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Abstract. Architecture distortions of glands and villi are indication of
chronic inflammation. However, the “duality” nature of these two struc-
tures causes lots of ambiguity for their detection in H&E histology tissue
images, especially when multiple instances are clustered together. Based
on the observation that once such an object is detected for certain, the
ambiguity in the neighborhood of the detected object can be reduced
considerably, we propose to combine deep learning and domain knowl-
edge in a unified framework, to simultaneously detect (the closely re-
lated) glands and villi in H&E histology tissue images. Our method iter-
ates between exploring domain knowledge and performing deep learning
classification, and the two components benefit from each other. (1) By
exploring domain knowledge, the generated object proposals (to be fed
to deep learning) form a more complete coverage of the true objects and
the segmentation of object proposals can be more accurate, thus improv-
ing deep learning’s performance on classification. (2) Deep learning can
help verify the class of each object proposal, and provide feedback to
repeatedly “refresh” and enhance domain knowledge so that more reli-
able object proposals can be generated later on. Experiments on clinical
data validate our ideas and show that our method improves the state-of-
the-art for gland detection in H&E histology tissue images (to our best
knowledge, we are not aware of any method for villi detection).

1 Introduction

Architecture distortions of glands and villi are strong signs of chronic inflamma-
tion [9]. Also, a quantitative measurement of the degree of such distortions may
help determine the severity of the chronic inflammation. A crucial step towards
these goals is the ability to detect accurately these two biological structures.

As shown in Fig. 1(a)-(b), both glands and villi are actually composed of the
same structure: epithelium. A gland encloses lumen and is surrounded by extra-
cellular material, while a villus encloses extracellular material but is surrounded
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by lumen. In H&E histology tissue images, the detection challenges of glands
and villi are mainly due to such “duality” of the two structures (especially when
multiple instances are clustered together), as well as the complex tissue back-
ground (containing different biological structures, e.g., different types of cells,
connective tissue, etc), and the variable appearances of glands and villi due to
morphology, staining, and scale.

Fig. 1. (a) A 3-D illustration of the dual glands and villi: Villi (top) are evagination of
epithelium (green) into lumen (blue), and glands (bottom) are invagination of epithe-
lium into extracellular material (red); (b) histology tissue images are 2-D slices of the
3-D structures; (c) some areas (black circles) that may cause false positives of glands.

Some methods [4,8,10] were proposed for glands detection in H&E histology
tissue images, which used a similar framework: (1) Find lumen regions; (2) for
each lumen region, perform a region-growing like process to find the epithelium
enclosing the lumen which is considered as the boundary of a gland. Applying
such a method in the presence of villi clusters could generate many false positives
for glands, because a lumen region among different villi may be found in the
first step, and then the epithelium regions bounding these villi may be taken
incorrectly as the boundaries of a gland enclosing the lumen (see Fig. 1(c)). Also,
due to certain slicing angles for the images, the lumen regions inside some glands
may not be very obvious; thus, this methodology may tend to produce false
negatives for such glands. A recent glands detection method [2] was proposed
for H-DAB images, and it also did not consider the influence of the dual villi. To
our best knowledge, we are not aware of any previous work on detecting villi.

In this paper, we propose to combine domain knowledge and deep learning
to simultaneously detect glands and villi (since they are closely related) in H&E
histology tissue images. Our method is based on the observation that once we
detect an object (of some class, i.e., glands or villi) for certain, we can propagate
this information to the neighborhood of the detected object, so that the detection
ambiguity nearby is reduced. The main steps of our method are as follows.

(1) We extract (pseudo-)probability maps (PPMs) for possible candidates of
the target objects, by using domain knowledge on the appearances of glands
and villi. (2) Using PPMs, we generate object proposals and feed them to deep
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convolutional neural networks (CNN) [6], to verify whether each object is really
of the class claimed by PPMs (reflecting domain knowledge). (3) If the object
proposals pass the verification, then we update PPMs (essentially, propagating
the information that we have detected some objects for certain), so that new
object proposals can be generated using the updated domain knowledge. We
repeat the last two steps until no more object can be detected for certain.

Our work shows that the close collaboration between domain knowledge and
deep learning allows multiple instances of glands and villi to be detected effec-
tively. Experimental results (summarized in Table 1) on clinical data validate
our ideas and show that we improve the state-of-the-art for glands detection.

2 Methodology

2.1 Extraction of (Pseudo-)Probability Maps

Each histology tissue slide may contain multiple instances of glands and villi,
possibly in different scales. Thus, the first step of our method aims to initially
extract (pseudo-)probability maps (PPMs) that contain information of both the
locations and scales for all objects of the two target classes (glands and villi). We
will generate object proposals based on the PPMs in the next step. Our main
idea for this step is to conduct a generalized Hough transform voting process.

This idea is based on two considerations after exploring domain knowledge of
the appearances of glands and villi. (I) Each epithelium region suggests that a
target object is nearby, but its class (i.e., gland or villus), location, and scale are
not yet clear, at least from the perspective of this single epithelium region. (II)
A more clear and complete picture of all objects could be obtained after each
epithelium region votes (based on its own view). This is because, collectively, true
positives of objects are more likely to receive more votes from such epithelium
regions. Our idea and steps are discussed in more detail below.

(1) We first obtain a superpixel segmentation [1] (Fig. 2(b)) of the image.
We then classify each superpixel as epithelium, lumen, or extracellular material
(since they are all related to the appearances of glands and villi), using Random
Forest and hand-crafted features (e.g., colors, texture based on Gabor filters).

(2) Since each epithelium superpixel suggests that a target object is nearby, it
would vote for some points in a 4-D object voting space (voting process is illus-
trated below), where each dimension corresponds to a factor of each single object,
i.e., its class (glands or villi), x and y coordinates in the image, and scale (we em-
pirically use 8 scales corresponding to roughly S={0.011, 0.014, 0.025, 0.05, 0.067,
0.111, 0.167, 0.25} times LS, the length of the shorter side of the image).

(2.a) We first find the lumen (LM) and extracellular material (EM) within
a distance of d = S(i) × LS from this epithelium superpixel (ES), if any. (2.b)
For each class and each scale, we map the ES to some locations, based on the
following observation for choosing the mapping/voting direction (which narrows
down the voting space to be covered): If the ES is part of a gland, then the gland
is likely to lie on the same side as LM, but on the opposite side from EM (found
in (2.a) near this ES); if it is actually part of a villus, then due to the “duality”
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Fig. 2. (a) Image samples; (b) superpixel segments; initial PPMs (high values in red;
low values in blue) for respectively glands (c) and villi (d) at a single scale; (e) blue and
red arrows are voting directions for glands and villi, respectively; (f) the voted points
in a circle (blue) by an ES at a single scale for one class; (g) image patches containing
detected objects (the presented villus (top) is around the center of the top image in (a),
and the presented gland (bottom) is at the bottom left of the bottom image in (a));
(h) image patches with background masked out; updated PPMs for respectively glands
(i) and villi (j) at a single scale, after the information of the objects in (g) detected is
propagated to the neighborhood (note the changes of the (pseudo-)probability values
around the detected objects).

of glands and villi, the villus is likely to lie on the same side as EM, but on the
opposite side from LM (see Fig. 2(e)). More specifically, the ES would vote for
the points in a circle (of a radius d/4) centered at the (x, y) coordinates, which
are of a distance d away from the center of the ES, towards the chosen directions
accordingly, for respectively glands and villi, and the 8 scales (see Fig. 2(f)).

(3) We view the corresponding 3-D hyper-plane w.r.t. to the class dimension
in the built 4-D voting space as the initial PPMs of each class, containing the
location and scale information for the candidate objects (see Fig. 2(c)-(d)).
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2.2 Object Proposals Generation and Class Verification

Overview. This step aims to make sure that detected objects are indeed true
positive objects, so that in the next step, we would not propagate wrong informa-
tion to their neighborhoods for resolving ambiguity. We first apply graph search
[5] (which uses high level priors) to conduct segmentation for object proposals
(generated based on PPMs), and then feed two small image patches containing
the same object proposal (with or without the background masked out) to re-
spectively two convolutional neural networks (CNN) with the same architecture,
to verify whether the class of that object proposal is the one claimed by PPMs.

The observation that object proposals generated using domain knowledge can
help CNN is critical. (1) If being blind to domain knowledge (e.g., in [3,11,6]),
many true objects might be missed by the generated object proposals. Thus,
during training, CNN cannot well model the target objects; during testing, false
negatives can be produced. (2) Although the segmented form of object proposals
at the pixel level can help improve CNN’s performance on object classification
[6], segmentation in [6] is done in a bottom-up fashion, using only low level image
cues. Based on which class of the PPMs (reflecting domain knowledge) that an
object proposal is generated from, we can obtain more accurate segmentation in
a top-down fashion, by utilizing class-specific high level semantic priors.

CNN Training. For every class, we find, in the corresponding initial PPM,
each local maximum point above a certain threshold as one object proposal, and
perform graph search based segmentation for it. If the segmented foreground
regionRSeg and a manually marked ground truth object region RGT of that class

satisfy
|RSeg∩RGT |

|RSeg| > 0.6 and
|RSeg∩RGT |

|RGT | > 0.6, then we take the object proposal

as a positive training example of that class; otherwise, a negative one. Note the
relatively high overlap threshold 0.6 is to make trained CNN be conservative so
that false positives are less likely to pass CNN verification during testing.

We crop a small image patch containing the object proposal, warp it to 256×
256 pixels, and use in training one CNN. We further mask out the background
region in it by the mean values of all training image patches (see Fig. 2(g)-(h)),
and use it in training the other CNN. Our two CNNs have the same architecture
and are trained using the same learning algorithm as [7]; we also apply data
augmentation and drop out to reduce overfitting as [7].

Note CNN once trained using initial PPMs, will be used in all rest iterations.

CNN Testing. During CNN testing, we also perform graph search based seg-
mentation for each object proposal (generated using the current PPMs, as
described in detail below), and feed the two image patches (with or without
background masked out) to respectively the two CNNs. We use the average
probabilities output by the two CNNs to predict the class. Once an object pro-
posal is verified by CNNs as a true positive for either glands or villi (i.e., the
prediction result is not a non-object), we will propagate this information to the
neighborhood regions by updating the PPMs (to be described in Section 2.3).
We stop the algorithm if CNN cannot verify any true object.
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Since during the testing, the PPMs change dynamically as more and more
object proposals pass the verification by CNNs, and object proposals are gen-
erated based on the new versions of PPMs after update, we need to determine
what would be an appropriate order to generate and process object proposals.
One possible order is of a greedy and one-by-one fashion: Each time, we find a
point with the largest (pseudo-)probability value in current PPMs, verify the
corresponding object proposal by CNNs, and update PPMs if necessary.

Another possible way is of a batch fashion: Each time, we generate a batch of
object proposals, verify all of them by CNNs, and update PPMs if necessary. Of
course, object proposals generated within the same batch should not be closely
related to one another (otherwise, we may have conflicting information to propa-
gate subsequently). We formulate the problem of finding a non-conflicting batch
as computing a maximal weighted independent set (MWIS) in a vertex weighted
graph G, constructed as follows: Each vertex of G is for a local maximal point
above a certain threshold in the PPM of either class; connect two vertices by
an edge if the (x, y) coordinates of one vertex in the image are within 2 times
the scale of those of the other vertex; the weight of each vertex is the (pseudo-
)probability value of the corresponding point. (Hence, we may view MWIS as
being partially greedy.)

Graph Search. We apply graph search [5] to segment each object proposal.
We utilize various category-specific high level semantic priors to construct the
needed input for graph search, as follows. We use the scale information of each
object proposal to set the lengths of the re-sampling rays and the geometric
smoothness constraint. We simply apply distance transform to the border pixels
between detected epithelium and extracellular material (resp., lumen) to set up
on-boundary cost of glands (resp., villi). We simply set in-region cost for glands
(resp., villi) to be low for pixels inside epithelium or lumen (resp., extracellular
material), and high for pixels inside extracellular material (resp., lumen). Note
better segmentation may be obtained with more sophisticated cost functions.

2.3 Information Propagation

This step aims to propagate the information that an object, Obj, is detected,
so that the detection ambiguity in its neighborhood is reduced. This is why we
generate object proposals dynamically (to take advantage of the reduced ambi-
guity) instead of all in one-shot as in [3,11,6]. Our idea is to update PPMs (see
Fig. 2(i)-(j)) which are used to generate new object proposals. Specifically, for the
segmented foreground region of Obj, RObj , we find each epithelium superpixel

(ES) such that its region RES satisfies
|RES∩RObj |

|RES| > 0.8 and
|RES∩RObj |

|RObj | > 0.8.

Since these ESs are quite unlikely to be part of other target objects, we remove
their votes for all points that they have voted for in the 4-D voting space, thus re-
sulting in new PPMs, with the information of Obj’s detection being incorporated
and propagated.
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3 Experiments and Discussions

We collected clinical H&E histology tissue slides (scanned at 40X magnification)
from patients suspected of having inflammatory bowl disease (the study was per-
formed under an IRB and in compliance with the privacy provisions of HIPPA
of 1996). We manually marked 1376 glands and 313 villi and their boundaries
as ground truth. We used 2-fold cross validation (CNN training for each fold
takes a week on a single CPU) to evaluate the performance using three met-
rics, precision = TP

TP+FP , recall = TP
TP+FN , and Fscore = 2×precision×recall

precision+recall . A
detected object is counted as TP if its segmented foreground region RSeg and
a ground truth region RGT (not corresponding to any other detected object)

satisfy
|RSeg∩RGT |

|RSeg| > 0.6 and
|RSeg∩RGT |

|RGT | > 0.6; otherwise, it is counted as FP. If

a ground truth region corresponds to no detected object, it is counted as FN.

Table 1. Quantitative performance of different methods.

Precision Recall F score

Glands Villi Glands Villi Glands Villi

DK-Only 0.79 0.73 0.75 0.86 0.77 0.79

CNN-Only 0.82 0.71 0.69 0.81 0.75 0.76

DK-CNN-Greedy 0.95 0.94 0.80 0.85 0.87 0.89

DK-CNN-MWIS 0.96 0.95 0.78 0.79 0.86 0.86

Glands-Detect [10] 0.42 - 0.54 - 0.47 -

To validate the key ideas we proposed, we construct several versions of our
method (DK-Only, CNN-Only, DK-CNN-Greedy, and DK-CNN-MWIS), by ei-
ther simply taking away or replacing by alternatives some important compo-
nents of our method, as follows. DK-Only depends only on exploring domain
knowledge (i.e., we take away the CNN verification) to detect objects. In CNN-
Only, all object proposals and their segmentation are generated in one-shot, in
a bottom-up fashion, and being blind to domain knowledge as in [6]; instead of
dynamically and in a top-down fashion by exploring domain knowledge. We use
the greedy fashion to address the object proposals during testing in these two
versions. DK-CNN-Greedy uses both domain knowledge and CNN, and is based
on the greedy fashion. DK-CNN-MWIS also uses both domain knowledge and
CNN, but is based on the maximal weighted independent set approach.

Table 1 shows the quantitative performance of these four versions and the
state-of-the-art glands detection method [10] (referred to as Glands-Detect). One
can see the following points. (1) The two complete versions DK-CNN-Greedy and
DK-CNN-MWIS perform much better than DK-Only, indicating that CNN is
suitable for the verification task on object detection, which reduces the amount
of incorrect information propagated to the neighborhoods to resolve ambiguity.
(2) These two complete versions also outperform CNN-Only, indicating that it is
better to dynamically generate object proposals and their segmentation, based
on the gradually “refreshed” domain knowledge, than generating them all at once
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and being blind to suggestions of domain knowledge. (3) Combining the above
two points, it shows that the close collaboration between domain knowledge and
deep learning can effectively detect multiple instances of glands and villi. (4)
DK-CNN-Greedy and DK-CNN-MWIS perform similarly well. This means that
generating object proposals in a greedy or batch fashion (partially greedy) is
not quite critical, as long as domain knowledge and the power of deep learning
are fully explored. (5) Glands-Detect does not use an appropriate verification
scheme to address the situation when villi, with a dual structure (causing lots
of ambiguity), are also present in the images; it requires lumen regions inside
glands to be obvious, and thus does not perform well on our images. (6) All four
versions of our method have a higher precision than recall, this is because we
use relatively high overlap thresholds. We plan to do complete ROC analysis by
varying overlap thresholds.
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