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Abstract. Vortex ring formation within the cardiac left ventricular (LV) blood 
flow has recently gained much interest as an efficient blood transportation 
mechanism and a potential early predictor of the chamber remodeling. In this 
work we propose a new method for automatic identification of vortex rings in 
the LV by means of 4D Flow MRI. The proposed method consists of three ele-
ments: 1) the 4D Flow MRI flow field is transformed into a 3D vortical scalar 
field using a well-established fluid dynamics-based vortex detection technique. 
2) a shape signature of the cardiac vortex ring isosurface is derived from the 
probability distribution function of pairwise distances of randomly sampled 
points over the isosurface 3) a hierarchical clustering is then proposed to simul-
taneously identify the best isovalue that defines a vortex ring as well as the 
isosurface that corresponds to a vortex ring in the given vortical scalar field. 
The proposed method was evaluated in a datasets of 24 healthy controls as well 
as a dataset of 23 congenital heart disease patients. Results show great promise 
not only for vortex ring identification but also for allowing an objective quanti-
fication of vortex ring formation in the LV. 

1 Introduction 

A growing body of evidence [1-6] suggests a critical role of  vortex ring formation 
within cardiac left ventricular blood flow during diastole as a significant contributor 
to efficient blood transportation [2] and as a potential clinical biomarker for early 
prediction of cardiac remodeling and diastolic dysfunction [4,5]. A vortex is generally 
characterized by a swirling motion of a group of fluid elements around a common 
axis. Among different types of vortical flow structures, vortex rings are most abun-
dant in nature due their stability [6]. In the LV, the asymmetrical redirection of blood 
flow through the LV results in the development of a vortex ring distal to the mitral 
valve (Fig.1) [1].  

In fluid dynamics, different methods exist to define a vortex structure [7]. Most of 
these methods are based on a function of the velocity gradient tensor of the flow field. 
4D Flow MRI enables non-invasive acquisition of the blood flow velocity field 
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providing all three velocity components (in-plane and through-plane) over the three 
spatial dimensions and over the cardiac cycle [1]. Therefore, 4D Flow MRI provides 
all the flow field information needed for 3D vortex analysis [3].  

A typical 3D vortex ring identification problem consists of three steps 1) convert 
the 3D velocity flow field into some 3D vortical scalar field in which a vortex is de-
fined given some criteria; 2) manually (empirically)  select an isovalue threshold that 
can define a vortex ring structure from the 3D vortical field. Given that different vor-
tex structures may be present in the same flow field, the selected isovalue may result 
in multiple co-existing isosurfaces of other vortex structures in addition to the target 
vortex ring. 3) Manually identify the isosurface that corresponds to a vortex ring. It is 
obvious that manual isovalue selection and vortex ring selection can be time consum-
ing and subjective. This may limit the applicability of a 3D vortex ring analysis in a 
clinical setup in which objective and reproducible analysis is crucial.  

To our knowledge, there have been no studies on fully automatic identification of a 
vortex ring (i.e. both steps 2 and 3) from 4D Flow MRI. In our previous work [8], 
only the automatic identification of a vortex ring (step 3) was addressed using a spec-
tral shape analysis [9]. However, this was based on the assumption that an isovalue 
was already predefined; therefore the problem of automatic isovalue selection has not 
been addressed. In addition, spectral shape analysis can be computationally intensive, 
hence may not be suitable for a multi-level search.  

In this work, we propose a new method that simultaneously and automatically 
identifies the isovalue and the vortex ring isosurface. The proposed method has three 
elements: First, the flow field from peak inflow phase of 4D Flow MRI is converted 
into a 3D vortical scalar field using a well-established fluid-dynamics-based vortex 
identification method called the Lambda2 method [10]. Second, a reference shape 
signature defining the vortex ring isosurface is computed from a training set using D2 
shape distributions [11]. Finally, simultaneous identification of isovalue and vortex 
ring is achieved using hierarchical clustering that allows for an iterative search for the 
best D2 shape distribution match with the reference signature. To evaluate the objec-
tivity and generalizability of the proposed method in a clinical setup, the defined vor-
tex ring was quantified using the method introduced in [3] in a dataset of 24 healthy 
controls as well as in a challenging dataset of 23 congenital heart disease patients who 
were previously reported to have abnormal diastolic inflow [12]. 

2 Methodology 

2.1 3D Vortical Scalar Field from 4D Flow MRI Using the Lambda2 Method  

Among different fluid dynamics based vortex identification methods [7], the lambda2 
(λ2) method is considered the most accepted definition of a vortex [6]. The lambda2 
method extracts vortex structures from the flow field by means of vortex-cores. The 
input for the Lambda2 method is the three velocity components of the velocity vector 
field and the output is a 3D scalar field in which each voxel is assigned a scalar value 
(λ2). This scalar value can then be used to determine whether or not a voxel belongs to a 
vortex. For more formal definition, if ܷ, ܸ and ܨ denote the three velocity components 
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of the flow field acquired using 4D Flow and ܺ, ܻ, ܼ denote the three spatial dimensions 
each of size ܫ × ܬ × ܹ with ܫ as 4D Flow MRI’s slice width, ܬ as its height and ܹ as 
the number of slices. Then the λ2 method can be applied as follows. First, the velocity 
gradient tensor J is computed. Second, the tensor J is decomposed into its symmetric 

part, the strain deformation tensor ܁ = ۸ା۸Tଶ  and the antisymmetric part, the spin 

sor ષ = ۸ି۸Tଶ , where T is the transpose operation. Then, eigenvalue analysis is applied 

only on ܁ଶ + ષଶ. Finally, a voxel is labeled as part of a vortex only if it has two nega-
tive eigenvalues i.e. if ߣଵ, ,ଶߣ ଵߣ ଷ are the eigenvalues whereasߣ ≥ ଶߣ ≥  ଷ then a voxelߣ 
is labeled as vortex if its ߣଶ < 0. Isosurfaces of a ߣଶ  isovalue threshold (Tఒమ) <0 can be 
used to visualize different vortex structures in the flow field. A single Tఒమisovalue can 
result in multi isosurfaces of different vortex structures among which a vortex ring may 
or may not be present. Different Tఒమisovalues can be used to reveal different levels of 
details of vortices in the flow.  
There are two outputs of this step. 1) A 3D volume denoted by ࢐,࢏ࡸ,࢝ where 

࢝,࢐,࢏ࡸ  = ൜ ,ଶሺ݅ߣ,0 ݆, (ݓ ݅ , ఒమሺ௜,௝,௪)ழ଴ ࢌ࢏ ఒమሺ௜,௝,௪)ஹ଴ ࢌ࢏ = 1, … .ܫ ݆ = 1, … ݓ  .ܬ = 1, … ܹ. 

2) A 1D feature vector ܳௗ , ݀ = 1, … ܲ that stores all scalar values ࢐,࢏ࡸ,࢝ ≠ 0 (i.e. all 
possible Tఒమthresholds). ܳௗ represents the isovalue feature vector. ܲ represents the 
total number of scalar values ࢐,࢏ࡸ,࢝ ≠ 0. 
Throughout the rest of the paper, the term vortex refers to a vortex core under the ߣଶ definition explained above. 

3 D2 Signature of Shape Distributions 

The signature of shape distributions was first introduced in [11] for shape retrieval in 
computer vision tasks. The idea behind shape distributions’ signature is to statistically 
encode a 3D model using a probability distribution of some parametric function that 
measures geometric properties of the given 3D model. This reduces the shape match-
ing/retrieval problem into a simple distribution comparison [11]. D2 signature (Fig.1) 
is a shape distribution signature where the parametric function is defined by the Eu-
clidean distances between randomly sampled pairs of points over the 3D surface. The 
D2 distribution can globally define the surface of interest (in our case, the vortex ring 
isosurface). Compared to other global shape signatures e.g. spectral signatures [9], the 
major advantage of the D2 distribution signature is its simplicity, essentially the shape 
matching problem is reduced to random sampling of points, histogram construction 
and finally histogram comparison using a dissimilarity metric.  

Being a distribution, the D2-signature is invariant to rotation, translation and scal-
ing (after normalization), therefore allowing matching of different shapes without the 
need for pre-registration or alignment. In addition, it is robust to small shape perturba-
tions or deformations (e.g. due to noise) [11] which makes it sufficient for tasks that 
require multi shape comparisons as in our case. 
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In this work, the D2 signature is constructed following a similar procedure to that 
proposed in [11]: 1) Represent the 3D shape of interest as an isosurface. 2) Randomly 
sample ࡺ point pairs over the vortex-ring isosurface. 5122=ࡺ pair of samples was 
used in this work. 3) Compute Euclidean distances between the ࡺ samples using L2-
norm. 4) Construct a histogram of ࡮ bins of the pairwise distances. 100= ࡮ equally 
space bins was used in this work. 5) Normalize the resulting histogram using root 
mean square deviation. This step makes the signature scale invariant. 6) Define a 
dissimilarity metric to be used for histogram matching with a new given 3D model. In 
this work we used the normalized L1-norm (normalized by L1 norm of the reference 
signature) as dissimilarity metric. Though similar, cardiac vortex rings differ between 
subjects. To account for this, we derive an average reference signature from a cohort 
of healthy subjects for matching purposes. Of note, increasing ࡺ and  ࡮ more than the 
specified numbers did not yield significant improvement. 

 
Fig. 1. (a) A four chamber view 
showing the 3D vortex ring 
isosurface (in green) with super-
imposed streamlines in the LV at 
peak inflow phase in a sample 
healthy subject. (b) Separate 
view of the 3D vortex ring 
isosurface shown in (a). (c) The 
reference (average) D2 shape 
distributions’ signature deter-
mined from the 24 healthy con-
trols in this study.  

4 Hierarchical Shape Distributions for Vortex Ring 
Identification 

In principle, the vortex ring isosurface may be defined by any isovalue in the ܳௗ fea-
ture vector. This can result in a large search space as multiple shape matching tasks 
are needed per each value to find the target isosurface. To reduce the search space, we 
propose to compress the isovalue feature vector into a subset of representative 
isovalues using the vector quantization technique [13]. Given a vector of features, the 
vector quantization process involves compression of the input set of points into a 
smaller set. This works by dividing the input vector into groups, each group is then 
defined by one value given some criteria [13].  The well-known K-means clustering 
algorithm is a vector quantization method [13] in which a long input feature vector 
can be compressed into a vector of K cluster centroids that minimize the within-
cluster sum of square distances.  

In this work, we use an iterative hierarchical K-means scheme in which there is no 
need to predefine the number of centroids K. This allows avoiding the possible bias 
when K is predefined. The proposed scheme is as follows: Given the isovalue feature 
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vector ܳௗ, initialize with K=1 and apply the K-means clustering algorithm (i.e. ܳௗfea-
ture vector is reduced to a single candidate isovalue). Then, K is iteratively incre-
mented by one until convergence or a predefined stopping criterion is satisfied. This 
results in a hierarchical multi-level vector ܸ௥,௞, in which each level ݇ = 1, … ܲ carries ݎ = 1, … ݇ candidate isovalues.  

Given an isovalue level ݇, each isovalue ܸ௥,௞ can define ௧ܷ௥,௞ , ݐ = 1, …  ܧ
isosurfaces of different vortex structures from among them a vortex ring may or may 
not be present. Therefore, to identify the vortex ring isosurface we need to solve two 
problems. 1) Find the isovalue ܸ௥,௞ in which a vortex ring is one of its ܧ resulting 
isosurfaces. 2) Find the isosurface ௧ܷ௥,௞ that corresponds to a vortex ring. 

Using the proposed hierarchical vector quantization scheme and the reference D2 
shape distribution signature, we are able to simultaneously solve these two problems 
by minimizing the shape distribution distances as follows: for each isovalue ܸ௥,௞ at 
level ݇, extract the corresponding ௧ܷ௥,௞ vortex isosurfaces. Then, for each isosurface ௧ܷ௥,௞, construct the D2 shape distribution following the procedure explained above. 
Compute the dissimilarity distance ݀௧௥,௞ with the reference signature using the normal-
ized L1 norm (i.e. normalized by the L1-norm of the reference signature). Repeat this 
for every isovalue level until convergence (݀௧௥,௞< ߳  ) or stopping criteria is satisfied. 
We wish to identify the best surface match by finding the indices ̂ݎ, ෠݇ ,ݎsuch that  ൛̂ ݐ̂ ݀݊ܽ  ෠݇  , ൟݐ̂ = min௥,௞,௧݃ݎܽ ݀ 

As a result the target two problems are simultaneously solved by defining the 

isosurface ௧ܷመ௥̂,௞෠  as the target vortex ring isosurface and corresponding isovalue ܸ௥̂,௞෠  as 
the target isovalue. To avoid local minima, for each iteration, the K-means algorithm 
was replicated ܶ times (ܶ =10 was used in this work) using different initial centroids. 
Then, the centroids with minimum within-cluster sums of point-to-centroid distances 
were chosen. Two stop criteria were defined 1) reaching a maximum number of pre-
defined iterations (set to 50 in this work). In all our experiments, less than 15 itera-
tions were enough to find {̂ݎ, ෠݇  ,  and 2) The dissimilarity distance was increasing ,{ݐ̂
for three consecutive iterations. This decreases the possibility of stopping at local 
minima when only a single diverging iteration is used instead.  

5 Quantitative Characterization of the Identified Vortex Ring 
in the LV  

After the identification of the vortex ring isosurface, it was quantified using the pa-
rameters proposed in [3]. These parameters are the vortex ring orientation and nor-
malized cylindrical (Circumferential (C), Longitudinal (L) and Radial(R)) 3D position 
of the vortex ring center relative to the LV. L and R were normalized relative to the 
LV long-axis length and the radius of the LV endocardial cavity, respectively. Vortex 
orientation is defined as the angle between the LV long axis and the fitting plane of 
the vortex isosurface.  
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6 Dataset, Preprocessing and Validation 

We evaluated the proposed method on two datasets:  one dataset of 24 healthy con-
trols (mean age: 21±10 years) as previously described in [3] and a dataset of 23 pa-
tients (27±11) after atrioventricular septal defect correction. All subjects underwent 
retrospectively-gated 4D Flow MRI at 3.0 T (Philips) with spatial resolution of 3-4 
mm3 and a temporal resolution of ~30 ms covering all 4 chambers of the heart. This 
data was then linearly interpolated spatially to result in a 1mm3 spatial resolution. 
More details on the acquisition parameters can be found in [3]. 

To localize the LV ROI, the LV was manually segmented from only the peak-
inflow diastolic phase in the 4D Flow volume as explained in [3]. As the vortex ring 
is a connected region of voxels within the LV, accurate segmentation is not required 
for the purpose of vortex ring identification. Only rough over-segmentation of the LV 
(to ensure the LV is covered) was enough to roughly define the LV ROI. In this work, 
an over-segmentation of about 0.5 cm around LV border was used to define LV ROI. 

To generate the ground truth for the vortex ring isosurface in the two included da-
tasets, for the healthy control dataset, we used the vortex ring isosurfaces interactively 
generated with low inter and intra observer variability in a previously validated work-
flow [3]. Same procedure in [3] was used to blindly generate the ground truth for 
patient dataset. To quantitatively evaluate the performance of the proposed method in 
the first dataset of healthy controls, leave-one-out cross-validation was used to avoid 
bias in the selection of the reference averaged D2 signature.  

To test the generalization performance in a clinical setting, the dataset of 23 pa-
tients was evaluated using a reference signature derived only from the 24 healthy 
control subjects. To evaluate the identification performance relative to the ground 
truth, we performed two sets of evaluations. The accuracy of the identified isosurface 
object was assessed using the Hausdorff distance and dice coefficient for surface 
overlap. In addition, a paired student’s t-test comparison of the automatically defined 
isovalues and the one used to generate the ground truth isosurfaces was performed. 
Second, paired student’s t-test was used to statistically compare the quantitative vor-
tex ring parameters of the automatically identified vortex-ring isosurfaces to those of 
the ground truth. For all statistical tests a p-value <0.05 was considered significant. 

7 Results 

In all subjects of both datasets, a vortex ring isosurface was successfully identified 
from the Lambda2 scalar field with qualitatively similar shape to that of the ground 
truth (Fig. 2). Detailed results of the quantitative evaluation over the two datasets is 
given in Table 1 where a Hausdorff distance of 8.36±7.55 mm in healthy control da-
taset and 11.73±6.57 mm in the patients dataset were found. The surface overlap (dice 
coefficient) was 0.81±0.09 in controls and 0.77±0.14 in patients. The identified 
isovalues using the proposed method were highly comparable to those of the ground 
truth and not statistically different (p=0.86). Quantitative parameters of the automati-
cally identified vortex rings were in good agreement with the ground truth.  



 Hierarchical Shape Distributions for Automatic Identification 473 

8 Discussion and Conclusion 

This paper presents a framework for objective identification and quantification of 3D 
vortex ring in the LV from 4D PC MRI by means of isosurfaces. The problem of vor-
tex ring identification from the 3D vortical scalar field was reduced to histogram 
comparison and hierarchical K-means vector quantization. The reported results on 
healthy controls as well as patients show great promise of the proposed method. The 
generalizability of the proposed method was evaluated with abnormal vortex rings 
being identified from 23 patients with a signature trained solely on normal vortex ring 
isosurfaces from healthy controls. The proposed method provided high performance 
and agreement with the blindly generated ground truth. It is important to emphasize 
that the exact size/volume of a vortex ring is generally undefined as it is isovalue 
dependent. Therefore, volumetric measurements like Hausdorff distance or dice over-
lap may not sufficiently capture the validity of the identified vortex rings. Instead, the 
evaluated quantitative characterization parameters (C, L, R and orientation) may pro-
vide more objective evaluation of the method and its potential clinical value. In this 
work, the vortex ring identification was limited to the phase of  peak LV inflow which 
is considered the moment around full vortex development [3,6], however vortex for-
mation in the LV is a dynamic process over the entire diastole involving vortex evolu-
tion and dissipation with corresponding shape deformations. Future work will address 
the method’s performance in other diastolic phases. The proposed method allows for 
objective quantitative characterization of the peak-inflow vortex ring formation in the 
LV with results comparable to those previously validated [3]. With the increasing 
interest in vortex ring formation as a potential biomarker for LV (dys)function [2,4,6], 
the proposed method can play an important role in providing objective 3D vortex 
analysis for assessment of vortex ring formation in the LV from 4D Flow MRI.  

Table 1. Qunatitative evaluation results 

Parameter 24 Controls 23 Patients 

 
Ground 

truth 

Proposed 

method 

p-value 

(paired 

t-test) 

Ground truth Proposed 

method 

p-value 

(paired 

t-test) 

C 87±20 85±24 0.12 67±19 63±23 0.07 

L 0.19±0.04 0.19±0.04 0.92 0.22±0.06 0.22±0.05 0.74 

R 0.27±0.07 0.27±0.07 0.91 0.33±0.09 0.33±0.1 0.61 

Vortex Orientation 70±55 65±54 0.65 57±25 57±40 0.87 

Lambda2 

Isovalue* 

-7.2±-3.43 -7.3±-3.2       0.82 -7.27±-11.24 -7.7±-5.45       0.86 

Surface Overlap 

(Dice Coeffecient) 

0.81±0.09 0.77±0.14 

Hausdorff distance 

(mm) 

8.36±7.55 11.73±6.57 

*The absolute lambda2 isovalue doesn’t have direct interpretation here and was provided only to give 
impression on how similar were they in test cases compared to ground truth 
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