classified as MCI, and vice versa.

3 Experiments

Experimental Settings - To evaluate the performance of the proposed CHL method, a
10-fold cross-validation strategy is used in our experiments. Specifically, we randomly
partition the subjects in the MCI and NC groups into 10 non-overlapping approximately
equal sets. One set is first left out as testing set and the rest sets are used as the training
set. The training set is further divided into 5 subsets for a 5-fold inner cross-validation to
learn the optimal parameters. This procedure is repeated 10 times, once for each of the
10 sets, to compute the overall cross-validation classification performance. Six statisti-
cal measures are used for performance evaluation, which include accuracy (ACC), sen-
sitivity (SEN), specificity (SPEC), balance accuracy (BAC), positive predictive value
(PPV), and negative predictive value (NPV).

Results - We compare the proposed method with two state-of-the-art methods: 1) Mul-
timodal multitask learning (M3T) [11], which employs multimodal imaging data for
MCI classification, and 2) Manifold regularized multitask feature learning (M2TFES)
[5], which is another semi-supervised method on MCI classification. We further com-
pare with two simplified versions of the proposed method: 1) centralized simple graph
learning (CSL), in which only simple graphs are employed instead of hypergraphs in
our method, and 2) Multi-hypergraph learning (MHL) [3] without centralized learning.

Figure 2 shows the MCI classification results of all compared methods using differ-
ent imaging data individually and together. The proposed method (CHL) outperforms
all competing state-of-the-arts methods. Specifically, by using four types of imaging
data, CHL achieves an improvement of 8.65 + 2.50% and 7.61 + 1.92%, in terms of
ACC, compared with M3T and M2TFS, respectively. Better performance of our method
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Fig. 2. MClI identification performance using four types of imaging data individually and together.

is attributed to the following aspects. First, different from existing methods that employ
the labeled samples to train classifiers, the proposed method employs both the labeled
and unlabeled samples to explore the underlying relationships among different subjects
in a semi-supervised learning way, leading to a more general model that is not over-
fitted to the training data. Second, the employed hypergraph structure [12] is superior in
formulating the joint relationship among multiple vertices compared with simple graph.
As shown in the results, CHL achieves an improvement of 5.10 & 2.13% in terms of
ACC compared with CSL when all four imaging data are employed. Third, the proposed
method employs a centralized learning approach to model the subject relationship by
using one of multiple imaging data with the guidance from others, enabling more accu-
rate modeling of underlying relationships among samples.

Compared with MHL, the proposed CHL demonstrates better performance, espe-
cially when multiple types of imaging data are utilized. More specifically, CHL achieves
an improvement of 4.42 4+ 1.57% in terms of ACC compared with MHL by using four
types of imaging data. This result demonstrates that the proposed centralized method
can better explore the relationship underlying the multiple imaging data.



MCI Identification by Joint MRI Data Learning 85

4 Conclusion

In this paper, we proposed a centralized hypergraph learning method to model the re-
lationship among subjects with multiple MRIs for MCI identification. In our method,
this relationship is encoded by the structure and the weights of hyperedges in a hyper-
graph. Multiple hypergraphs are constructed using multiple MRIs, respectively. In the
learning process, each time one hypergraph is selected as the core and the relationships
among subjects from other hypergraphs help to provide extra guidance to meliorate the
structure of the core hypergraph. Integrating hypergraphs with different weights enables
optimal utilization of supplementary information conveyed by different imaging data.
Our findings demonstrate the effectiveness of the CHL method on MCI diagnosis.
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