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Abstract. Deformable registration between pre-operative and follow-
up scans of glioma patients is important since it allows us to map post-
operative longitudinal progression of the tumor onto baseline scans, thus,
to develop predictive models of tumor infiltration and recurrence. This
task is very challenging due to large deformations, missing correspon-
dences, and inconsistent intensity profiles between the scans. Here, we
propose a new method that combines registration with estimation of pa-
tient specific templates. These templates, built from pre-operative and
follow-up scans along with a set of healthy brain scans, approximate the
patient’s brain anatomy before tumor development. Such estimation pro-
vides additional cues for missing correspondences as well as inconsistent
intensity profiles, and therefore guides better registration on pathological
regions. Together with our symmetric registration framework initialized
by joint segmentation-registration using a tumor growth model, we are
also able to estimate large deformations between the scans effectively.
We apply our method to the scans of 24 glioma patients, achieving the
best performance among compared registration methods.

1 Introduction

Glioblastoma is a very aggressive brain tumor, which infiltrates well beyond
visible tumor boundaries. Finding imaging signatures that can predict tumor
infiltration and subsequent tumor recurrence is very important in treatment of
brain gliomas, as it could potentially affect treatment decisions at baseline pa-
tient evaluations [1]. This necessitates the development of accurate deformable
registration methods that establish spatial correspondences between the pre-
operative and follow-up brain scans, which allow follow-up information to be
mapped onto baseline scans and elucidate imaging signatures for more aggres-
sively infiltrated tissue, and accordingly inform pre-surgical planning procedures.
This process must account for large deformations present in the pre-operative
scan due to mass effect by tumor, as well as in the follow-up scan after tumor
resection and tissue relaxation. Moreover, edema and tumor infiltration further
confound the anatomy around the tumor. Even though the scans come from the
same patient, this intra-subject registration task is very challenging due to these
large deformations, missing correspondences, and inconsistent intensity profiles
between the scans.
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Most existing registration methods exclude the pathological regions to deal
with missing correspondences [9,3,7]. The concept of guiding registration via
segmentation is used by methods performing intra-subject registration of scans
capturing an evolving tumor [7] or inter-subject registration of scans for healthy
brains and the one with pathology [9,3]. However, it is difficult to estimate
large deformations on brain tumors by simply excluding the pathology. To take
account of pathological regions, there exist different approaches performing inter-
subject registrations by inpainting pathological regions [11] or estimating low-
rank images iteratively [6]. For intra-subject registrations, Kwon et al. [4], design
a registration framework specific to the pre-operative and post-recurrence scans.
This method estimates a patient specific probabilistic prior aligned with the
follow-up scan and jointly segments and registers with the pre-operative scan by
growing a tumor from the location of resection. However, pathological regions,
such as edema, are excluded in the matching cost, as one could not establish
correspondences for these regions. As a result, the deformation field is solely
determined through associated displacements of surrounding tissues via regular-
ization, a procedure that could potentially compromise registration accuracy.

In this paper, we propose a new method combining registration and estimation
of patient specific templates for pre-operative and follow-up brain tumor scans.
As the follow-up scan is freed from an often huge mass effect and intense peri-
tumoral edema by surgical resection of the glioma, we assume that the follow-up
scans contain enough information for us to estimate the patient’s brain anatomy
before tumor development, using informative prior knowledge of brain structure
provided by a set of healthy brain scans. Such estimation could be propagated
to the pre-operative space, given the reasonable mapping between scans. Our
method estimates this mapping by registering pre-operative and follow-up scans
by excluding pathological regions estimated by [4] in calculating matching cost.
After estimating patient specific templates on both scans, pathological regions
that have been confidently estimated no longer need to be masked out in the
matching cost, providing extra information to the registration process in order
to identify correspondences. Note that we use the term “inpainting” for our
estimation of patient specific templates, considering the similarities of the task
that fills missing areas using prior knowledge.

In the rest of this paper, we describe the segmentation methods for pre-
operative and follow-up brain tumor scans in Sec. 2 and our combined registra-
tion and inpainting framework in Sec. 3. In Sec. 4, we present our quantitative
and qualitative evaluations and conclude the paper in Sec. 5.

2 Segmentation of Pre-operative and Follow-Up Scans

In this section, we estimate posterior probabilities of the pre-operative (baseline)
scan B and follow-up scan F and the initial mapping between B and F based
on [4]. As F is usually closer to the normal anatomy by the surgical resection of
the glioma, we firstly segment F by aligning an atlas of the healthy population
to F . Then we segment B and simultaneously register B and F by simulating
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Fig. 1. An example of posteriors and estimated patient specific templates by inpainting
pathological regions. For the pre-operative scan B, we show subject scans in (a)-(b),
posteriors for tumor (TU), edema (ED), and pathological regions (PT) in (c)-(e), pa-
tient specific templates in (f)-(g). In (f)-(g), tumor regions are masked as they don’t
belong to the normal anatomy. For the follow-up scan F , we show subject scans in (h)-
(i), posteriors of cavity (CA) with tumor, edema, and pathological regions in (j)-(l),
patient specific templates in (m)-(n).

tumor growths on this aligned atlas. We denote by ‘Tt|x’ the tissue type being
t at voxel x, namely ‘T = t|x’. The atlas pA is defined as a set of probability
maps pA(Tt|x) for white matter (WM), gray matter (GM), and cerebrospinal
fluid (CSF ), i.e. t ∈ {WM,GM,CSF}.

For segmenting F , we define spatial probabilities pF (Tt|x) of F for each tissue
type t by combining pA with a simple model for pathology described in [4]. This
model generates a spatial probability for pathological regions, such as cavity
(t=CA), tumor recurrences (t=TR) and edema (t=ED), using the generalized
logistic function given the approximated center point and radius for each re-
gion of the cavity or tumor recurrence. We then estimate the mapping h∗

F and
the posterior probabilities pF (Tt|F,x) by registering pF (Tt|x) with F via the
expectation-maximization (EM) algorithm. We show an example of posteriors
for pathological regions in Fig. 1 (j)-(l).

To segment B and estimate the initial mapping between B and F , we apply a
joint segmentation-registration method [5] on the atlas aligned with F , defined
as pS(Tt|x) � pA(Tt|h∗

F (x)). This method generates the spatial probabilities of
tumor (t=TU) and edema (t=ED) by applying a tumor growth model on the
space of F and combine them with pS to define spatial probabilities pB(Tt|x) of
B. Similar to the method for F , it estimates the mapping h∗

B and the posterior
probabilities pB(Tt|B,x) by registering pB(Tt|x) with B via the EM algorithm.
Then the initial mapping between B and F , denoted by f0

BF , is obtained by
concatenating h∗

B and the mapping u∗ representing the mass effect from the
tumor growth model. The mapping f0

BF approximates the mapping between B
and F as the spatial probabilities pS having smoothed anatomical information
is used for the alignment instead of F . We show an example of posteriors for
pathological regions in Fig. 1 (c)-(e).
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3 Combined Registration and Inpainting Framework

Having defined the posterior probabilities pB and pF and the initial mapping
f0
BF , we now describe our combined registration and inpainting framework to

obtain final mapping fBF . To determine the large deformation reliably, we apply
a symmetric registration scheme to match both scans to a center coordinate
system ΩC . Then we split the mapping fBF into a mapping from ΩC to ΩB ,
fCB and a mapping from ΩC to ΩF , fCF as follows:

fBF � fCF ◦ (fCB)
−1, (1)

where “◦” concatenates two mappings. For registration, we model an energy
function E(·) composed of a correspondence term EC , a pathology term EP ,
and a smoothness term ES and estimate optimal mappings {f∗

CB,f
∗
CF } by

minimizing E(·):

{f∗
CB,f

∗
CF } = arg min

fCB ,fCF

E(fCB,fCF ;B,F, pB, pF ) . (2)

Then we calculate optimal mappings f∗
BF and f∗

FB � (f∗
BF )

−1 using (1). Our
framework firstly estimates the optimal mappings while masking out correspon-
dences on the pathological regions using pB and pF , then we estimate patient
specific templates by inpainting pathological regions of B and F using aligned
healthy brain sets. After estimating patient specific templates, we update the op-
timal mappings by including correspondences on the pathological regions. The
remainder of this section describes our inpainting method and then our energy
function in detail.

To inpaint pathological regions of F , let IF = {In}Nn=1 be a set of N healthy
brain templates aligned with F by applying a nonrigid registration method [2]
(with the histogrammatching) to each pair of In and F with the foregroundmask
computed using pF . Based on our observation that F is closer to the normal
anatomy compared with B, we register healthy brain templates on F rather than
B. We also provide the foreground mask computed using pF . For each voxel x ∈
ΩF having non-zero posteriors of pathological regions (t ∈ {CA, TR,ED}), we
find the index of the best matching template n∗

F (x) by minimizing patch-based
distances between In and F and between In and B ◦ f∗

FB (aligning B into F ).

n∗
F (x) = argmin

n
DSSD(F, In,x) + α ·DSSD(B ◦ f∗

FB, In,x) , (3)

where DSSD(·, ·,x) is the sum of squared distance (SSD) between patches of
two input scans centered on x. After estimating n∗

F (x) for pathological regions,
we synthesize these regions of F by simply averaging the best matching patches
while other advanced methods could also be applied [10]. To inpaint B, we align
the set of healthy brain templates into B by applying f∗

BF to each template,
i.e. IB = {In ◦ f∗

BF }Nn=1. Similar to the case of F , the index of the best match-
ing template n∗

B(x) is estimated for each voxel having non-zero posteriors of
pathological regions (t ∈ {TU,ED}) by

n∗
B(x) = argmin

n
DSSD(B, In ◦ f∗

BF ,x) + α ·DSSD(F ◦ f∗
BF , In ◦ f∗

BF ,x) . (4)
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In (3) and (4), the best matching patch would be consistent with both scans when
α > 0. We iterate the estimation of the index {n∗

F , n
∗
B} by applying synthesized

scans F and B on the previous iteration in (3) and (4). On the first iteration, we
set α = 0 and compute DSSD only on the healthy regions (when posteriors of
pathological regions are zero). If there exists limited healthy brain regions in the
patch, we adaptively double the size of the patch until including enough healthy
regions. For the following iterations, we set α = 1 and compute DSSD on entire
brain regions. This approach improves the coherence of the synthesis as shown
in [12]. In Fig. 1 (f)-(g) and (m)-(n), we show inpainted scans for B (a)-(b) and
F (h)-(i), respectively.

Now we describe each energy term of E(·) in (2) and then how to optimize
it. For the correspondence term EC , we apply the normalized cross correlation
(NCC) distance DNCC between B and F aligned on ΩC and the cost function
masking using posterior probabilities on the pathological regions (PT):

EC(fCB,fCF ;B,F, pB, pF ) �
∫
x∈ΩC

{
1− pB,PT (fCB(x))

}

·
{
1− pF,PT (fCF (x))

}
·DNCC(B ◦ fCB, F ◦ fCF ,x) dx , (5)

where p·,PT is a summation of posteriors for tissue types to be excluded in cal-
culating EC . Before the inpainting stage, we include whole pathological regions
in pB,PT and pF,PT to exclude those regions from calculating correspondences.
After the inpainting stage, we only include the tumor region (t=TU) in pB,PT

and the cavity region (t=CA) in pF,PT , so the inpainted regions are used for
computing EC . The pathological term EP penalizes mismatched regions between
posteriors of tumor in B (pB,TU ) and cavity in F (pF,CA):

EP (fCB,fCF ; pB, pF ) �
∫
x∈ΩC

{
pB,TU (fCB(x))− pF,CA(fCF (x))

}2
dx . (6)

The smoothness term ES(fCB,fCF ) is a regularizer based on Tikhonov operator
which measures the smoothness of the mappings fCB and fCF . To minimize
E(·) in (2), we use the discrete-continuous optimization method proposed in [4].
This method updates the initial mapping f0

BF by finding a global solution on the
coarse search space through discrete optimization and then refining the solution
using continuous optimization.

4 Experiments

We tested our method on a set composed of pre-operative and follow-up MR
brain scans of 24 glioma patients. For preprocessing, we co-registered all four
modalities (T1, T1-CE, T2, and FLAIR), corrected MR field inhomogeneity, and
scaled intensities to fit [0, 255]. For all 24 subjects, an expert manually segmented
tumor on the pre-operative scan and cavity on the follow-up scan. We computed
the Dice score between the tumor region and the cavity region aligned to the
pre-operative scan by the method. Also, two experts placed landmarks on the
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Fig. 2. Box-and-whisker plots of Dice scores on segmentation of pathology (left) and
average landmark errors (middle and right). Bars start at the lower quartile and end at
the upper quartile with the white line representing the median. Black dots represent the
mean errors. AFFINE shows the errors of the affine registration and RATER denotes
the landmark errors of the second rater.

scans of 10 randomly selected subjects. One expert defined 20 landmarks inside
30 mm distance to the tumor boundary on the pre-operative scan. Then both
experts independently found corresponding landmarks in the follow-up scan. The
landmark error is defined as the mean distance between the landmarks aligned
by the method and the corresponding ones set by the expert.

Our method, denoted as CRI, requires minimal user inputs including seed
point and radius for each tumor and initial mean values for each tissue type for
segmenters described in Sec. 2. The correspondence term (5) is only based on T1
and T1-CE as the other two modalities (T2 and FLAIR) decrease the accuracy
due to their lower resolutions. We thus applied inpainting on T1 and T1-CE
only. For inpainting, we used N = 64 T1 healthy brain templates, and applied 10
iterations which is sufficient to create coherent synthesis. We represent PORTR
as the method runs without inpainting, which corresponds to [4], and CRI-Ind
as applying independent inpainting by always setting α = 0 in (3) and (4).
We also applied state-of-the-art registration methods including DRAMMS [8]
and ANTS [2] on our test set. For both methods, we provide the foreground
mask to be used for masking out pathological regions.

Fig. 2 (left) shows results on Dice scores for the pathological regions. The
average Dice score of CRI shows 56%, 54%, and 52% higher than AFFINE,
DRAMMS, and ANTS, respectively. CRI performed significantly better than
the other comparing methods (p < 0.0001). Fig. 2 (middle and right) shows
results on landmark errors. In the middle figure, CRI has the lowest mean error,
closest to that of RATER and its mean error is 46% lower than DRAMMS
and 39% lower than ANTS. In the right figure, the method using inpainting,
CRI and CRI-Ind performed better than PORTR the one without inpainting.
The mean error of CRI is 7% lower than PORTR and 2% lower than CRI-
Ind. CRI performed significantly better than PORTR (p < 0.01). In Fig. 3,
we visually compare the registration results of selected subjects. The aligned
follow-up of CRI (e) matches better with the pre-operative scan (a) than those
of other methods (c)-(d). Also, estimated patient specific templates shown in
(f)-(g) shows reasonable restorations of the normal anatomy specific to the scan.
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Fig. 3. Registration results for each method. In each row, we show T1-CE images of the
pre-operative scan B in (a) and the follow-up scan F in (b). (c)-(e) show the registered
F using DRAMMS, ANTS, and CRI, respectively. For B and registered F , boundaries
of segmented tumor is overlaid. (f)-(g) show B and F inpainted by CRI. In (f), tumor
regions are masked as they don’t belong to the normal anatomy.

5 Conclusion

In this paper, we proposed a new method combining registration and estimation
of patient specific templates for pre-operative and follow-up brain tumor scans.
We estimated large deformations on the pre-operative scan using the symmetric
registration framework initialized by the joint segmentation-registration which
grows a tumor on the atlas aligned on the follow-up scan. The registration on
tumor regions of the pre-operative scan was guided to match with cavity on
the follow-up scan by the pathological term EP . To estimate the registration
on the entire pathological regions reliably, we estimated patient specific tem-
plates by inpainting pathological regions using the patch-based synthesis based
on the healthy brain population. Therefore, we were able to explicitly address
missing correspondences and inconsistent intensity profile problems. Our method
was evaluated on the scans of 24 glioma patients and performed the best among
compared registration methods.
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