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Abstract. Cortical surface registration or matching facilitates atlasing,
cortical morphology-function comparison and statistical analysis. Meth-
ods that geodesically shoot surfaces into one another, as currents or
varifolds, provide an elegant mathematical framework for generic surface
matching and dynamic local features estimation, such as deformation
momenta. However, conventional current and varifold matching methods
only use the normals of the surface to measure its geometry and guide the
warping process, which overlooks the importance of the direction in the
convoluted cortical sulcal and gyral folds. To cope with the stated limi-
tation, we decompose each cortical surface into its normal and tangent
varifold representations, by integrating principal curvature direction field
into the varifold matching framework, thus providing rich information for
the direction of cortical folding and better characterization of the cortical
geometry. To include more informative cortical geometric features in the
matching process, we adaptively place control points based on the surface
topography, hence the deformation is controlled by points lying on gyral
crests (or “hills”) and sulcal fundi (or “valleys”) of the cortical surface,
which are the most reliable and important topographic and anatomical
landmarks on the cortex. We applied our method for registering the de-
veloping cortical surfaces in 12 infants from 0 to 6 months of age. Both
of these variants significantly improved the matching accuracy in terms
of closeness to the target surface and the precision of alignment with
regional anatomical boundaries, when compared with several state-of-
the-art methods: (1) diffeomorphic spectral matching, (2) current-based
surface matching and (3) original varifold-based surface matching.

1 Introduction

Advancing our understanding of the cerebral cortex development, neuroplas-
ticity, aging and disorders is of tremendous value in modern neuroscience and
psychology. The ever-growing acquisition of neuroimaging datasets mined for
morphometric and functional brain studies continues to churn out wide spec-
trums of computational neuroanatomymethods. In particular, registration meth-
ods have been exhaustively developed in order to better align the imaging data
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to a common space, where statistical analyses can be performed. Due to the
remarkable convolution and inter-subject variability of cortical foldings, volume-
based warping typically produced poorly aligned sulcal and gyral folds [1]. In
contrast, cortical surface-based registration can better align the convoluted and
variable cortical folding, owing to respecting the inherent topological property
of the cortex during registration. Recently, Lombaert et al. incorporated more
local geometric features in an exact surface matching framework, which esti-
mated a diffeomorphic correspondence map via a simple closest neighbor search
in the surface spectral domain [2]. Its accuracy measured up to the performance
of Freesurfer [3] and Spherical Demons [4]. However, both of these methods
[3,4] do not directly operate on the cortical surface, as they inflate each cortical
hemisphere into a sphere and then register them in the spherical space, which
inevitably introduces distortion to surface metrics.

On the other hand, inexact surface matching methods, based on geodesically
shooting one surface into another, present a spatially consistent method for es-
tablishing diffeomorphic correspondences between shapes and measuring their
dissimilarity. In [5], the current metric provided groundwork for developing a
generic diffeomorphic surface registration and regression model without having
to establish the point-to-point surface landmark correspondence on the longitu-
dinal shapes. One key strength of this mathematical model is that it measures
dissimilarities between complex shapes of different dimensions such as distribu-
tions of unlabelled points (e.g. anatomical landmarks), curves (e.g. fiber tracts)
and surfaces (e.g. cortices); thereby, simultaneously and consistently tracking lo-
cal deformations in a set of multi-dimensional shapes within a large deformation
morphometric mapping (LDDMM) framework. One drawback of this method
is that it annihilates the sum of two shapes with opposing normals. Recently,
Charon et al. in [6] solved this problem by proposing the use of the varifold
metric –a variant of the current metric– for matching shapes with inconsistent
orientations. Surfaces are encoded as a set of non-oriented normals, which are
embedded into a space endowed with the varifold dissimilarity metric.

However, the conventional varifold matching framework developed in [6,7] does
not consider the principal curvature direction of the deforming surface, whereas
this represents a key feature of the convoluted cortical surface by encoding the lo-
cal direction of sulcal and gyral folds that marked previous work on the cortex [8].
In this paper, we propose a novel surface matching method by extending the previ-
ous work of [6] and [7] for integrating topography-based surface features to achieve
a more anatomically consistent and accurate matching of cortical surfaces in in-
fants with dynamic cortex growth. First, we automatically and adaptively lay the
control points on the cortex high hills (gyral crests) and deep valleys (sulcal fundi)
through a supervertex surface partition for guiding the shape deformation from
a source surface to a target surface. Second, we add a novel varifold surface rep-
resentation encoded by its principal curvature direction, which will be combined
to its normal varifold representation to solve a variational problem leading to a
gradient shape matching. Finally, we compare the accuracy of our method with:
(1) diffeomorphic spectral cortical matching [2], (2) current-based surface
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matching [5], and (3) original varifold-based surface matching methods [6,7] in
terms of geometric concordance between target and warped shapes and alignment
with the boundaries of anatomical cortical regions.

2 Varifold-Based SurfaceMatching

The concept of varifold in geometric measure theory was recently used to solve
shape matching problems in [6,7]. We begin by reviewing the basic concepts for
matching two shapes using the varifold metric as exposed by [6,7].

Surface Representation as a Varifold. In the varifold framework, a surface S
is embedded in a vector space E (here R3) and encoded by a set of its nonoriented
normals n(x) attached at each of its vertices x (Fig. 1). These nonoriented vec-
tors belong to the Grassman manifold Gd(E) (the space of non-oriented tangent
spaces), which in the case of surfaces, is defined as the quotient of the unit sphere
S in R

3 by two group elements {±IdR3}. This quotient space Gd(E) contains el-
ements u that are equivalent to u/|u| and −u/|u|, denoted as ←→u . Any surface is
thereby represented as a distribution of non-oriented spaces tangent to each of its
vertices and spread in the embedding space E.

In a similar construction of currents, a varifold surface is defined as a continuous

linear form that integrates a vector field ω ∈ W : S(ω) =
∫
ΩS

ω(x,
←−→
n(x))|n(x)|dx.

The vector space W is defined as a Reproducing Kernel Hilbert Space (RKHS)
on the square-integrable space C0(E × Gd(E)). The reproducing kernel k on the
space of varifolds is the tensor product of kernels on E and onGd(E): k = ke ⊗ kt,
where ke denotes a positive continuous kernel on the space E (same as currents)
and kt denotes an additional linear continuous kernel of non-oriented vectors on
the manifold Gd(E). In particular, for x, y ∈ E and ←→u ,←→v ∈ Gd(E), the vari-

fold kernel is defined as k((x,←→u ), (y,←→v )) = ke(x, y)
(

uT v
|u||v|

)2
, where ke(x, y) =

exp(−|x− y|2/σ2
e) is a Gaussian scalar kernel that decays with a rate σe. This ker-

nel parameter controls the scale under which geometric details are ignored when
measuring the surface using the varifold metric. The space of varifold is then de-
fined as the dual spaceW ∗ (i.e. the space of linearmappings fromW intoR). By the
reproducing property, any varifold in W ∗ is defined as: ω(x,←→u ) = δ(x,←→u )(ω) =<
k((x,←→u ), ·), ω >W , where δ(x,←→u ) defines a Dirac varifold that acts onω. A surface
S withN meshes (triangles) is then approximated by the sum ofDirac varifolds pa-
rameterized by the positions xi of the centers of its meshes and their corresponding
normals:S =

∑N
i=1 δ(xi,

←→ni ). The Dirac varifold does not depend on the orientation
given to each triangle. More importantly, the varifold space is endowed with a dot-
product that induces a norm used for measuring the difference between pairs of
shapes S =

∑
i δ(xi,

←→ni ) and S′ =
∑

j δ(x′
j ,
←→
n′
j )
:

< S, S′ >W∗=
∑

i

∑

j

ke(xi, x
′
j)
(nT

i n
′
j)

2

|ni||n′
j |

(1)

Varifold Registration Using LDDMM. Geodesically shooting a source vari-
fold S0 onto a target varifold S1 is fully defined by the initial momenta of
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Fig. 1. Cortical surface representations. (a) The surface is represented using its oriented
normals located at the centers of its meshes (i.e. a current) or (b) using its nonoriented
normals (i.e. a varifold). (d) We propose to represent the surface S as a sum of two di-
rectional varifolds (S

←→n and S
←→κ ): one generated by its nonoriented normals (b) and the

other by the nonoriented principal curvature direction (c).

deformation p0. Geodesics (optimal deformation trajectories) are the solution of

the flow equation: dφt(x)
dt = vt ◦ φt(x), t ∈ [0, 1] with φ0 = IdR3 . φt is the dif-

feomorphism which acts on each mesh center x of S0 to deform into S1 = φ1 · S0.
The time-varyingdeformation velocity vt belongs to theRKHSV , densely spanned
by a reproducing Gaussian kernel kV which decays at a rate σV (the scale under
which there is no deformation). In [7], the dense deformation was guided by a set
of control points {ck}k=1,...,Nc that are estimated along with the initial momenta
of deformation and the positions of the vertices in the warped surface. The veloc-
ity at any point x ∈ E is defined as the sum of the scalar functions kV (located
at a set of control points {ck}1,...,Nc) convoluted with their deformation momenta

{pk}: v(x) =
∑Nc

k=1 kV (x, ck)pk.

Objective Functional. The estimation of the optimal initial deformation mo-
menta, optimal control points and optimal warped vertices’ positions is achieved
through minimizing the following energy functional:

J = 1
2

∫ 1

0
|vt|2V dt+ γ||φv

1 · S0 − S1||2W∗

The first energy term forces the warping trajectory to be smooth and the
second makes the trajectory end close enough to the target surface. The param-
eter γ defines the trade-off between both of these terms. The objective functional
J is minimized through a gradient descent algorithm as in [7].
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3 Topography-Based Cortical Surface Matching Using
VarifoldMetric

Surface Multidirectional Varifold Representation. To better guide the ge-
ometric varifold warping, we propose a novel formula for surface varifold represen-
tation by adding the principal curvature direction κ: S(ω) = S

←→n (ω) ⊕ S
←→κ (ω),

where S
←→n (ω) =

∫
ΩS

ω(x,
←−→
n(x))|n(x)|dx and S

←→κ (ω) =
∫
ΩS

ω(x,
←−→
κ(x))|κ(x)|dx.

Decomposing the surface intobothof these ‘orthogonal’ componentsmeans that,
instead of reading the shape of a surface in one direction using only the set of nor-
mals associated with its meshes, we perform an additional tangential reading in
the principal curvature direction; thereby, collecting more geometric features that
help register cortical surfaces through capturing important orientation informa-
tion of cortical folding (Fig. 1). However, unlike the computation of surface nor-
mals, the estimation of the principal direction is challenging as it may be noisy and
ambiguous at flat cortical areaswhere bothminimum andmaximum principal cur-
vatures are very small (Fig. 2). To solve this problem, we first compute the princi-
pal directions and curvature derivatives using an efficient finite difference method.
Second, we adopt a robust method developed in [9] to estimate smooth principal
curvature directions that uniformly point towards the direction parallel to its folds
–without diverting them from the original principal direction field. These are es-
timated through solving the variational diffusion equation: Ed =

∫
ΩS

|∇κ(x)|2 +
f(x)|κ(x)− η(x)|2dx with respect to κ(x) · n(x) = 0; where η denotes the original
principal curvature direction, κ represents the diffused principal curvature direc-
tion, and f(x) is set to the absolute value of the principal curvature at each vertexx.
This propagates reliable and informative principal directions at sulcal bottoms and
gyral crests to flat regions with unreliable principal directions, thereby generating
a smooth tangential varifold which provides rich information of cortical folding.
Subsequently, the varifold dot-product between two surfaces S and S′ becomes:

< S, S′ >W∗= 1
2

∑
i

∑
j ke(ci, c

′
j)

(nT
i n′

j)
2

|ni||n′
j | + 1

2

∑
i

∑
j ke(ci, c

′
j)

(κT
i κ′

j)
2

|κi||κ′
j|

Topography-Based Control Points Selection. Instead of estimating the op-
timal control points near the most variable parts of the mean shape for both source
and target shapes during energyminimization as in [7], we explore the highly vari-
able topography of the cortical surface and adaptively place them on high gyral
crests and low sulcal fundi. This allows for better exploration of the topography
in the deforming cortical surface. We then feed them as inputs to the objective
functional J . For this purpose, we adopt the supervertex cortical surface partition
method developed by [10]. Supervertices seeds are uniformly placed on cortical sur-
face and then a partition, that aligns the supervertices boundaries with gyral crests
and sulcal fundi, is generated via minimizing an energy function using graph cuts.
For our application, we choose to place the control points in cortical areas that will
guide the deformation of the multidirectional surface varifold around each super-
vertex edge located at gyral crests and sulcal bottoms of the cortical surface by
automatically checking the maximum principal curvature value (Fig. 2).
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Fig. 2.Key elements of the proposed method. (a) Surface partition into supervertices and
the control point placement on gyral crests and sucal fundi. Noisy principal direction (b)
transformed into a smooth principal direction field (c).

Objective Functional.To estimate the initial momenta of deformation attached
to each topographic control point placed on the target surface, we now minimize
the following new energy using the numerical scheme proposed in [7]:

Jnew = 1
2

∫ 1

0 |vt|2V dt+ γn||φv
1 · S

←→n
0 − S

←→n
1 ||2W∗ + γκ||φv

1 · S
←→κ
0 − S

←→κ
1 ||2W∗

4 Results

Data and Parameters Setting. We evaluated the proposed framework on in-
ner cortical surfaces of 12 infants, each with MRI scans acquired at around birth
and 6 months of age. We empirically fixed the current and varifold parameters at
the same values for all infants: σe = 5, σV = 20 and γ = 0.1. For the novel vari-
fold matching framework, we set γn = 0.1 and γκ = 0.2 to assign more weight to
the fidelity-to-data term, depending on the surface principal curvature direction.
In our experiments, we only used theminimum principal curvature directionwhich
traces the gyral folding as a line.

Table 1. Matching accuracy for twelve 0-to-6 month cortical surfaces.

12 infants Vertex-wise distance error (mm) Average Dice over 36 ROIs

Spectral diffeomorphic exact matching – 0.86 ± 0.004 (p = 0.001)

Current-based surface matching 1.15 ± 3.14 0.86 ± 0.03 (p = 0.0002)

Original varifold-based surface matching 0.64 ± 0.73 0.87 ± 0.015 (p = 0.002)

Proposed varifold-based surface matching 0.60 ± 0.65 0.88 ± 0.006

BenchmarkwithThreeState-of-theArtMethods.Wecompared the results
of the proposed method with: (1) diffeomorphic spectral cortical matching1 where
we used the mean curvature as a feature to refine the registration as pinpointed in
[2], (2) current-based surface matching [5], and (3) original varifold-based surface
matching methods2 [6,7]. To evaluate the matching performance, we used two dif-
ferent criteria: (i) Euclidean distance (inmm) between the warped and the target

1 The source code was kindly shared by first author in [2]
2 We thank deformetrica research team for sharing the current-based and varifold-based
matching code at http://www.deformetrica.org/

http://www.deformetrica.org/
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Fig. 3. Euclidean distance error between the warped and the target hemispheres (left) and
mean Dice overlap between warped and target parcellated hemispheres into 36 anatomical
regions (right), both averaged across all subjects. We overlay the average distance and
mean Dice maps on a template for the current-basedmatching method (I-A), the original
varifold matching method (I-B), and the proposed method (I-C). Bar plots represent the
mean distance error (II-top) and mean Dice index (II-bottom) averaged across subjects
in multiple highly folded and variable cortical areas for current (dark green), original
varifold (light green) and proposed method (yellow). Our proposed method shows the
best performance for (I-left) and performs at least as good as methods (A) and (B) and
better in the majority of cortical areas for (I-right).

surfaces; and (ii) the accuracy of alignment with target anatomical region bound-

aries measured using the mean Dice area overlap index d(S, S′) = 2|S∩S′|
|S|+|S′| over 36

anatomical cortical regions. Table 1 shows that the proposed method achieves the
best performance w.r.t both criteria. Our performance has improved with a rate
similar to the Dice overlap ratios reported in [2] when compared to FreeSurfer and
Spherical Demons. This improvement is notably visible in Fig. 3, which displays
the distance error map between the warped and the target surfaces and the mean
Dice ratio between warped and target 36 boundaries of anatomical regions aver-
aged across all subjects.Thematching performance gradually ameliorates from the
current-basedmethod (Fig.3–I-A) to the original varifoldmethod (Fig.3–I-B) and
reaches its apex for the proposed method (Fig. 3–I-C). The proposed method also
outperforms othermethods significantly in somehighly variable and folded cortical
regions (e.g. precuneus cortex and rostral anterior cingulate cortex) (Fig. 3–II).
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5 Discussion and Conclusion

Wepresented thefirst cortical surface registrationmethod involvingmultiple direc-
tions for surface representationusing the varifoldmetric and guidedby topographic
control points lying on the highs and the dips of the surface. Notably, the proposed
framework capitalizes on a rich topographic and orthogonal reading of the deform-
ing surface, applied for the first time to developing infant brains. Through surpass-
ing the performance of several other state-of-the art surface registration methods,
our proposed method can be used for building cortical surface atlases and better
examining subjects with abnormal cortical development.
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