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Abstract. Brain atlases are an integral component of neuroimaging studies. 
However, most brain atlases are fuzzy and lack structural details, especially in 
the cortical regions. In particular, neonatal brain atlases are especially 
challenging to construct due to the low spatial resolution and low tissue 
contrast. This is mainly caused by the image averaging process involved in atlas 
construction, often smoothing out high-frequency contents that indicate fine 
anatomical details. In this paper, we propose a novel framework for detail-
preserving construction of atlases. Our approach combines space and frequency 
information to better preserve image details. This is achieved by performing 
reconstruction in the space-frequency domain given by wavelet transform. 
Sparse patch-based atlas reconstruction is performed in each frequency subband. 
Combining the results for all these subbands will then result in a refined atlas. 
Compared with existing atlases, experimental results indicate that our approach 
has the ability to build an atlas with more structural details, thus leading to 
better performance when used to normalize a group of testing neonatal images.  

1 Introduction 

Brain atlases are spatial representations of anatomical structures, allowing integral 
brain analysis to be performed in a standardized space. They are widely used for neu-
roscience studies, disease diagnosis, and pedagogical purposes [1,2]. 

An ideal brain atlas is expected to contain sufficient anatomical details and also to 
be representative of the images in a population. It serves as a non-bias reference for 
image analysis. Generally, atlas construction involves registering a population of 
images to a common space and then fusing them into a final atlas. In this process, 
structural misalignment often causes the fine structural details to be smoothed out, 
which results in blurred atlases. The blurred atlases can hardly represent real images, 
which are normally rich with anatomical details. 

To improve the preservation of details in atlases, the focus of most existing ap-
proaches [3-7] has been on improving image registration. For instance, Kuklisova-
Murgasova et al. [3] constructed atlases for preterm infants by affine registration of 
all images to a reference image, which was further extended in [4] by using group-
wise parametric diffeomorphic registration. Oishi et al. [5] proposed to combine af-
fine and non-linear registrations for hierarchically building an infant brain atlas. Us-
ing adaptive kernel regression and group-wise registration, Serag et al. [6] constructed 
a spatio-temporal atlas of the developing brain. In [7], Luo et al. used both intensity 
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and sulci landmark information in the group-wise registration for constructing a tod-
dler atlas. However, all these methods perform simple weighted averaging of the reg-
istered images and hence have limited ability in preserving details during image fu-
sion. For more effective image fusion, Shi et al. [8] utilized a sparse representation  
technique for patch-based fusion of similar brain structures that occur in the local 
neighborhood of each voxel. The limitation of this approach is that it lacks an explicit 
attempt to preserve high frequency contents for improving the preservation of ana-
tomical details. In [9], Wei et al. proposed to use wavelet transform to reveal detailed 
information from motion-corrupted diffusion-weighted images of the human heart. It 
is shown that pyramidal decomposition of images encodes coarse and fine image 
contents in different frequency subbands. 

In this paper, we propose a novel image fusion approach for obtaining neonatal 
brain atlases with rich details. We employ information in both frequency and space 
domains given by wavelet transform for atlas construction. Frequency domain: By 
decomposing each brain image into multiple scales and orientations using wavelet 
transform, fine and latent anatomical structures become more apparent in certain fre-
quency subbands. It is hence easier to design constraints to preserve these structures.  
 

Space Domain: The neighboring patches are group-constrained for spatial consisten-
cy during reconstruction. We apply our method to construct brain atlases for neonatal 
MR images, which is challenging due to the low spatial resolution and low tissue 
contrast. Experimental results indicate that the proposed method can generate atlases 
of much higher quality, compared to the existing state-of-the-art neonatal atlases. 

2 Method 

2.1 Overview 

The overall pipeline of the proposed method is shown in Fig. 1. First, all individual 
subject images are aligned to a common space using group-wise registration to 
generate a mean image. Wavelet transform is then used to decompose both the 
aligned individual images and the mean image into the frequency domain. In each 
frequency subband, we then construct an atlas using patch-by-patch sparse 
reconstruction. To avoid inconsistency, the immediate neighbors of each patch are 
group-constrained to have similar sparse coefficients. Finally, the reconstructed 
frequency subband atlases are combined together to construct a final atlas.  

2.2 Image Preprocessing  

All images were preprocessed with a standard pipeline, including resampling, bias 
correction, skull stripping, and tissue segmentation. We use a publicly available 
group-wise registration method [10] (http://www.nitrc.org/projects/glirt) to align all 
images to a common space. We can then obtain a set of ܰ  registered images ሼܫ௡| ݊ = 1, ⋯ , ܰሽ, ௡ܫ  ∈ ℝଷ . These images are averaged to form a mean image ܫ௠௘௔௡ = ଵே ∑ ௡ே௡ୀଵܫ . 
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To further enhance robustness, we constrain the reconstructed atlas patch ݌௔௧௟௔௦(௦,௥)  to 
be similar to the appearance of a small set of ܭ) ܭ ≤ ௧ܰ௢௧௔௟) neighboring patches ቄ݌௞(௦,௥)|݇ = 1, ⋯ , ௠௘௔௡(௦,௥)݌ ቅ from ܲ(௦,௥) that are most similar toܭ . The reconstruction 

problem can now be formulated as ߚመ(௦,௥) = argminఉ෡(ೞ,ೝ)வ଴ ෍ฮ݌௞(௦,௥) − ܲ(௦,௥) · ฮଶଶ(௦,௥)ߚ + ฮଵ(௦,௥)ߚฮߣ
௄

௞ୀଵ                       (2) 

where ߣ is a non-negative parameter controlling the influence of the regularization 

term. Here, the first term measures the discrepancy between observations ݌௞(௦,௥) and 

the reconstructed atlas patch ݌௔௧௟௔௦(௦,௥) = ܲ(௦,௥) · -መ(௦,௥),   and the second term is for L1ߚ
regularization on the coefficients in ߚ(௦,௥). Considering that the dictionary ܲ(௦,௥) and 

the observations ݌௞(௦,௥) share the same basis ܦ(௦,௥), we can combine Eq. (1) and Eq. 
(2) for a wavelet representation version of the problem: ߚመ(௦,௥) = argminఉ෡(ೞ,ೝ)வ଴ ෍ฮܦ(௦,௥) · ൫ܿ௞(௦,௥) − (௦,௥)ܥ · ൯ฮଶଶ(௦,௥)ߚ + ฮଵ(௦,௥)ߚฮߣ

௄
௞ୀଵ            (3) 

where ܿ௞(௦,௥) is a vector consisting of the wavelet coefficients of ݌௞(௦,௥), and ܥ(௦,௥) =ቂܿଵ(௦,௥), ܿଶ(௦,௥), ⋯ , ܿே೟೚೟ೌ೗(௦,௥) ቃ is a matrix containing the wavelet coefficients of the patches 

in dictionary ܲ(௦,௥). Finally, the atlas is constructed as
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ௌ
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2.4 Spatial Consistency  

To promote local consistency, multi-task LASSO [11] is used for spatial regulariza-
tion in the space-frequency domain to simultaneously estimate ܩ neighboring atlas 
patches, indexed as ݃ = 1, ⋯ ,  .ܩ

We denote the dictionary, training patch, and sparse coefficient vector for the g-th 

neighbor respectively as ௚ܲ(௦,௥) ௞,௚(௦,௥)݌ ,  and ߚ௚(௦,௥) . For simplicity, we let ߀(௦,௥) ,ଵ(௦,௥)ߚൣ= ⋯ , (௦,௥)߀ :൧, which can also be written in the form of row vectors(௦,௥ீ)ߚ  =቎ߛଵ(௦,௥)⋮ߛெ(௦,௥)቏, where ߛ௠(௦,௥)  is the m-th row in the matrix ߀(௦,௥)  (with totally ܯ  rows). 
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where ฮ߀(௦,௥)ฮଶ,ଵ = ∑ ฮߛ௠(௦,௥)ฮଶெ௠ୀଵ . The first term is a multi-task sum-of-squares 

term for all G neighboring atlas patches. The second term is for multi-task regulariza-
tion using a combination of L2 and L1 norms. L2 norm penalization is imposed on each 

row of matrix ߀(௦,௥)  (i.e., ߛ௠(௦,௥) ) to enforce similarity of neighboring patches. L1 
norm penalization is to ensure representation sparsity. This combined penalization 
ensures that the neighboring patches have similar sparse coefficients. The multi-task 
LASSO in Eq. (5) can be solved efficiently by using the algorithm described in [11]. 

3 Experiments 

Dataset. We use neonatal brain scans to demonstrate the performance of the proposed 
atlas construction method. Specifically, 73 healthy neonatal subjects (42 males / 31 
females) were used in this study. MR images of the subjects were scanned at postnatal 
age of 24±10 (9-55) days using a Siemens head-only 3T scanner. T2-weighted images 
were obtained with 70 axial slices using a turbo spin-echo (TSE) sequence for a reso-
lution of 1.25×1.25×1.95mm3. All 73 images were resampled to have an isotropic 
resolution of 1×1×1 mm3, bias-corrected, skull-stripped, and tissue-segmented. 
 

Implementation Details. There are several parameters in the proposed method: the 
patch size ݒ, the number of nearest patches ܭ, the regularization parameter ߣ, and 
the number of wavelet scale levels ܵ. We performed a grid search for parameters that 
produced the atlas with the highest signal energy. Then we fixed the patch size as ݒ = 6 (ܸ = 6 × 6 × 6) and set the number of closest patches to ܭ = 10. We also set 
the regularization parameter to ߣ = 10ିସ. We used ‘symlets 4’ as the wavelet basis 
for image decomposition. The number of scale levels for wavelet decomposition was 
set to ܵ = 3. The low-frequency content of a single subject image was similar to the 
low-frequency content of the average atlas when using atlas when using 3 or more 
scales. This suggests that it is sufficient to use 3 scales. 
 

Atlas Construction Performance Using 73 Subjects. Fig. 2 (a-e) show five repre-
sentative axial slices of the neonatal brain atlas built by the proposed method. Despite 
the large number of subjects (73) used for atlas construction, the atlas still contains 
clear structural details especially in the cortical regions. 

 

Fig. 2. Neonatal atlas constructed from 73 subjects. 

Comparison with State-of-the-Art Neonatal Atlases. Four state-of-the-art neonatal 
atlases are included for visual inspection. Atlas-A: The 41-th week atlas created by 
Kuklisova-Murgasova et al. [3], longitudinally for each week from week 28.6 to week 
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47.7 using 142 neonatal subjects. Atlas-B: The atlas constructed by Oishi et al. [5] 
using 25 brain images from neonates of 0-4 days of age. Atlas-C: The 41-th week 
atlas built by Serag et al. [6] involving 204 premature neonates between 26.7 and 44.3 
gestational weeks. Atlas-D: The neonatal atlas created by Shi et al. [8], involving the 
same neonatal brain images as used in this work. An atlas created by simply averag-
ing the 73 aligned neonatal images is also included for comparison. One can easily 
observe from Fig. 3 that the atlas generated by the proposed method provides the 
clearest structural details. Note that, Atlas-A, Atlas-B and Atlas-C are constructed 
using datasets different from ours and thus may have different appearances from our 
atlas. Atlas-D, Averaging atlas, and the Proposed atlas are built from the same dataset. 

 

Fig. 3. Comparison of neonatal atlases constructed by Kuklisova-Murgasova et al. (Atlas-A, 
2010), Oishi et al. (Atlas-B, 2011), Serag et al. (Atlas-C, 2012), Shi et al. (Atlas-D, 2014), 
simple averaging (Averaging), and our proposed method (Proposed) on the 73 aligned images. 
Similar slices were selected from each of these six atlases for easy comparison. 

 

Fig. 4. Box plots for the Dice Ratio (ܴܦ = ܣ|2 ∩ |ܤ ∕ |ܣ|) +  where A and B are the two ,(|ܤ|
segmentation maps) values associated with the five state-of-the-art atlases and the proposed 
atlas. Red lines in the boxes mark the medians. The boxes extend to the lower and upper quar-
tiles (i.e., 25% and 75%). Whiskers extend to the minimum and maximum values in one-and-a-
half interquartile range. Outliers beyond this range are marked by red “+” symbols. 

Atlas-A Atlas-CAtlas-B Atlas-D Proposed Averaging
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Evaluation of Atlas Representativeness. We evaluate the 6 neonatal atlases shown 
in Fig. 3 in terms of how well they can spatially normalize a testing population of 
neonatal images. MR images of 20 new healthy neonatal subjects (10 males/ 10 fe-
males) were obtained at 37-41 gestational weeks, using TSE sequences with parame-
ters: TR=6200 ms, TE=116 ms, Flip Angle=150°, and resolution=1.25×1.25×1.95 
mm3. Similar image preprocessing was performed, which includes resampling to 
1×1×1 mm3, bias correction, skull stripping, and tissue segmentation. All these 20 test 
images are aligned to each of the 6 atlases by first using affine registration and then 
nonlinear deformable registration with Diffeomorphic Demons [12], respectively. For 
each atlas, a mean segmentation image is built by voxel-wise majority voting using all 
aligned segmentation images. The segmentation images of all individuals, warped to 
the atlas space, are then compared with this mean segmentation image by means of 
Dice Ratio: ܴܦ = ܣ|2 ∩ |ܤ ∕ |ܣ|) +  where A and B are the two segmentation ,(|ܤ|
maps. DR ranges from 0 (for totally disjoint segmentations) to 1 (for identical seg-
mentations). The structural agreement is calculated in pair of each aligned image and 
the voted mean segmentation image, which denotes the ability of each atlas for guid-
ing test images into a common space. Statistical analysis (Fig. 4) indicates that the 
proposed atlas outperforms all other atlases in GM, WM and CSF alignment. Two-
sample t-tests based on the Dice Ratios demonstrate that the proposed method signifi-
cantly outperforms all other comparison methods (p<0.001). 
Evaluation of Energy Distribution. We assess the image energy variation across all 
frequency subbands for the 6 neonatal atlases shown in Fig. 3 and then compare with 
the individual images. For fair comparison, the intensity ranges of all atlases are nor-
malized to interval [0,255]. Low variation of high-frequency components indicates 
loss of anatomical details. The energy of each frequency subband is defined as the L2 
norm of wavelet coefficients in that subband. The average energy is computed for 
each of the 24 wavelet subbands (including 3 scales, and 8 orientations for each scale) 
of the 73 neonatal subject images. Fig. 5 shows the energy distributions for different 
scale levels and orientations. For the atlases created with simple averaging, the energy 
loss is significant in the high frequency subbands (e.g., from subband ‘HLL’ to 
‘HHH’ in Scale 1), compared to the atlas created using the proposed method. The 
energy loss can also be observed in the higher frequency subbands (e.g., subband 
‘HHH’) of Scale 2 and Scale 3. The proposed atlas mitigates the energy loss problem, 
illustrating that the proposed atlas preserves more anatomical details from individual 
images and is hence more representative of the population. 

  
Fig. 5. Image energy distributions across orientations and scales, for the individual images, and 
the 6 neonatal atlases shown in Fig. 3. Higher energy values in high frequency subbands repre-
sent better preservation of anatomical details. It can be seen that the proposed atlas preserves 
more details from individual images, compared with state-of-the-art atlases. 
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4 Conclusion  

In this paper, we presented a novel space-frequency domain based sparse representa-
tion method to better preserve structural details in neonatal brain atlases. Our ap-
proach employs a hierarchical strategy in reconstructing the atlas through combining 
atlases reconstructed from the frequency subbands using wavelet decomposition. 
Experimental results demonstrated that our approach preserves richer anatomical 
details (with better performance on neonatal image normalization) than other state-of-
the-art neonatal atlases. 
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