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Abstract. In this paper, for the first time, we propose a data-driven
search and retrieval (hashing) technique for large neuron image databases.
The presented method is established upon hashing forests, where multi-
ple unsupervised random trees are used to encode neurons by parsing the
neuromorphological feature space into balanced subspaces. We introduce
an inverse coding formulation for retrieval of relevant neurons to effec-
tively mitigate the need for pairwise comparisons across the database.
Experimental validations show the superiority of our proposed technique
over the state-of-the art methods, in terms of precision-recall trade off for
a particular code size. This demonstrates the potential of this approach
for effective morphology preserving encoding and retrieval in large neu-
ron databases.

1 Introduction

Neuroscientists often analyze the 3D neuromorphology of neurons to understand
neuronal network connectivity and how neural information is processed for eval-
uating brain functionality [1, 2]. Of late, there is a deluge of publicly avail-
able neuroscientific databases (especially 3D digital reconstructions of neurons),
which consist of heterogeneous multi-institutional neuron collection, acquired
from different species, brain regions, and experimental settings [3, 4]. Finding
relevant neurons within such databases is important for comparative morpho-
logical analyses which are used to study age related changes and the relationship
between structure and function [1].

Recently, the concept of the neuromorphological space has been introduced
where each neuron is represented by a set of morphological and topological mea-
sures [1]. Authors in [1] used this feature space for multidimensional analysis of
neuronal shape and showed that the cells of the same brain regions, types, or
species tend to cluster together in such a space. This motivated us to leverage
this space for evaluating inter-neuron similarity and propose a data-driven re-
trieval (hashing) system for large neuron databases. Recently, a neuron search
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algorithm was proposed by [2], where pairwise 3D structural alignment was em-
ployed to find similar neurons. In another approach, authors in [5] focused on
the evaluation of morphological similarities and dissimilarities between groups
of neurons deploying clustering technique using expert-labeled metadata (like
species, brain region, cell type, and archive). These existing neuronal search and
retrieval systems are either too broad (lacking specificity in search) or too re-
strictive (dependent on exact expert-defined values/meta information) and thus
not suitable for reference-based hashing in large scale neuron databases.

Several efficient encoding and searching approaches have been proposed for
large scale retrieval in machine learning and medical image computing, including
(1) generalized hashing methods like data independent methods (e.g. Locality
Sensitive Hashing (LSH) [6]), data-driven methods (e.g. Spectral Hashing (SH),
and Self Taught Hashing (STH) [7, 8]); and (2) application-specific methods
including composite hashing for histopathological image search [9] and on finding
similar coronary angiograms in 2D X-ray database [10].

The LSH generates binary encoding by partitioning feature space with ran-
domly generated hyperplanes [6]. Unlike LSH, instead of working on the original
feature space, the SH generates hash codes using low dimensional representation
obtained using Laplacian Eigenmaps (LEM) [7]. Later, Zhang et al. [8] intro-
duced self-learnt hashing functions by median-thresholding the low dimensional
embedding from LEM and training a support vector machine (SVM) classifier as
the hash function for encoding new input data. Data independent methods like
LSH require large code words to efficiently parse the feature space as they rely
on their asymptotic nature for convergence [11]. For similar code lengths, SH and
STH can provide better retrieval as the hashing function is based on the data
distribution. However, these data driven methods are mainly challenged by their
restricted scalability in code size and lack of independence of the hashing func-
tions. It has also been observed that increasing code length in such data driven
methods may not necessarily improve performance, depending on the data char-
acteristics. Redressing these issues are crucial for fast growing heterogeneous
database like neuroscientific databases, where both scalability and sensitivity
are important.

In this paper, we propose a data-driven hashing scheme for large neuron
databases called hashing forests (HF). These are established upon unsupervised
random forests trained to parse the neuromorphological space in a hierarchical
fashion. We demonstrate that HF can generate more sensitive code words than
LSH, SH or STH by effectively utilizing its tree-structure and ensemble nature.
Trees in HF are trained independently and they are more easily scalable to
larger code lengths than SH and STH. In comparison to random forest hashing
method proposed in [11], we introduce an inverse coding scheme which effec-
tively mitigates database-wide pairwise comparisons, which is better suited for
fast large-scale hashing. We formulate tree-traversal path based coding scheme
for more efficient hierarchical parsing of the neuromorphological space. Further,
to the best of our knowledge, this is the first work that focuses in entirety on
hashing in large neuroscientific databases.
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Fig. 1. Schematic of proposed search and retrieval scheme using Hashing Forests.

2 Methodology

Ideally, the hashing method should generate compact, similarity-preserving and
easy to compute representations (called code words), which can be used for accu-
rate search and fast retrieval [7]. In the context of neuroscientific databases, the
desired similarity preserving aspect of the hashing function implies that mor-
phologically similar neurons are encoded with similar binary codes. In the neuro-
morphological space, the normalized Euclidean distance defined between neurons
correlates well with the inter-neuron morphological similarity. However, it is not
desirable for hashing in large neuron databases owing to high memory expendi-
ture in addition to increased computational time complexity. Consider the neu-
romorphological feature vector of a neuron ni, say xi := {x1, ..,xk, ..,xn} ∈ R

N ,
were N is the space dimensionality. A detailed description of the feature extrac-
tion and biological significance is presented in [12]. We model hashing functions
through unsupervised randomized forest (called hashing forests H) which parse
and encode the neuromorphological subspaces in similarity-preserving binary
codes. Fig. 1 illustrates the schematic of the overall hashing process, which is
discussed in following section.

Training Phase: Hashing forest (H) is an ensemble of binary decision trees
which partitions the feature space hierarchically based on learnt binary split
functions. A forest of T binary trees with maximum depth of d, requires (T × d)
bits to encode each neuron. Each tree is grown in an unsupervised fashion by
recursively partitioning the selected feature sub-space (say into left and right
with sl and sr samples respectively) at each node. This is based on a uni-
variate split function (say φ) which optimizes tree balance by minimizing E(φ)
(E(φ) = max{(sl/sr) − 1, (sr/sl) − 1}) [13] . The splitting continues until the
maximum defined tree-depth d is reached. The time complexities to grow a tree
and ensemble a forest are tabulated in Table 1 (S1-S2).

Hash Table Generation: Given a trained tree (t) of the hashing forest H,
each neuron ni (characterized by xi) in the database is passed through it till it
reaches the leaf node. We propose to use the neuron’s traversal path to generate
the tree-specific code word Ct(xi), instead of just the leaf indices. For a tree t
of depth d, the split and the leaf nodes are assigned breadth-first order indices
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Table 1. Time Complexity Analysis

S1 Building tree O(
√
N ∗ M ∗ d) [13]

S2 Building forests O(T ∗ √
N ∗ M ∗ d) Training

S3 Generating hash table O(T ∗ d) + O(M ∗ S)

S4 Generating Single Query Code O(T ∗ d)

S5 Retrieving with Forward Code O(M ∗ S)

S6 Retrieving with Inverse Code O(T ∗ d) + O(T ∗ (d − 1)) Retrieval

S7 Quick sort O(M logM)

Symbols: Code word Size S = T (2d+1 − 2)); Number of Trees T ; Number of
Features N ; Tree Depth d; Retrieval Database Size M .

(say kt) which are associated with binary bit bkt in the code word Ct(xi). For a
particular neuron, if node kt is part of its path, then bkt is set to 1, otherwise its
set to 0. This leads to a (2d+1 − 2) bit sparse code word Ct(xi) with (d) ones. It
must however be noted that only d bits are required to generate Ct(xi) as there
are only 2d possible traversal paths, each leading to a unique leaf node. We
repeat the same process for every other tree in the forest to generate the sparse
code block CH(xi) of size (T ∗ (2d+1− 2)) for each neuron. The time complexity
of this step is shown in Table 1 (S3). For faster retrieval, we pre-compute the
code blocks for all M neurons in retrieval/training database D and generate a
hash table of size M × (T ∗ (2d+1 − 2)). This is stored using (M ∗ T ∗ d) bits
along with traversal paths saved in a (2d ∗ (2d+1 − 2)) binary look-up table.

Inverse Coding: Each bit bkt in CH encodes a unique neuromorphological sub-
space, which is constrained by the split functions of t leading to node kt. In
order to avoid pair-wise comparisons between the neurons during retrieval in
large databases, we formulate an inverse coding scheme. We transpose the hash
table to generate the inverted hash table I which is a sparse ((T ∗(2d+1−2))×M)
dimensional matrix. This implies that for feature vector xi, if bit bkt in Ct(xi)
is 1, then I(kt, i) = 1, and it belongs to the feature subspace encoded by bkt .

Testing Phase: For a given query neuron nq (with feature vector xq), the
corresponding code block CH(xq) is generated in a similar fashion to the Hash
Table Generation phase. In the direct retrieval formulation, pairwise comparisons
(through hamming distance) between CH(xq) and code blocks of neurons (say
CH(xi) for neuron ni) in the retrieval database D are made to evaluate inter-
neuron similarity S(nq, ni) i.e.

S(nq, ni) =
1

(T ∗ (2d+1 − 2))

∑

∀bits
(CH(xq) == CH(xi)) (1)

If nq generates the same code block as a neuron in D (i.e. both belong to the
same neuromorphological subspace), we assign perfect similarity to them (S = 1).
However, the pairwise comparison for large scale databases is computationally
expensive as seen from its time complexity in Table 1 (S5). To mitigate this, in
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the inverse coding, we formulate the similarity function as T ∗(d−1) dimensional
similarity accumulator cell Anq . Given the code block CH(xq) for the query
neuron nq, Anq is calculated as:

Anq (i) =
1

T ∗ (d− 1)

∑

∀kt

I(kt, i) if bit bkt in CH(xq) = 1 (2)

The inter-neuron similarity S(nq, ni) is related toAnq as S(nq, ni) = Anq (i). Such
an inverse formulation is computationallymore efficient for large databases(as seen
from the order complexity in Table 1 (S6)), than the forward scheme (Table 1 (S5)).
In the task of retrieving an ordered set ofK most morphologically similar neurons
fromD, we dynamically generate a set of candidate neurons (say size of 2K) from
D by using quick sort on the hashing forest similarity (Table 1 (S7)). We further
sort them by using normalized Euclidean distance between the neurons in this set
and the query neuron formore morphologically consistent ranking. The additional
computational expense due to this refinement step is low asK << M . (For valida-
tion purposes, this refinement using normalized Euclidean distance is performed
on all the comparative methods considered in Section 3)

3 Experiments and Observations

Database: We used 18106 publicly available 3D reconstructions of neurons
(extracted from [3, 15–23]). We employed Lmeasure toolbox [12] to extract
3D neuromorphological features, which characterize different aspects of neuron
structure including whole neuron morphology, bifurcation features, and neu-
ron compartment level features [1]. Successful morphology-preserving hashing
in neuroscientific databases depends on the efficacy of the code word to com-
pactly represent this neuromorphological space as well as efficiently compute
interneuron similarity using the code word.

Experiment 1: Effective Neighbourhood Approximation with fixed codesize We
introduce the Neighbourhood Approximation (NA) graph which models how close
the neighbourhood estimated using code words (from the hashing method), ap-
proximates the true neighbourhood around a neuron in the neuromorpholog-
ical space. For a particular hashing method, NA for the jth neighbour is de-
fined as the average of the normalized Euclidean distance between the neu-
rons and retrieved jth neighbour for all neurons in D. Let, for neuron ni (with
feature vector x0

i ), the jth neighbour have a feature vector xj
i , then NA(j) =

1
M

(∑M
i=1 ε(x

0
i ,x

j
i )
)

where ε(x0
i ,x

j
i ) =

(√
1
N

∑N
a=1

(x0
ia−xj

ia)
2

sa

)
. ε(x0

i ,x
j
i ) is the

normalized Euclidean distance between x0
i and its jth neighbour xj

i with ath fea-
ture standard deviation sa estimated over the whole database which is chosen
for invariance to scales of different features. We use the NA graph calculated
using neighbourhood based on normalized Euclidean distance (NAEUC) as the
benchmark and the hashing method which performs closest to it is considered as
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(a) NA Graph (b) Four examples of retrieved neurons.

Fig. 2. Evaluation of the proposed retrieval system. Fig. 2a: Neighborhood Approxi-
mation (NA) graph for the comparative methods and configurations of hashing forests
for fixed codeword size (256 bits). Fig. 2b: For each query neuron on the left (pink),
the three best matches are shown on the right (blue). (High resolution images are
provided in the supplementary material.)

to have the best neighbourhood approximation in comparison. NA graph is eval-
uated over the target database and the results for all the comparative methods
are reported in Fig. 2a. For fair validation, we keep the size of the code-block
fixed at 256 bits for this experiment. Further, to examine the sensitivity of HF
parameters (number of trees (T ) vs. depth (d)) towards neighbourhood approx-
imation, we tested three different configurations varying tree depths: T = 32
trees with d = 8 (32 ∗ 8 = 256 bits); T = 64 trees with d = 4 (64 ∗ 4 = 256 bits);
and T = 43 trees with d = 6 (43 ∗ 6 = 258 bits(∼ 256 bits))

Observations on Experiment 1: Fig. 2a demonstrates that for a fixed code
size, HF approximates neighbourhood better than the comparative LSH, SH and
STH methods. Further, analysis of the sensitivity of HF parameters (T vs. d)
towards NA, demonstrated that HF with 43 trees and depth 6 performs better
than other shallower and deeper tree configurations. Thus, we infer that there
exists an optimal depth for a given codesize, where HF optimally parses the
neuromorphological space. Fig. 2b demonstrates the performance for 4 distinct
neurons with the closest neighbours retrieved using HF and shows close mor-
phological similarity amongst the neurons and the neighbours.

Experiment 2: Hashing retrieval precision vs. Code block size. We evaluate the
retrieval performance by computing the F1score as follows:

F1score =
√
Precision×Recall =

√
|Nε(ni)

⋂NH(ni)|2
|NH(ni)| × |Nε(ni)| .

This measure is often used in information retrieval algorithms to better under-
stand the tradeoff between precision and recall. The Nε(ni) represents the set
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Table 2. Experiment 2: F1score (in %) vs. Code Size (in bytes)

Code Size Case 10 Case 25

(in bytes) LSH SH STH HF LSH SH STH HF

8 6.0 14.0 16.2 7.2 5.06 13.03 14.55 8.98

16 13.4 23.6 18.6 37.0 11.26 22.01 17.46 39.21

32 17.8 34.4 19.6 51.2 16.32 33.39 17.46 51.86

64 27.8 40.4 19.6 69.2 26.31 35.92 17.58 60.59

128 37.4 26.2 12.4 79.0 35.80 22.77 10.12 63.12

Note: The best performance for a fixed code size is shown in
boldface. and the best result amongst all the comparative meth-

ods is frameboxed .

of neurons ‘relevant’ to the query neuron, which is the top K nearest neigh-
bours depined upon the normalized Euclidean distance in the neuromorpholog-
ical space and NH(ni) represents the retrieved neurons through hashing as a
set of k morphologically similar neurons. We measeur the F1score for all com-
parative methods by varying the codeblock size from 8 bytes to 128 bytes in
geometric order of 2. We cmopare the performance for two cases of top 10 and
25 retrieved neurons, as tabulated in Table 2.

Observations on Experiment 2: Table 2 demonstrates the superiority of pro-
posed retrieval technique over comparative methods for both cases (10 NN and
25NN), when sufficient code size was chosen (> 8 bytes). It must be noted that
we chose larger code sizes over conventional code sizes (> 16 bytes), as it was
observed that precision-recall performances for HF and comparative methods
for smaller code sizes were not sufficient enough for the application at hand.
HF is able to encode distinct subspaces of the neuromorphological space bet-
ter due to its hierarchical tree structure. It must also be noted that for larger
code sizes, the retrieval performance of both SH and STH significantly decreases
(from 64 to 128 bytes), as noisy eigenvectors corresponding to higher eigenval-
ues are increasingly used in encoding. For comparable performance, LSH needs a
large code size to achieve high performance which is computationally expensive
(corroborates observations reported by [11]). We also observe that there is no
significant improvement in the performance of STH with increasing code size,
though it outperforms all methods for small code size (8 bytes). We further infer
that increasing code size rather augments HF performance, thus HF is more
scalable towards large code sizes than the comparative methods.

4 Conclusions

In this paper, we present hashing forests as an effective approach for accu-
rate retrieval of morphologically similar neurons in large neuroscientific image
databases. HF uses unsupervised random forests to extract compact representa-
tion of neuron morphological features that enables efficient query, retrieve and
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analysis of neurons. The use of ensemble of trees and hierarchical tree-structure
makes hashing forests more robust to noisy neuromorphological features (ob-
served due to inconsistent 3D digital reconstruction of neuron). Due to indepen-
dent training, HF is easily scalable to large code sizes as the database size and
heterogeneity increases. To the best of our knowledge, this is the first paper to
present hashing in neuroscientific databases and demonstrates higher flexibility
for reference-based retrieval over existing alternative methods [14]. HF is estab-
lished to preserve morphological similarity while encoding extracts has better
precision and recall per bit than the comparative methods. The formulation for
HF is generic and it can be easily leveraged for other large-scale reference based
retrieval systems. The proposed formulation utilizes inverse coding in HF which
helps avoid pairwise comparisons across the database while retrieving, without
compromising on retrieval performance.
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