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Abstract. Cochlear Implants (CIs) restore hearing using an electrode array that 
is surgically implanted into the cochlea. Research has indicated there is a link 
between electrode location within the cochlea and hearing outcomes, however, 
comprehensive analysis of this phenomenon has not been possible because 
techniques proposed for locating electrodes only work for specific implant 
models or are too labor intensive to be applied on large datasets. We present a 
general and automatic graph-based method for localizing electrode arrays in 
CTs that is effective for various implant models. It relies on a novel algorithm 
for finding an optimal path of fixed length in a graph and achieves maximum 
localization errors that are sub-voxel. These results indicate that our methods 
could be used on a large scale to study the link between electrode placement 
and outcome across electrode array types, which could lead to advances that 
improve hearing outcomes for CI users.     
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1 Introduction 

Cochlear implants (CIs) are considered the standard of care treatment for profound 
hearing loss [1]. CIs use an array of electrodes surgically implanted into the cochlea 
to directly stimulate the auditory nerve, inducing the sensation of hearing. Although 
CIs have been remarkably successful, speech recognition ability remains highly vari-
able across CI recipients. Research has indicated there is a strong link between elec-
trode location within the cochlea and hearing outcomes [2-6]. However, comprehen-
sive analysis of this phenomenon has not been possible because precise electrode 
position has been unknown. Electrode position is generally unknown in surgery be-
cause the array is blindly threaded into a small opening of the cochlea. To analyze the 
relationship between electrode position and outcome, several groups have proposed 
post-operative imaging techniques. This has included imprecise measures such as 
ones that can be visually assessed in CT images, e.g., is the array entirely within one 
internal cavity of the cochlea, the depth of insertion of the last electrode, etc. [2-6]. 
These studies have concluded that electrode position and outcomes are correlated but 
are conflicting or inconclusive regarding what specific factors are important because 
dataset sizes were limited and electrode positions were not precisely determined.  
Dataset size has been limited due in part to the amount of manual effort that must  
be undertaken to analyze the images. Another application where precise electrode  
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Fig. 1. Process flow chart. The ROI is shown in (a). In (b), example thresholding and pruning 
results are shown. In (c), coarse and refined electrode localization results are shown with the 
ground truth. 

localization is important is for systems being developed that use electrode position to 
select better CI processor settings [7]. Such systems have been shown to significantly 
improve hearing outcomes compared to standard clinical results. In the current work, 
we propose a fully automatic approach for localizing CI electrodes in CT images. 
Such an approach could permit localizing electrodes on large numbers of datasets to 
better analyze the relationship between electrode position and outcome, which may 
lead to advances in implant design or surgical techniques. It could also automate the 
electrode localization process in systems designed to determine patient-customized CI 
settings, such as the one proposed in [7], reducing the technical expertise required to 
use such technologies and facilitating transition to large scale clinical use.  

Figure 1 shows an example of an electrode array in CT. Localizing the electrodes 
in CT images is difficult because, as seen in figure 1b, finding a threshold to isolate 
the electrodes is not possible due to the presence of the connecting wires and because 
adjacent bony tissue voxels are assigned erroneously high intensity in image recon-
struction due to beam hardening artifacts caused by the metallic electrodes. Another 
issue is that there is often no contrast between the electrodes, even when the CTs are 
acquired at very fine slice thickness and resolution. Where there is no contrast, the 
challenge is to identify the center of each of the contacts, and where the electrodes are 
separated, the challenge is to determine how the different groups of contacts are con-
nected. Previous approaches [8,9] require electrodes to be grouped to determine their 
connectivity and thus are not applicable to many electrode types that have wider con-
tact spacing. Our solution is to simultaneously identify the centers of the electrodes 
and their connectivity using a novel, graph-based path finding technique. Our ap-
proach can handle varying degrees of contrast between electrodes and thus is applica-
ble to many electrode types. Our results, presented and discussed in Sections 3 and 4, 
will show that this fully automatic approach can reliably be applied to clinical images.   

2 Methods 

The automatic segmentation method we propose is outlined in Figure 1. As can be 
seen in the figure, the first step (1) involves coarsely estimating the location of the 
region of interest (ROI), which is a local region ~30 cm3 around the cochlea. This is 
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done through registration with a known volume. The subsequent processing steps are 
then performed solely within the ROI. The next step (2) is to identify a set of points in 
the ROI representing candidate electrode locations. This is required for the following 
coarse electrode localization step (3) in which a graph search technique is used to 
identify points corresponding to electrodes from among those candidates using an 
intensity and shape-based cost function. Once the electrodes are coarsely localized, 
the next step (4) is to refine their positions using a subsequent path finding step. The 
following subsections detail this approach. 

2.1 Data 

The images in our dataset include images from 20 subjects acquired with a Xoran 
xCAT®. The images have voxel size 0.4 x 0.4 x 0.4 mm3. Half of the subjects were 
implanted with Advanced Bionics Mid Scala arrays and the other half with Advanced 
Bionics 1J arrays. Since the Mid-Scala arrays have little contrast between electrodes 
in CT due to close electrode spacing (<1 mm) whereas the 1J arrays typically have 
strong contrast between electrodes in CT due to larger electrode spacing (>1 mm), 
these two array types are reasonably representative of the types of image contrast 
variations seen among the many FDA approved array models. Both Mid-Scala and 1J 
arrays are composed of 16 active contacts and 1 non-stimulating marker contact. The 
dataset of 20 subjects was subsequently divided into a training and testing set of 10 
subjects each. The training and testing sets had equal number of each electrode type. 
The training set was used for parameter tuning and the algorithm was validated on the 
testing set with fixed parameters. A ground truth electrode localization solution for 
each dataset was created by manual localization of the contact positions by an expert. 
For the testing set, average contact positions from three manual localization sessions 
were used for ground truth. 

2.2 Candidate Selection 

After identifying the ROI, the first step in our approach is to select points that represent 
candidate electrode locations. The following process will select from among these 
candidates the points that coarsely correspond to the electrodes. To select the candi-
dates, we first create a binary mask by thresholding the image at the intensity corre-
sponding to the top ߙଵ = 0.08% of the cumulative histogram of the ROI image. This 
threshold represents a value that is low enough to ensure no contacts are discarded 
from the result, which is vital for the success of the following procedures, but not so 
low that an excessively large volume of non-contact voxels are included in the result, 
which is also important to prevent the following steps from becoming too complex. An 
example result of this process is shown in transparent gray in Figure 1b. After 
thresholding, the set of connected components, each of which corresponds to one or 
multiple electrodes or background tissue, is voxel thinned by extracting its medial axis 
[10] to further prune the results. The set of candidate points are chosen as the voxels {࢜}ଵ௏ that compose this set of M medial axes {࢓}ଵெ. This procedure typically results in ܸ = ~80 candidate points. Example results of this process where medial axes were 
extracted from M=4 connected components are shown in red in Figure 1b.  
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2.3 Coarse Electrode Localization 

After the candidates are selected, a graph-based procedure is used to localize the elec-
trodes. Each candidate point is treated as a node in a graph, and the path finding algo-
rithm aims to find the sequence of L=17 nodes, where L is the number of electrodes, 
that obeys node neighbor constraints and minimizes an intensity and shape-based cost 
function. The path finding algorithm pseudocode is shown in Algorithm 1. The algo-
rithm begins with a seed node, chosen as discussed below, that represents the position 
of the first electrode. Then, the L-1 remaining nodes are determined by growing a tree 
of candidate paths {࢖} that stem from the seed node. At each ith iteration in the main 
for-loop, in the Grow stage, the set of new candidate paths {ࢗ} of length i+1 are 
found as the combination of all possible one-node extensions of the set of length i 
candidate paths {࢖} to their permissible child nodes {ࢉ}. This potentially large set of 
candidate paths {ࢗ} is then reduced in the Prune stage to keep for the next iteration 
only the P candidate paths that correspond to the lowest cost. The output of the algo-
rithm is the lowest cost length L path, ࢖૚. While our technique provides no guarantee 
of finding a global optimum, the advantage over techniques like Dijkstra’s algorithm 
[11] is that, as shown below, it permits non-local and shape-based constraints. Shape 
constraint is needed because a path composed of electrodes will not generally opti-
mize an intensity-only cost function due to electrode image intensity inhomogeneity.  

The child nodes {ࢉ} of a path ࢖ of length i are chosen to be the nodes that obey 
reasonable constraints. First, they must obey the hard constraint 

 
ଵఈమ ݀௜ < ԡ࢖௜ − ԡଶࢉ <  ଶ݀௜, (1)ߙ

where ݀௜  is the a priori expected distance between electrodes i and i+1, which is 
specific to the model of the array; and ߙଶ = 2.0. This constraint only permits child 
nodes with distance to the candidate path’s endnode ࢖௜ that falls within bounds of the 
expected distance between electrodes. The child nodes must obey further hard con-
straints that that ࢉ ∉ ࢉ ;is not already in the path ࢉ ,i.e ,࢖ ∉  ࢓ medial axes ∀ {࢓}
that do not include ࢖௜ but do include any of the points in {࢖}ଵ௜ିଵ, which is a con-
straint that prevents the path from containing disjoint groups of nodes that belong to 
the same medial axis ࢓ (defined above in Section 2.2), i.e., a medial axis cannot be 
revisited by a path; and a final constraint that if ࢉ, ௜ିଵ࢖ ,௜࢖ ∈  is a valid ࢉ then ,࢓
child node only if ࢉ,  which ,࢓ ௜ିଵ are monotonically ordered in medial axis࢖ ௜, and࢖
is a constraint that prohibits paths that are following a given medial axis from chang-
ing directions on that curve. The underlying assumption forming the basis for last two 
medial axis-based constraints is that the ordering of electrodes belonging to the same 
medial axis should match their order in the final path.  

The cost function for a child node that obeys the above hard constraints is defined 
as a combination of intensity and shape-based cost terms, 

 Costଵሺࢉ, ሻ࢖ = CIሺࢉ, ሻ࢖ + CSሺࢉ,  ሻ, (2)࢖

where 

 CIሺࢉ, ሻ࢖ = ൫ூmaxିூሺࢉሻ൯ଶ଴଴଴ × ቄߙଷ ݅ ≥ ସ1ߙ else  , (3) 
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 CSሺࢉ, ሻ࢖ = ହߙ ቀ1 − ቄCosሺࢉ, ሻ࢖ Cosሺࢉ, ሻ࢖ < 0.51 else ቁ + ൜−6ߙDstሺࢉ, ሻ࢖ Dstሺࢉ, ሻ࢖ < ,ࢉ7Dstሺߙ   0 ሻ࢖    else , (4) 

 

 Cosሺࢉ, =ሻ࢖ ሺ࢖ିࢉ೔ሻ∙ሺ࢖೔ି࢖೔షభሻԡ࢖ିࢉ೔ԡԡ࢖೔ି࢖೔షభԡ ,    Dstሺࢉ, ࢉሻ=ԡ࢖ − ௜ԡଶ࢖ − ݀௜ , (5) 

 ,ଷି଻ are set to 0.1, 14ߙ ௜ is defined as in Eqn. (1), and݀ ,࢖ i is the length of path ,ࢉ ሻ is the intensity of the image atࢉሺܫ ,max is the maximum intensity of the ROI imageܫ 
1.0, 5.2, and 2.0 after training. Eqn. (3) assigns lower cost to child nodes that corre-
spond to higher image intensity. The conditional term decreases the importance of 
image intensity for the last ࡸ + 1 −  ସ electrodes in the path. This term is includedߙ
because the last few electrodes are typically less bright in CT because fewer internal 
wires extend to the end electrodes compared to those at the base. The first term in the 
shape cost function, Eqn. (4), is a smoothness term that punishes child nodes that 
would create a bend sharper than 45° if added to ࢖. The second term punishes child 
nodes that are not the expected distance from ࢖௜. 

With the cost function and neighbor constraints defined, Algorithm 1 is executed 
(with ࡼ = 500) to locate the coarse position of each electrode. Each of the ࢂ candi-
date points in {࢜} (see Section 2.2) could potentially correspond to electrode 1. Thus, 
we treat each point in {࢜} as a seed node and execute Algorithm 1 ࢂ times in parallel, 
once for each of those seeds. Since the algorithm is pose invariant, there is potential to 
find low cost paths that are ordered undesirably from end to base. Such paths are de-
tected using the orientation of the cochlea, which is known from the registration with 
the know volume, and these are discarded from the resulting set of ࢂ paths. The final 
path is then selected from among the remaining paths as the one with minimum cost.  

2.4 Electrode Localization Refinement  

The above process is able to only coarsely identify electrode location due to imperfect 
selection of candidate points {࢜} and the fact that the above process does not permit 

Algorithm 1. Path finding algorithm 
Input: s = seed node, L = # of nodes in final path, and P = maximum # of candidate paths  
Initialize list of candidate paths {࢖} = ൛{࢙,Costሺ࢙ሻ}ൟ 
for L-1 iterations 

Grow 
Initialize new list of candidate paths {ࢗ} = { } 
for each candidate path in {࢖} 

Find child nodes of {ࢉ} ,࢖ = {݊,Costሺ݊,  {ሻ࢖
for each node in {ࢉ} 

Add new path to list {ࢗ} = ࢖ሺ | {ࢗ} +  ሻࢉ
end 

end 
Prune 

Sort candidate paths in {ࢗ} by increasing path cost 
Update {࢖} =  ࡼ૚{ࢗ}

end 
Output: ࢖૚ 
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sub-voxel precision. Thus, we use a secondary path finding procedure to refine the 
resulting coarse path. In this step, a set of nodes are defined by sampling a fine rec-
tangular grid of points around each of the L coarse electrode estimates, {࢒௜}௜ୀଵࡸ , as {࢔}௜ = ௜࢒} + ,ݔሾ଼ߙ ,ݕ ሿ}௫,௬,௭∈ሾିఈవ,ఈవሿݖ , where ଼ߙ = 0.12  mm and ߙଽ = 3 . The path 
finding step aims to refine the estimated position ࢒௜ of each ith electrode with one of 
the nearby candidates {࢔}௜. The cost function is defined as 

 Costଶሺࢉ, ሻ࢖ = ሻ൯ࢉሺܫఙ൫ܩ− + ൜−10ߙDstሺࢉ, ሻ࢖ Dstሺࢉ, ሻ࢖ < ,ࢉ11Dstሺߙ   0 ሻ࢖    else , (6) 

where ܩఙ൫ܫሺࢉሻ൯ is the Gaussian filter response of the image at ࢉ with ߪ = 0.3 mm, Dstሺࢉ, ଵ଴ߙ ,ሻ is defined as in Eqn. (5)࢖ = 50, and ߙଵଵ = 20. The first term in Eqn. 
(6) represents a scaled blob finding filter, and the second term applies the same geo-
metric constraints on the spacing of the electrodes used in Section 2.3. The children 
nodes {ࢉ} of each node in {࢔}௜ are simply defined as the set of all nodes in {࢔}௜ାଵ. 
All nodes in {࢔}ଵ  are treated as seed nodes and Algorithm 1 is executed with ࡼ = 500 . The resulting path refines the coarse electrode localization determined 
above and represents the automatically selected final position of the electrodes. 

2.5 Parameter Selection and Validation  

Initial values for all parameters were determined heuristically. Then, the parameters 
were optimized sequentially and iteratively until a solution was found where each 
parameter is locally optimal with respect to mean electrode localization error in the 
training dataset. The range around each value was updated when the selected value 
was changed. Step size was uniform over the range as shown in Fig2bc. The coarse 
localization step parameters were optimized first, followed by the refinement step 
parameters. After all parameters were fixed, the method was applied to the testing set 
and mean and max electrode localization errors were measured to validate the results. 

3 Results 

Figure 2 shows the results of the parameter tuning procedure. As can been seen in the 
figure, a local optimum of each parameter was successfully obtained on the training 
dataset. Several of the parameters in panel (b), ߙଶ, ,ଷߙ -ହ, and ܲ, and several parameߙ
ters in (c), ߙଵ଴,  ଵଵ, and ܲ, were relatively insensitive around the minimum and theirߙ
tuning curves have regions that are nearly flat and have high overlap. Selection of the 
other parameters was more crucial to obtaining the most accurate results. 

Table 1 shows the overall segmentation error results. As shown, on our testing  
set our method is able to achieve mean electrode localization errors of 0.13 mm for 
Mid-Scala arrays and 0.09 mm for 1J arrays. These errors are slightly larger than 
intra-rater variability levels of 0.09 and 0.08 mm for Mid-Scala and 1J arrays. The 
maximum error in locating any electrode over all ten testing datasets was 0.33 mm. 
Given that the voxel size of these images is 0.4 x 0.4 x 0.4 mm3, our worst electrode 
localization error was sub-voxel. An example Mid-Scala result is shown in Figure 1c. 
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4 Conclusions 

In this work, we have proposed a novel and fully automatic cochlear implant elec-
trode localization method. Our experiments show that our method is extremely  
accurate, even when applied to clinical images. Compared to previous electrode local-
ization techniques that are only applicable to certain electrode models [8,9], the meth-
od we propose handles varying electrode array geometries and is generally applicable. 
Our approach is also fast, requiring only 3-5 seconds of processing time after a ~2 
minute registration procedure is used to localize the ROI. The novel path finding al-
gorithm we propose permits shape constraint and could be used for other applications. 

Future studies will involve testing our method with images acquired with different 
scanners and of subjects with different implant models. We also plan to apply our 
method to large numbers of datasets to facilitate studying how the location of individ-
ual electrodes correlates with outcomes with the goal of developing technologies that 
can improve hearing outcomes with CIs.  

Dataset Array type
Coarse Localization 

Mean error (mm)
Coarse Localization 

Max error (mm)
Final Localization 
Mean error (mm)

Final Localization 
Max error (mm)

Mid-Scala 0.27 0.67 0.12 0.31
1J 0.26 0.72 0.12 0.27

Mid-Scala 0.26 0.72 0.13 0.33
1J 0.28 0.62 0.09 0.19
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Parameters Initial value Final value Range
0.08 0.08 [0.03,0.13]

2 2 [0.5,3.5]
0.1 0.1 [0.05,0.55]
14 14 [7,17]
1 1 [0.5,1.5]
4 5.2 [3.2,7.2]

2 2 [0.5,3.5]
500 500 [100,900]

0.12 0.12 [0.02,0.22]
3 3 [1,11]

100 50 [25,75]
50 20 [10,60]
0.3 0.3 [0.1,0.6]
100 500 [250,750]

଻ܲߙ଺ߙହߙସߙଷߙଶߙଵߙ
ߪଵଵܲߙଵ଴ߙଽߙ଼ߙ

Fig. 2. Shown in (a) is a table of the various parameters used in the methods for coarse locali-
zation (top group) and refinement (bottom group). (b) and (c) show errors when testing each
parameter (color-codes in (a)) over the range specified in (a). The red hash mark indicates the
final parameter value. 

(a) 

(b) 

(c) 

Table 1. Automatic electrode localization results 
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