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Abstract. Parallel magnetic resonance imaging (pMRI) is a useful tech-
nique to aid clinical diagnosis. In this paper, we develop an accelerated
algorithm for joint total variation (JTV) regularized calibrationless Par-
allel MR image reconstruction. The algorithm minimizes a linear com-
bination of least squares data fitting term and the joint total variation
regularization. This model has been demonstrated as a very powerful tool
for parallel MRI reconstruction. The proposed algorithm is based on the
iteratively reweighted least squares (IRLS) framework, which converges
exponentially fast. It is further accelerated by preconditioned conjugate
gradient method with a well-designed preconditioner. Numerous experi-
ments demonstrate the superior performance of the proposed algorithm
for parallel MRI reconstruction in terms of both accuracy and efficiency.

1 Introduction

Parallel MR imaging is a powerful method that uses multiple receiver coils for
reducing scanning time in MRI[5,6]. Based on the way in utilizing the sensitivity
information and local kernel in k-space, these methods are classified broadly into
two main types. Reconstruction techniques such as SENSE[11] and CSSENSEI§]
expect accurate estimation of reception profiles from each coil element to opti-
mally reconstruct undersampled MR image. However, it is often very difficult to
accurately and robustly measure the sensitivities and even small errors can result
in inconsistencies that lead to visible artifacts in the image. These disadvantages
therefore motivate the other type of methods, termed auto-calibrating methods,
e.g. GRAPPA[4] and SPIRIT[9], that derive sensitivity information from auto-
calibration signals (ACSs) and thus avoid side effects brought by the difficult and
inaccurate sensitivity map estimation. However, it is often limiting or totally in-
feasible to acquire sufficient ACSs. For example, for non-Cartesian imaging, ACS
acquisition requires much longer time and can probably lead to artifacts due to
off-resonance. To overcome these shortcomings, several calibrationless methods
have been proposed recently, e.g. CaLMMRI[10], FISTA JTV|[2] and SAKE[15].
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Among these methods, joint total variation (JTV) model has been demon-
strated as a powerful tool for calibrationless parallel MR image reconstruction.
The JTV model is designed based on the observation of the gradient sparsity of
each coil image and the cross-channel similarity of parallel MR images. Previous
attempt to solve this model is shown in [2] which is based on FISTA JTV algo-
rithms. The numerical experiments exhibit its effectiveness and efficiency on the
parallel MR images with real measurements. However, real world parallel MR,
images are often sampled in complex measurements. For complex parallel MR
images, the FISTA JTV algorithm usually fails to solve the model efficiently as
it requires more inner loop iterations to converge.

Here, we propose a novel optimization scheme to solve the joint total vari-
ation model more efficiently based on the iteratively reweighted least squares
(IRLS) framework. It preserves the fast convergence speed of traditional IRLS
which converges exponentially fast. Since it requires solving a linear inverse sub-
problem in each IRLS step, we propose a new pseudo-diagonal preconditioner
to significantly accelerate this process with preconditioned conjugate gradient
method. Extensive experiment results show that it impressively outperforms
previous state-of-art methods for the MR image reconstruction in terms of both
reconstruction accuracy and computational complexity.

2 Joint Total Variation Regularized Model

Based on the assumption that the gradients of aliased images from all the coils
are jointly sparse, the formulation of joint total variation (JTV) model is de-
signed as follows[2]:

1
mwlnzHR]:a:—bHZ—I—)\H[th,va}HgJ. (1)
where x € C™*"*¢ ig the c-channel parallel MR image with each coil size
m X n. R is the subsampling operator in frequency domain, and F is the Fourier
transform operator. A is the non-negative tunning parameter balancing the data
fitting and JTV regularization. The JTV regularization term ||[Vxx, V2|21 =

m n C
o>l > (Vhaijk)? + (Ve jk)? and Vi, and V, are the horizontal and ver-
i=1j=1 \/ k=1
tical discrete gradient operators (i.e. Vi jx = Tijt+1.k — Tijk, Volijk =
Tit1,j.k — Tijk). The JTV regularization sums up the horizontal and vertical
discrete gradients across all data channels. Therefore, minimizing the JTV regu-
larization can lead to the joint gradient sparse solution for pMRI reconstruction.
Due to the non-smoothness of JTV regularization, it’s hard to optimize the
JTV objective function efficiently. Although FISTA JTV[2] has been proposed
as an accelerated algorithm and experimentally proven as a fast method for
parallel MR images with real number measurements, it remains challenging to
efficiently reconstruct parallel MR images in complex measurements. This situa-
tion therefore motivates us to develop a faster algorithm, especially for complex
measurements, to solve JTV model in the next section.
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3 Algorithm

3.1 Iteratively Reweighted Least Squares Framework

In this section, we first briefly review the iteratively reweighted least squares
(IRLS) method[1,3] and show how to fit JTV model into the IRLS framework.
The key idea of the IRLS method is to approximate the ¢ regularization by a
weighted o regularization, making the loss function strongly convex. The for-
mulation is then able to be optimized in a linear convergence rate as shown in
Theorem 1.

Theorem 1. (Theorem 6.1 in [3]) Let {z'} be the sequence generated by IRLS
method, x* be the £1—minimizer with p € (0,1), thus

lo" = 2*[l < p*l2° — 271 (2)

Using the techniques introduced in [7], we have the weighted £2 form for the
JTV model (1).

1 A A
min |RFz — b||* + ) (Vpa, W'Vz) + ) (Voz, WiV ). (3)
where  (Vpz, WiV, ) = > > Wik (Vamijk)?,  and  simi-
i=1j=1k=1
larly (Vyz, W'V,z) = i;yg g Wi n(Vowijx)®. Here Wl =

( Z(th”p) +(Voal; )2 +e)7! for k = 1,2,...,c and ¢ is a real
p=1
infinitesimal added to avoid WZ{ ;. to be infinite.
By solving the Euler-Lagrange equation of (3), we have the least squares
subproblem in each IRLS iteration

(FERHRF + MV, W'VL) + MV, WiV, )z = FERHb. (4)

where the superscript H denotes the conjugate transpose of a linear bounded
operator. However, it is not feasible to calculate exact matrix inverse since it
requires O(pg?) time for a p x ¢ matrix. Another option is to use the classical
iterative methods, e.g. Jacobian, Gauss-Seidel iteration whose convergence are
not guaranteed. Therefore, it is challenging to design an efficient algorithm with
clear theoretical convergence justification to solve the subproblem (4).

3.2 Preconditioned Conjugate Gradient Descent

In the sequel, we study the preconditioned conjugate gradient (PCG) method
aiming at solving subproblem (4) efficiently. We first show, in Theorem 2, the
conjugate gradient(CG) algorithm is able to solve the least squares problem in
a linear convergence rate.
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Theorem 2. (Section 9.2 in [14]) Let {z'} be the sequence generated by con-
jugate gradient iteration, x* be the optimal solution for b = Ax. Let k be the
condition number of A, ||z||a = (z, Ax) be the energy norm, we have

* \/"{_1 ' *
Jot = ala <2 (V70T 10— ol )

The practical convergence speed of CG highly depends on the condition num-
VE—1
VE+1
approaches 1, leading to the arbitrarily slow convergence of CG. However, in

practices, the A is usually with high condition number. It thus motivates the pre-
conditioning techniques which is typically related to reducing condition number
of A by designing a transformation P. The design of preconditioner is problem-
dependent and the preconditioner not only needs to be as close as possible to
the original system matrix A but also be able to be inverted efficiently.

For least squares subproblem (4), we design a novel preconditioner to acceler-
ate the CG method. Observing F¥R¥RF is diagonal dominant, we can discard
the non-diagonal elements in F# R¥ R F without bringing in large error. In this
way, we can design the following preconditioner for solving subproblem (4)

P = FHRHRFI + AV, WV,) + MV, WIV,). (6)

ber k of A. When k is relatively large, the coefficient of convergence

where FERHRF denotes the mean of diagonal elements of FHZR¥RF and I is
the identity matrix. The FHRHRFI is bounded and the parameter X is usually
small (e.g. 107%) hence successfully suppressing the condition number of the
preconditioner P. Moreover, this preconditioner is observed as a penta-diagonal
matrix, whose inverse can be evaluated in linear time by [12]. Therefore, the
proposed preconditioner is able to solve problem (4) more accurately, while, in
the meantime, it does not increase time complexity.

The proposed algorithm is summarized in Algorithm 1. We denoted this algo-
rithm as PRIM which is short for PReconditioned Iterative reweighted Method
for parallel MRI reconstruction. Although the proposed algorithm has inner loop,
we observe that usually ten PCG iterations are sufficient to obtain a solution
very close to the optimal one for the parallel MRI reconstruction. This is because
both the inner and outer loops have linear convergence rates. The theoretically
fast convergence constitutes a key feature of the proposed method.

Another key feature of our method is the cost of each iteration is only
O(cmnlog(mn)). The step of updating W/, and P* requires O(cmn) time.
Updating S* requires O(cmnlog(mn)) time since in each step it requires to
evaluate Fast Fourier Transformation. The inverse of P! can be calculated in
O(emn) time as shown in [12]. As a result, the time complexity of each iteration
in PRIM is O(emnlog(mn)).

With these two key features, the PRIM efficiently solves the compressive sens-
ing parallel MR image reconstruction model regularized by joint total variation.
The experiment results in the next section demonstrate its superior performance
compared with all previous state-of-art methods for pMRI reconstruction.
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Algorithm 1. PRIM

Input: R, b, 2% X\, t =0, ¢
while not meet the stopping criterion do
Wik =1/( Zl(thﬁ,j,pP + (Voat
p=
St = FERERF + MVu, WiVL) + MV, W'V,)
Pt = FERHERFI + MV, WiV,) + XMV, WiIV,)
while not meet the PCG stopping criterion do
Update 2! by PCG for Stz = (RF)™b with preconditioner P*
end while
t:=t+1
end while

)? +e)

30sP

4 Experiments

4.1 Experiment Setup

The experiments are conducted on three parallel MRI datasets in Figure 1.

3T Kneef[15]. The MR image shown in figure 1(a) is a 3D FSE CUBE se-
quence with proton density weighting scanned on a GE 3T whole body scanner
(TE=25ms, TR=1550ms, FOV=160mm, 320 x 320 matrix). This dataset is open
access to public in http://mridata.org.

3T Brain[8]. Figure 1(b) shows an image scanned from a GE 3T commercial
scanner with an eight-channel head coil using a two-dimensional T1-weighted
spin echo protocol (TE = 11ms, TR = 700ms, FOV = 22cm, 256 x 256 pixels).

Signa-Ezxcite 1.5T Brain/9]. Figure 1(c) shows a T1-weighted image from
spoiled gradient echo (SPGR) sequence, scanned on a GE Signa-Excite 1.5-T
scanner with an eight-channel receive coil (TE = 8ms, TR=17.6 ms, FOV =
20cm, 200 x 200 pixels).

(a) 3T Knee (b) 3T Brain (c) Signa-Excite 1.5T Brain

Fig. 1. Three MR images used in the experiments.
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We implemented the proposed method for problem (1) and apply them to
MRI k-space data with complex measurements. All experiments are conducted
on a PC with Intel i7-4770 @ 3.40 GHz CPU and 16 GB RAM. We compare the
proposed method with the state-of-art methods GRAPPA[4], CGSPIRIT[9], and
CSSENSEI8]. Moreover, we compare them with SAKE[15] which is another cali-
brationless method proposed recently. We also compare the proposed method
with FISTA JTV[2] that solves the same JTV model. For fair comparisons,
we download the codes from their websites and follow their default parameter
settings carefully.

4.2 Numerical Results

Figure 2 shows the reconstruction results on 3T Knee MR image at a reduction
factor R = 4, together with the ground-truth image. Quantitative comparison
results for 3T Knee, 3T Brain and Signa-Excite 1.5T Brain datasets are shown
in Table 1, 2 and 3, respectively. Compared to all other methods, the proposed
method always preserves most details and suppress most noise (as shown in the
zoomed region of interest). It does make sense because the JTV regularization
acquires the prior knowledge that the gradients of MR images are typically
sparse. The reconstruction results of GRAPPA, CGSPIRIT and SAKE are much
more noisy in that their models do not include that assumption. Moreover, the
gradient of each image coil(channel) is assumed similar in the JTV model which
is the main reason for the better performance than CSSENSE. In this way, the
JTV regularization makes the reconstruction result purer and more recognizable
compared with other methods.

SAKE FISTA_JTV Proposed

Fig. 2. Visual results of different methods compared with ground-truth. Best viewed
in x2 pdf.
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Table 1. Quantitative comparison on 3T Knee dataset.

GRAPPA CGSPIRIT CSSENSE SAKE FISTA JTV Proposed

RMSE (x10™%) 11.7595 9.7159 6.9781  9.5650 6.3886 6.3323

SNR (db) 9.7149 11.3729 14.2479 11.5089 15.0145 15.0914
Time (s) 171.81 9.85 193.21 27.35 115.80 9.74

Table 2. Quantitative comparison on 3T Brain dataset.

GRAPPA CGSPIRIT CSSENSE SAKE FISTA JTV Proposed

RMSE (x10™%) 4.0159 3.5716 5.7170  3.3266 3.2563 3.1963

SNR (db) 21.9516  22.9699 18.8838 23.5871  23.7726  23.9341
Time (s) 172.69 9.79 193.40  28.34 113.81 9.36

Table 3. Quantitative comparison on Signa-Excite 1.5T Brain dataset.

GRAPPA CGSPIRIT CSSENSE SAKE FISTA JTV Proposed

RMSE (x10™%) 6.7155 5.5824 5.5891  4.7867 4.5506 4.5155

SNR (db) 17.2415  18.8467 18.8363 20.1823  20.6218  20.6889
Time (s) 173.03 9.82 193.47  28.49 116.07 9.49

It has also been noticed that our method always consumes least time on
each MR image. GRAPPA requires more time for calibration when using ran-
dom mask. SAKE calculates Singular Value Decomposition (SVD) of the pMRI
data tensor in each iteration. The SVD takes O(n?) time, resulting in the less
efficiency compared with the proposed method. FISTA JTV requires more in-
ner loop iterations to converge in complex measurements. Overall, the proposed
method is able to outperform the other methods in computational performance
due to its superior convergence property and lower per-iteration computational
cost.

5 Conclusion

We have proposed an novel algorithm PRIM to solve the joint total variation
model for parallel MRI reconstruction. It is based on the iteratively reweighted
least squares framework and preconditioned conjugate gradient method. More-
over, we have designed a novel preconditioner to strengthen its converge property
as it requires to efficiently solve the least squares subproblem. The efficiency of
PRIM is theoretically guaranteed and also exhibited in extensive experiments.
With the joint gradient sparsity assumption in JTV model, the proposed method
is able to provide much more accurate reconstruction result than other state-of-
art methods with less time. All these benefits lead us closer to the calibrationless
real-time parallel MRI reconstruction than ever before.
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